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Abstract

Inducing causal relationships from observations is a classic problem in machine
learning. Most work in causality starts from the premise that the causal variables
themselves are observed. However, for Al agents such as robots trying to make
sense of their environment, the only observables are low-level variables like pixels
in images. To generalize well, an agent must induce high-level variables, par-
ticularly those which are causal or are affected by causal variables. A central
goal for Al and causality is thus the joint discovery of abstract representations
and causal structure. However, we note that existing environments for studying
causal induction are poorly suited for this objective because they have complicated
task-specific causal graphs which are impossible to manipulate parametrically (e.g.,
number of nodes, sparsity, causal chain length, etc.). In this work, our goal is to fa-
cilitate research in learning representations of high-level variables as well as causal
structures among them. In order to systematically probe the ability of methods
to identify these variables and structures, we design a suite of benchmarking RL
environments. We evaluate various representation learning algorithms from the
literature and find that explicitly incorporating structure and modularity in models
can help causal induction in model-based reinforcement learning.

1 Introduction

Deep learning methods have made immense progress on many reinforcement learning (RL) tasks
in recent years. However, the performance of these methods still pales in comparison to human
abilities in many cases. Contemporary deep reinforcement learning models have a ways to go to
achieve robust generalization [Nichol et al., 2018], efficient planning over flexible timescales [Silver
and Ciosek, 2012], and long-term credit assignment [Osband et al., 2019]. Model-based methods in
RL (MBRL) can potentially mitigate this issue [Schrittwieser et al., 2019]. These methods observe
sequences of state-action pairs, and from these observations are able to learn a self-supervised
model of the environment. With a well-trained world model, these algorithms can then simulate the
environment and look ahead to future events to establish better value estimates, without requiring
expensive interactions with the environment [Sutton, 1991]. Model-based methods can thus be far
more sample-efficient than their model-free counterparts when multiple objectives are to be achieved
in the same environment. However, for model-based approaches to be successful, the learned models
must capture relevant mechanisms that guide the world, i.e., they must discover the right causal
variables and structure. Indeed, models sensitive to causality have been shown to be robust and
easily transferable [Bengio et al., 2019, Ke et al., 2019]. As a result, there has been a recent surge of
interest in learning causal models for deep reinforcement learning [de Haan et al., 2019, Dasgupta
et al., 2019, Nair et al., 2019, Goyal et al., 2019, Rezende et al., 2020, Wang et al., 2021]. Yet, many
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Figure 1: (a)-(d): Different aspects contributing to the complexity of causal graphs. (i), (ii): Difference between
observational and interventional data. In RL setting, actions are interventions in the environment. The hammer
denotes an intervention. Intervention on a variable not only affects its direct children, but also all reachable
variables. Variables impacted by the intervention have a darker shade.

challenges remain, and a systematic framework to modulate environment causality structure and
evaluate models’ capacity to capture it is currently lacking, which motivates this paper.

What limits the use of causal modeling approaches in many Al tasks and realistic RL settings is
that most of the current causal learning literature presumes abstract domain representations in which
the cause and effect variables are explicit and given [Pearl, 2009]. Methods are needed to automate
the inference and identification of such causal variables (i.e. causal induction) from low-level state
representations (like images). Although one solution is manual labeling, it is often impractical and
in some cases impossible to manually label all the causal variables. In some domains, the causal
structure may not be known. Further, critical causal variables may change from one task to another,
or from one environment to another. And in unknown environments, one ideally aims for an RL agent
that could induce the causal structure of the environment from observations and interventions.

In this work, we seek to evaluate various model-based approaches parameterized to exploit structure
of environments purposefully designed to modulate causal relations. We find that modular network
architectures appear particularly well suited for causal learning. Our conjecture is that causality can
provide a useful source of inductive bias to improve the learning of world models.

Shortcomings of current RL development environments, and a path forward. Most existing RL
environments are not a good fit for investigating causal induction in MBRL, as they have a single
fixed causal graph, lack proper evaluation and have entangled aspects of causal learning. For instance,
many tasks have complicated causal structures as well as unobserved confounders. These issues make
it difficult to measure progress for causal learning. As we look towards the next great challenges for
RL and Al, there is a need to better understand the implications of varying different aspects of the
underlying causal graph for various learning procedures.

Hence, to systematically study various aspects of causal induction (i.e., learning the right causal graph
from pixel data), we propose a new suite of environments as a platform for investigating inductive
biases, causal representations, and learning algorithms. The goal is to disentangle distinct aspects
of causal learning by allowing the user to choose and modulate various properties of the ground
truth causal graph, such as the structure and size of the graph, the sparsity of the graph and whether
variables are observed or not (see Figure 1 (a)-(d)). We also provide evaluation criteria for measuring
causal induction in MBRL that we argue help measure progress and facilitate further research in
these directions. We believe that the availability of standard experiments and a platform that can
easily be extended to test different aspects of causal modeling will play a significant role in speeding
up progress in MBRL.

Insights and causally sufficient inductive biases. Using our platform, we test several existing models
to gain insights into the inductive biases that work well for this task. Specifically, we investigate the
impact of explicit structure and modularity for causal induction in MBRL. We evaluated two typical
of monolithic models (autoencoders and variational autoencoders) and two typical models with
explicit structure: graph neural networks (GNNs) and modular models (shown in Figure 5). Graph
neural networks (GNNs) have a factorized representation of variables and can model undirected
relationships between variables. Modular models also have a factorized representation of variables,
along with directed edges between variables which can model directed relationship such as A causing
B, but not the other way around. We investigated the performance of such structured approaches on
learning from causal graphs with varying complexity, such as the size of the graph, the sparsity of the
graph and the length of cause-effect chains (Figure 1 (a) - (d)).

The proposed environment gives novel insights in a number of settings. Especially, we found that
even our naive implementation of modular networks can scale significantly better compared to other
models (including graph neural networks). This suggests that explicit structure and modularity such
as factorized representations and directed edges between variables help with causal induction in
MBRL. We also found that while both modular networks and graph neural networks, such as the
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Figure 2: Illustration of the key features of the suite. Environments have objects that interact according to the
underlying causal graph which can be based on a subset of objects’ properties. An efficient model should be
able to infer the high level causal variables from raw pixel data and learn the underlying causal graph through
interactions between these high level causal variables.

ones from Kipf et al. [2019], are good at modeling pairwise interactions and significantly outperform
monolithic models under this setting, they have difficulty modeling complex causal graphs with long
cause-effect chains, such as the chain graph (demonstration of chain graphs are found in Figure 1
(1)) thus leaving room for research progress to be made in the domain of causal graphs with long
causal chains such as the ones we study in the chemistry environment detailed below. Another finding
is that existing evaluation metrics such as likelihood and ranking loss do not always correspond to
the true performance of these models, hence we propose appropriate downstream RL tasks for our
environments to correctly evaluate a given causal model.

2 Environments for causal induction in model-based RL

Causal models are frequently described using graphs in which the edges represent causal relationships.
In these structural causal models, the existence of a directed edge from A to B indicates that
intervening on A directly impacts B, and the absence of an edge indicates no direct interventional
impact (see Appendix B for formal definitions).

In parallel, world models in MBRL describe the underlying data generating process of the environment
by modeling the next state given the current state-action pair, where the actions are interventions in
the environment. Hence, learning world models in MBRL can be seen as a causal induction problem.
Below, we first outline how a collection of simple causal structures can capture real-world MBRL
cases, and we propose a set of elemental environments to express them for training. Second, we
describe precise ways to evaluate models in these environments.

2.1 Mini-environments: explicit cases for causal modulation in RL

The ease with which an agent learns a task greatly depends on the structure of the environment’s
underlying causal graph. For example, it might be easier to learn causal relationships in a collider
graph ( see Figure 1(a)) where all interactions are pairwise, meaning that an intervention on one
variable X; impacts no more than one other variable X, hence the cause-effect chain has a length
of at most 1. However, causal graphs such as full graphs (see Figure 1 (a)) can have more complex
causal interactions, where intervening on one variable impacts can impact up to n — 1 variables
for graphs of size n (see Figure 1). Therefore, one important aspect of understanding a model’s
performance on causal induction in MBRL is to analyze how well the model performs on causal
graphs of varying complexity.

Important factors that contribute to the complexity of discovering the causal graph are the structure,
size, sparsity of edges and length of cause-effect chains of the causal graph (Figure 1). Presence
of unobserved variables also adds to the complexity. The size of the graph increases complexity
because the number of possible graphs grows super-exponentially with the size of the graph [Eaton
and Murphy, 2007, Peters et al., 2016, Ke et al., 2019]. The sparsity of graphs also impacts the
difficulty of learning, as observed in [Ke et al., 2019]. Given graphs of the same size, denser graphs
are often more challenging to learn. Furthermore, the length of the cause-effect chains can also impact
learning. We have observed in our experiments, that graphs with shorter cause-effect lengths such as
colliders (Figure 1 (a)) can be easier to model as compared to chain graphs with longer cause-effect
chains. Finally, unobserved variables which commonly exist in the real-world can greatly impact
learning, especially if they are confounding causes (shared causes of observed variables).



Taking these factors into account, we designed two suites of (toy) environments: the
physics environment and the chemistry environment, which we discuss in more detail in the fol-
lowing section. They are designed with a focus on the underlying causal graph and thus have a
minimalist design that is easy to visualize.

Environment Design Details. Both the Physics and Chemistry environment consists of 50 x 50
RGB pixels of renderings of visual scenes in 2D; examples are shown in Figures 2-3. Objects reside
on a 5x5 grid of cells; each grid cell is rendered as a 10x10 pixel array, giving rise to the 50x50
RGB images. For every environment, there is a fixed set of k objects defined by their unique shapes.
The same objects appear in every episode within the environment, but their positions and colors
are randomly sampled in each episode. Because all objects are visible at every time, the state is
Markovian.

For the Physics environment, the state of an object O; is defined by its position, which is a discrete
pair (z,y), such that z € {0,1,..,4} and y € {0, 1, ..,4}. The agent can move objects in the grid
world For an environment with IV objects, the action space of the agent is a discrete pair (k,v), where
k €{0,1,...,N — 1} is the index of the object to intervene on and v € {up, down, left,right)} is
a discrete value that sets the value of the intervention. The intervention involves pushing the object in
a given direction (up, down, left, right). The dynamics of the environment as a result of these actions
will be explained shortly. Because the set of objects (defined by their unique shape) is fixed across
episodes, the index-to-object mapping is also fixed across episodes. For more details about the setup,
please refer to Appendix G.

In the Chemistry environment, objects do not move during an episode. Instead, the color of objects
can change within an episode. As in the Physics environment, there are N objects defined by
unique shapes. Each object is one of M colors. The agent intervenes by selecting an object and
specifying a new color value for that object, i.e., the action space is a discrete pair (k, v), where
k €{0,1,.., N — 1} specifies the index of the object to intervene on and v € {0,1,..., M — 1} is
the new color.

During each episode, the agent observes a current image and a goal image which contains the goal
state of each object in the episode (position of each object in the Physics environment and color of
each object in the Chemistry environment). The agent is given a fixed number of steps to achieve
the goal. We have 2 reward settings: sparse reward and dense reward. For sparse reward, If the goal
is achieved, the agent receives a reward of 1. If the goal is not achieved by the final step, the agent
receives a reward that depends on the discrepancy between the current and target configurations. For
the dense rewards, the agent receives a reward at at each step, the reward is also the discrepancy
between the current and target configuration.

Physics environment: Weighted-block pushing. Each block has an implicit weight which maps
1:1 with the color of the block. The color-weight correspondence is fixed within an environment. The
physics environment simulates a very simple law of physics: that pushing a heavier block against
a lighter block will cause the lighter block to move as well if the adjacent cell is empty. Pushing a
lighter block against a heavier block will not move either block. Blocks have unique colors, hence
unique weights. Consequently, there is only one possible causal graph in the physics environment
that correctly simulates the given rule (heavier blocks pushing lighter blocks). Therefore, For an
accurate world model, inferring the weights becomes essential.

The color-weight correspondence can be either systematic or arbitrary. In the systematic setting,
all objects have the same color, but different density. The weight is determined by density of the
color (darker color have a heavier weight and vice versa), see Figure 3 for an example. Hence,
the assignment between the density of the color and the weight is systematic. Upon learning the
assignment rule, the model should be able to generalize to new color densities in a zero-shot setting.
In the arbitrary setting, all objects have different and unique colors, hence there is no clear ordering
of colors, see Figure 3 for an example. There is a fixed color and weight assignment for each
environment, but the agent can not infer the weight by just observing the color, it would need to
intervene on it to see how it interacts with other colors (weights) in order to find out the ordering of
its weights. For more details about the setup, please refer to Appendix G.

Chemistry environment. The chemistry environment consists of a set of blocks as shown in Figure
4. The interactions in this environment take place according to the underlying causal graph as shown
in the Figure. These interactions results in state changes in the form of color changes in the blocks.
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Figure 3: Demonstration of the weighted-block pushing environment (left: systematic, right: arbitrary) along
with the feasible generalizations that the setup provides.

This phenomenon is loosely inspired by chemistry wherein chemical reactions result in state changes
of the given elements hence we use the term chemistry environment to refer to this environment.

We consider two settings of the chemistry environment: Static and Dynamic. In the static setting
the positions and shapes of the blocks are fixed across episodes therefore the blocks are identifiable
using their shapes or positions. In the dynamic setting, only shapes are fixed while the positions are
variable across episodes therefore the blocks are identifiable only through their shapes which makes
this setting slightly more complex. The chemistry environment presents a much more difficult setting
than the physics environment because in chemistry for a given set of blocks there can be multiple
possible causal graphs while in physics there can be only one possible causal graph.

The interactions between different objects take place according to the underlying causal graph which
can either be a randomly generated DAG, or specified by the user. An interaction consists of changing
the color (state) of a variable. At this point, the color of all variables affected by this variable
(according to the causal graph) can change. Interventions change a block’s color unconditionally,
thus cutting the graph edge linking it with its parents in the graph. All transitions are probabilistic
and defined by conditional probability tables (CPTs).

The Chemistry environment (see Figure 4
for examples) also consists of 50 x 50 RGB <
pixels of renderings of visual scenes in 2D.  Colider
Each episode also consists of a fixed set
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grees of complexities which can be easily tuned such as: (1) Complexity of the graph: We can test
any model on many different graphs thus ensuring that a models performance is not only limited to a
few select graphs. (2) Stochasticity: By tuning the skewness of the probability distribution of each
object we can test how good is a given model in modelling data uncertainty. In addition to this we
can also tune the number of object or the number of colors to test whether the model generalizes to
larger graphs and more colors. A good model should be able to extract the correct causal variables
from the observation and infer the correct causal relationships between observed objects, as well as
their respective color distribution and its dependence on a causal parent’s distribution.

Evaluating causal models In much of the existing literature, evaluation of learned causal models
is based on the structural difference between the learned graph and the ground-truth graph [Peters
etal., 2016, Zheng et al., 2018]. However, this may not be applicable for most deep RL algorithms,
as they do not necessarily learn an explicit causal structure [Dasgupta et al., 2019, Ke et al., 2020].
Even if a structure is learned, it may not be unique as several variable permutations can be equivalent,
introducing an additional evaluation burden.

Another possibility is to exhaustively evaluate models on all possible intervention predictions and
all environment states, a process that quickly becomes intractable even for small environments. We
therefore propose a few evaluation methods that can be used as a surrogate metrics to measure the
model’s performance on recovering the correct causal structure.



Predicting Intervention Outcomes. While it may not be feasible to predict all intervention outcomes
in an RL environment, we propose that evaluating predictions on a subset of interventions provides
an informative evaluation. Here, the test data is collected from the same environment used in training,
ensuring a single underlying causal graph. Test data is generated from new episodes that are unseen
during training. All interventions (actions) in the test episodes are randomly sampled and we evaluate
the model’s performance on this test set.

Zero Shot Transfer. Here, we test the model’s ability to generalize to unseen test environments, where
the environment does not have exactly the same causal graph as training, but training and test causal
graphs share some similarity. For ex. in the observed Physics environment, a model that has learned
the underlying causal relationship between color intensity and weight would be able to generalize to
new variables with a novel color intensity.

Downstream RL Tasks. Downstream RL tasks that require a good understanding of the underlying
causal graph of the environment are also good metrics for measuring the model’s performance. For
example, in the physics environment, we can provide the model with a target configuration in the
form of some specific arrangement of blocks on a grid and the model needs to perform actions in
the environment to reach the target configuration. Models that capture causal relationships between
objects should achieve the target configuration more easily (as it is can predict intervention outcomes).
For more details about this setup, please refer to Appendix E.

Metrics. We also evaluate the learned models on ranking metrics in the latent space as well as
reconstruction-based metrics in the observation space [Kipf et al., 2019]. In particular we measure
and report Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) and Reconstruction loss for
evaluation in standard as well as transfer testing settings. We report these metrics for 1, 5 and 10
steps of prediction in the latent space (refer Appendix C).

3 Models

A large variety of neural network models H <2
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explicit architecture built into (or learned and transition model. The transition models can either be
by) the model. Examples of such models monolithic, modular model or graph neural networks (GNNs).
are ones based on graph neural networks  \jonothlic models don’t have explicit structure. GNNs have
[Battaglia et al., 2016, Van Steenkiste et al.,  factorized representation of variables. Modular models have
2018, Kipf et al., 2019, Veerapaneni et al., factorized representation of both variables and directed edges
2020] and modular models [Ke et al., 2020, to potentially model causal relationships, e.g. A causing B.
Goyal et al., 2019, Mittal et al., 2020, Goyal et al., 2020]. We picked some commonly used models
from these categories and evaluated their performance to understand their ability for causal induction
in MBRL. To disentangle the architectural biases and effects of different training methodologies, we
trained all the models on both likelihood based and contrastive losses, respectively. All models share
three common components: encoder, decoder and transition model. We follow a similar training
procedure as in Ha and Schmidhuber [2018], Kipf et al. [2019]. Details about the architectures and
training protocols can be found in Appendix F.

Monolithic Models. We evaluate causal induction on two commonly used monolithic models:
multilayered autoencoders and VAEs . These models do not have strong inductive biases other than
the number of layers used.

Modular and Structured Models. Several forms of structure can be included in neural networks,
including modularity, factorized variables, and directed rules.

Taking the three factors into account, we consider two types of structured models in our paper, graph
neural networks (GNN) and so called modular networks. Graph neural networks (GNN) [Gilmer
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Figure 6: Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step prediction
for the Arbitrary Physics environment setting with 5 objects. Here, (a) Random stands for a random policy,
(b) greedy is the policy with best greedy actions, (c) NLL are models trained in 2 stages: pretraining the
encoder/ decoder, following by only training the transition model, (d) NLL with finetune are models in 3 stages:
pretraining the encoder/ decoder, following by only training the transition model and then finetuning the encoder,
decoder and transition models together. (e) Contrastive are models trained using a contrastive loss. The GNN
and Modular models trained on constrastive loss significantly outperform the monolithic models (autoencoders
and VAE). The margin significantly increases as the number of steps to reach the goal increase, suggesting that
models with explicit structure and modularity have a much better understanding of the world.

et al., 2017, Tacchetti et al., 2018, Battaglia et al., 2018, Kipf et al., 2019] is a widely adopted
relational model that have a factorized representation of variables and models pairwise interactions
between objects while being permutation invariant. In particular, we consider the C-SWM model
[Kipf et al., 2019], which is a state-of-art GNN used for modeling object interactions. Similar to most
GNNs, the C-SWM model learns factorized representations of different objects but for modelling
dynamics it considers all possible pairwise interactions, and hence the transition model is monolithic
(i.e., not a modular transition model).

Modular networks on the other hand are composed of an initial encoder that factorizes inputs (images),
and then a modular transition model (MTM) - M. This internal model is tasked to create separate
factored representations for each objects in the environment, while taking into account all other
objects’ representations. This model also learns interactions between objects. The rules learned here
are directed rules.

Downstream RL models We evaluate our learned world-models for downstream RL tasks using
both model-free and model-based RL algorithms. This allows us to gain insights on the difficulty of
the tasks, as well as comparing the representations learned by various models and analyze if they help
to improve downstream RL performance. The model-based setup is inspired by the recent work of
Watters et al. [2019]. We consider learning a reward predictor based on the pretrained world-models,
then performing search in the space of actions based on taking greedy actions in the direction of
immediate highest reward. The weights of the world-model (parameterized as a neural network) are
fixed during training, thus, it is only possible to learn a good reward predictor if the world-model
captures important aspects of the underlying causal-graph from the raw image. For details of the
setup, please refer to Appendix E. For the model-free algorithms, we used the popular Proximal
Policy Optimization (PPO)[Schulman et al., 2017]. We trained PPO either from scratch or with a
pretrained encoder from our world models. This allow us to evaluate if the learned representations
of the world-models helps improve downstream RL performance, even in a model-free setting. For
details of the setup, please refer to Appendix D.

4 Experiments

Our experiments seak to answer the following questions: (a) Does explicit structure and modularity
help for causal induction in MBRL? If so, then what type of structures provide good inductive bias
for causal induction in MBRL? (b) How do different objective functions (likelihood or contrastive)
impact learning? (c) How do different models scale to complex causal graphs? (d) Do prediction
metrics (likelihood and ranking metrics) correspond to better downstream RL performance? (e) What
are good evaluation criteria for causal induction in MBRL?

We report the performance of our models on both the Physics and the Chemistry environments, and
refer the readers to Appendix F for implementation details. All models are trained using the procedure
described in Appendix F.2 and are evaluated based on ranking and likelihood metrics on 1,5 and
10 step predictions. For the Chemistry environment, we evaluate the models on causal graphs with
varying complexity, namely - chain, collider and full graphs. These graphs vary in the sparsity of
edges and the length of cause-effect chains. For the Physics environment, we evaluate the model in
the fully observed setting as well as the arbitrary setting.
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Figure 7: Success rate (higher is better) for different models evaluated on 1, 5 and 10 step predictions for the
static chemistry environment with 5 objects and 5 colors. The results are grouped in types of causal graphs for
the environment, refer to section 1(a) for illustrations of different types of causal graphs. Chain and full graphs
are significantly more challenging compared to collider graphs. This suggests that causal relationships in chain
and full graphs with longer cause and effect chains are more challenging to learn compared to the collider graphs,
which has only pairwise interactions. Modular models outperform all other models in almost all cases, indicating
that introducing structure in the form of modularity is an important inductive bias for learning causal models.

Data Collection Process. The autoencoder, VAE, modular, and GNN models are trained on se-
quences generated by an agent following a random policy. The training data consists of 1,000
sequences with 100 frames per sequence. The validation data consists of 1,000 sequences with
100 frames per sequence. The test data consists of 10,000 sequences with 10 frames per sequence.
Explicit structure and causal induction. We found that for both the Physics and the Chemistry en-
vironments, models with explicit structure outperform monolithic models on both prediction metrics
and downstream RL performances. In particular, models with explicit structure (GNNs and modular
models) scale better to graphs of larger size and longer cause-effect chains.

The Physics environment has a complex underlying causal graph (full graph: refer Figure 1 (a)). We
found that GNNs performed well in this environment with 3 variables. They achieved good prediction
metrics (Figure 8) and high RL performance (Figure 14) even at longer timescales. However, their
performance drops significantly on environments with 5 objects both in terms of prediction metrics
(Figure 9) and RL performance (Figure 15). We also see in Figures 9 and 15 that modular models
scale much better compared to all other models, suggesting that they hold an advantage for larger
causal graphs. Further, modular models and GNNs when evaluated on zero shot settings outperform
monolithic models by a significant margin (Figures 20 and 21 and Tables 15 and 16).

For the chemistry environment, we find that modular models outperform all other models for almost
all causal graphs in terms of both prediction metrics (Figure 24) and RL performance (Figures 7
and 26). This is especially true on more complex causal graphs, such as chain and full graphs
which have long cause-effect chains. Overall, these results suggest that structure, and in particular
modularity, help causal induction in MBRL when scaling up to larger and more complex causal
graphs. The performance comparisons on modular networks and C-SWM [Kipf et al., 2019] suggest
that both factorized representation of variables and directed edges between variables can help for
causal induction in MBRL.

Complexity of the Underlying Causal Graph. There are several ways to vary complexity in a causal
graph: size of the graph, sparsity of edges and length of cause-effect chain (Figure 1). Increasing
the size of the graph significantly impacts all models’ performances. We evaluate models on the
Physics environments with 3 objects (Figure 8) and 5 objects (Figure 9) and find that increasing
the number of objects from 3 to 5 has a significant impact on performance. Modular models
achieve over 90 on ranking metrics over 10-step prediction for 3 objects while for 5 objects, they
achieve only 50 (almost half the performance on 3 objects). A similar pattern is found in almost all
models. Another factor impacting complexity of the graph is the length of cause-effect chain.We
see that collider graphs are the easiest to learn, with modular models and autoencoders significantly
outperforming all other models (Figure 24). This is because the collider graph has short pair-wise
interactions, i.e, intervention on any node in a collider graph can impact at most one other node.
Chain and full graphs are significantly more challenging because of longer cause-effect chains. For
a chain or a full graph of n nodes, an intervention on the k** node can impact all the subsequent
(n — k) nodes. Modeling interventions on chain and full graphs require modeling more than pairwise
relationships, hence, making it much more challenging. Prediction Metrics and RL Performance.
As discussed in Section 2.1, there are multiple evaluation metrics based on either prediction metrics or
RL performance. The performance of the model on one metric may not necessarily transfer to another.



We would like to analyze if this is the case for the models trained under various environments. We first
note that while the ranking metrics were relatively good for most models on physics environments,
most of them only did slightly better than a random policy on downstream RL, especially on larger
graphs (Figures Figure 8 - 13 and Table 3 - 8 for ranking metrics; Figure 14 - 19 and Table 9 - 14 for
downstream RL). Figures 22, 23 and 28 show scatter plots for each pair of losses, with one loss on
each axis. While there is some correlation between ranking metric and RL performance (Modular
and GNN; Figure 22), we did not find this trend to be consistent across models and environment
settings. We feel that these results give further evidence of need to evaluate on RL performance.

Training objectives and learning. Likelihood loss and contrastive loss [Oord et al., 2018, Kipf et al.,
2019] are two frequently used objectives for training world models in MBRL. We trained the models
under each of these objective functions to understand how they impact learning. In almost all cases,
models with explicit structure (modular models and GNNs) trained on contrastive loss perform better
in terms of ranking loss compared to those trained on likelihood loss (refer to Figure § - 13). We don’t
see a very clear trend between training objective and downstream RL performance but we do see a few
cases where contrastively trained models performed much better than others (refer to Figures 6, 14,
18 and 19 and Tables 9, 13 and 14). For other key insights and experimental conclusions on different
environments, we refer the readers to Appendix G.6 for the physics environment and Appendix H.3
for the chemistry environment.

5 Related work
There are 4 key desiderata in our proposed set of environments. They are:

1. the incorporation of actions/interventions for identifying causal relations (as compared to
passive learning from videos);

2. the need to learn a set of high level abstract variables (i.e., objects) and how these variables
interact (i.e., causal induction) directly from visual images;

3. the ability to parametrically manipulate the environment’s underlying causal structure; and

4. the ability to systematically evaluate the generalization performance of different models on
out-of -distribution samples and downstream RL tasks.

Video Prediction and Visual Question Answering. The majority of the environments in the literature
that support causal reasoning are in the form of visual question answering, i.e., given a video, the
model has to reason about the causal interactions between different entities and output a correct
answer. There are many such environments for physical reasoning present in existing literature
(Fragkiadaki et al. [2015], Johnson et al. [2017], Yi et al. [2019], Girdhar and Ramanan [2019],
Baradel et al. [2019], Bakhtin et al. [2019], Xue et al. [2021], Ates et al. [2020]). While these
environments do have complex physical rules and causal mechanisms and these causal mechanisms
are abstract (desideratum 2), they do not allow the agent to incorporate actions for identifying causal
relations (desideratum 1), they do not have the ability to control the underlying causal structure
(desideratum 3), as well as the ability to systematically evaluate the generalization performance of
difference models on OOD samples and downstream RL tasks (desideratum 4).

RL Environments. There exist several benchmarks for multi-task learning for robotics (Meta-World
[Yu et al., 2019] and RLBench [James et al., 2020]), for Physical reasoning Bakhtin et al. [2019]
and for video gaming domain (Arcade Learning Environment, CoinRun [Cobbe et al., 2018], Sonic
Benchmark [Machado et al., 2018], MazeBase [Nichol et al., 2018] and BabyAl [Chevalier-Boisvert
et al., 2018]). However, as mentioned earlier, these benchmarks do not allow one to systematically
control different aspects of causal models (such as the structure, the sparsity of edges and the size of
the graph), hence making it difficult to systematically study causal induction in MBRL.

CausalWorld Ahmed et al. [2020] consists of a suite of robotics tasks, it allows the user to control
some parameters of the underlying causal graph, such as the number of variables and the attributes of
variables (such as size and weight). However, it does not allow one to change the causal relationship
between the variables, for example, one can not change how robots interact with the objects. Hence,
one can not fully manipulate the environment’s underlying causal structure, therefore, the environment
only partially satisfying desideratum 3. Furthermore, although the environment allow the user to
use either high-dimensional (image) or low-dimensional (structured) inputs, the experiments in the
CausalWorld do not use high-dimensional, low-level image inputs; all experiments are performed on
abstract and structured input (i.e., low-dimensional, high-level representations). It is understandable
that the reviewer did not glean this fact from the paper. The paper is not clear. The detail is buried



in Table 2 of the Appendix, and we spoke to the authors to confirm our interpretation. In personal
communication, the authors indicated that they were unable to train RL agents on image inputs,
whereas we were successful, suggesting to us that our environment is better calibrated to state-of-
the-art in RL. In summary, CausalWorld satisfies desideratum 1, 2 and 4, but only partially satisfies
desideratum 3. Causal Curiosity Sontakke et al. [2021] proposes an exploration algorithm in RL,
rather than novel environments. The algorithm is evaluated on the CausalWorld and mujoco for
evaluating their agents. Similar to other works Fragkiadaki et al. [2015], Johnson et al. [2017], Yi
et al. [2019], the focus in this work is not on systematically evaluating the generalization performed
achieved by discovering high level variables, but rather learning an exploration strategy given the
information about low-level symbolic input, hence, causal curiosity satisfies desiderata 1 and 2, but
not desiderata 3, 4.

There are also several other benchmarks—Physion Bear et al. [2021], Phy-Q Xue et al. [2021], Causal
City McDuff et al. [2021], ACRE Zhang et al. [2021], SPACE Duan et al. [2021], Alchemy Wang
et al. [2021]—concurrent to our work. Physion and Phy-Q contain complex physical rules but don’t
allow controllable causal graph generation (hence, they satisfy desideratum 2, but not desiderata 1, 3,
4) . Causal City McDuff et al. [2021] (similar to CausalWorld) is designed around the task of driving,
and allows for some control over causal structure (one can not define arbitrary traffic rules), but the
representation of high level causal variables is given. CRAFT Ates et al. [2020] is a new visual
question answering dataset that requires causal reasoning about physical forces and object interactions.
Like other visual QA datasets, the user can’t control the underlying causal structure. The results of
various models in the CRAFT environment also demonstrate that even though these tasks seem to be
simple and intuitive for humans, the evaluated baseline models—including existing state-of-the-art
methods—do not yet deal with the challenges posed in their benchmark dataset. SPACE Duan et al.
[2021] introduces a simulator for physical interactions and causal learning in 3D environments that
composes a large-scale synthetic video dataset for fundamental physical interactions, but the focus
is not on learning representations of high-level variables, but rather causal interactions. Another
difference is they don’t take into account the role of actions (desideratum 1), and they try to discover
causal interactions only from observations. Alchemy Wang et al. [2021] introduces a RL environment
that can model simple chemistry in the environment. In Alchemy only part of the causal relationships
can be changed, while others must remain constant. Hence, it does not allow one to systematically
change different aspects of the underlying causal environments, therefore not satisfying desiderata
3. ACRE Zhang et al. [2021] introduces a visual query dataset using the “Blicket” experiments and
covers all 4 types of causal reasoning queries (direct, indirect, screening-off, and backward-blocking).
The emphasis of ACRE is on visual QA, rather than a RL task. The environment does not allow
full manipulation over the underlying causal graph, it also does not allow for systematic evaluation
on downstream RL tasks. Therefore, the environment satisfies desiderata 1,2, but not satisfying
desiderata 3, 4. Experimental results in ACRE also support our finding that neural models tend to
capture statistical correlations in observation but fail to induce the underlying causal relationships
(even though their task is visually simple).

6 Limitations and Future Work.

In our work, we focus on studying various model-based approaches for causal induction in model-
based RL. We highlighted the limitations of existing benchmarks and introduced a novel suite of
environments that can help measure progress and facilitate research in this direction. We evaluated
various models under many different settings and discuss the essential problems and challenges in
combining both fields i.e ingredients, that we believe are common in the real world, such as modular
factorization of the objects and interactions of objects governed by some unknown rules. We also
demonstrate that structural inductive biases are beneficial to learning causal relationships and yield
significantly improved performances in learning world models. There are some limitations of this
work that can be explored in interesting directions in the future. One big limitation of our work is
that in the environments which we propose the effect occurs immediately after the cause, but in real
world settings the effect may sometimes be delayed. For example, if a person smokes, it can take
variable amount of time until they get cancer. This is very relevant for reinforcement learning, as
this is tightly related to credit assignment in RL. Future works could explore environments where the
relation between cause and effect does not occur at fixed time-scales.

Social Impact. The authors do not foresee negative social impact of this work beyond that which
could arise from general improvements in ML.
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