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Abstract

Recent Weak Supervision (WS) approaches have had widespread success in easing
the bottleneck of labeling training data for machine learning by synthesizing labels
from multiple potentially noisy supervision sources. However, proper measurement
and analysis of these approaches remain a challenge. First, datasets used in existing
works are often private and/or custom, limiting standardization. Second, WS
datasets with the same name and base data often vary in terms of the labels and
weak supervision sources used, a significant "hidden" source of evaluation variance.
Finally, WS studies often diverge in terms of the evaluation protocol and ablations
used. To address these problems, we introduce a benchmark platform, WRENCH,
for thorough and standardized evaluation of WS approaches. It consists of 22
varied real-world datasets for classification and sequence tagging; a range of real,
synthetic, and procedurally-generated weak supervision sources; and a modular,
extensible framework for WS evaluation, including implementations for popular
WS methods. We use WRENCH to conduct extensive comparisons over more than
120 method variants to demonstrate its efficacy as a benchmark platform. The code
is available at https://github.com/JieyuZ2/wrench.

1 Introduction

One of the major bottlenecks for deploying modern machine learning models in real-world applica-
tions is the need for substantial amounts of manually-labeled training data. Unfortunately, obtaining
such manual annotations is typically time-consuming and labor-intensive, prone to human errors and
biases, and difficult to keep updated in response to changing operating conditions. To reduce the
efforts of annotation, recent weak supervision (WS) frameworks have been proposed which focus on
enabling users to leverage a diversity of weaker, often programmatic supervision sources [77, 78, 76]
to label and manage training data in an efficient way. Recently, WS has been widely applied to various
machine learning tasks in a diversity of domains: scene graph prediction [9], video analysis [23, 94],
image classification [12], image segmentation [35], autonomous driving [98], relation extraction [36,
109, 57], named entity recognition [84, 53, 50, 45, 27], text classification [79, 102, 87, 88], dialogue
system [63], biomedical [43, 19, 64], healthcare [20, 17, 21, 82, 95, 83], software engineering [75],
sensors data [24, 39], E-commerce [66, 105], and multi-agent systems [104].

In a WS approach, users leverage weak supervision sources, e.g., heuristics, knowledge bases, and pre-
trained models, instead of manually-labeled training data. In this paper, we use the data programming
formalism [78] which abstracts these weak supervision sources as labeling functions, which are
user-defined programs that each provides labels for some subset of the data, collectively generating
a large but potentially overlapping set of votes on training labels. The labeling functions may have
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def lf_1(x):
return heuristic_1(x)

def lf_2(x):
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Labeling Functions

Unlabeled Data

Input One-stage Method
Joint Model

End ModelLabel Model

Probabilistic Labels End Model

Two-stage Method

Figure 1: An overview of WS pipeline.

varying error rates and may generate conflicting labels on certain data points. To address these issues,
researchers have developed modeling techniques which aggregate the noisy votes of labeling functions
to produce training labels (often referred to as a label model) [78, 76, 22, 94], which often build
on prior work in modeling noisy crowd-worker labels, e.g. [14]. Then, these training labels (often
confidence-weighted or probabilistic) are in turn used to train an end model which can generalize
beyond the labels for downstream tasks. These two-stage methods mainly focus on the efficiency and
effectiveness of the label model, while maintaining the maximal flexibility of the end model. Recent
approaches have also focused on integrating semi- or self-supervised approaches [102]; we view these
as modified end models in our benchmarking framework. In addition to these two-stage methods,
researchers have also explored the possibility of coupling the label model and the end model in an
end-to-end manner [79, 45, 38]. We refer to these one-stage methods as joint models. An overview of
WS pipeline can be found in Fig.1.

Despite the increasing adoption of WS approaches, a common benchmark platform is still missing,
leading to an evaluation space that is currently rife with custom and/or private datasets, weak
supervision sources that are highly varied and in often hidden and uncontrolled ways, and basic
evaluation protocols that are highly variable. Several thematic issues are widespread in the space:

• Private and/or custom datasets: Due to the lack of standardized benchmark datasets, researchers
often construct their own datasets for comparison. In particular, WS approaches are often
practically motivated by real-world use cases where labeled data is difficult to generate, resulting
in datasets are often based on real production need and therefore are not publicly avaiable.

• Hidden weak supervision source variance: Unlike traditional supervised learning problems,
WS datasets vary not just in the unlabeled data X , but also crucially in the labels Y and weak
supervision sources they derive from (see Fig. 2). This latter degree of variance has a major effect
on the performance of WS approaches; however it is often poorly documented and controlled for.
For example, it is not uncommon to have two datasets with completely different weak supervision
sources bear the exact same name (usually deriving from the source of the unlabeled data X) in
experimental results, despite being entirely different datasets from a WS perspective.

• End-to-end evaluation protocol: WS approaches involve more complex (e.g. two-stage)
pipelines, requiring greater (yet often absent) care to normalize and control evaluations. For
example, it is not uncommon to see significant variance in which stage of a two-stage pipeline
performance numbers are reported for, what type of training labels are produced, etc [78, 102].

To address these issues and contribute a resource to the growing WS community, we developed Weak
Supervision Benchmark (WRENCH), a benchmark platform for WS with 22 diverse datasets from
the literature, a range of standardized real, synthetic, and procedurally generated weak supervision
sources, and a modular, extendable framework for execution and evaluation of WS approaches, along
with initial implementations of recent popular WS methods. WRENCH includes:

• A diverse (and easily extensible) set of 22 real-world datasets for two canonical, annotation-
intensive machine learning problems, classification and sequence tagging, including datasets used
in existing WS studies and new ones we contribute.
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• A range of real (user-generated) weak supervision sources, and new synthetic and procedural weak
supervision source generators, enabling systematic study on the effect of different supervision
source types on the performances of WS methods, e.g. with respect to accuracy, variance, sparsity,
conflict and overlap, correlation, and more.

• A modular, extensible Python codebase for standardization of implementation, evaluation, and
ablation of WS methods, including standardized evaluation scripts for prescribed metrics, unified
interfaces for publicly available methods, and re-implementations of some other popular ones.

To demonstrate the utility of WRENCH, we analyze the effect of a range of weak supervision attributes
using WRENCH’s procedural weak supervision generation suite, illustrating the effect of various
salient factors on WS method efficacy (Sec. 5). We also conduct extensive experiments to render
a comprehensive evaluation of popular WS methods (Sec. 6), exploring more than 120 compared
methods and their variants (83 for classification and 46 for sequence tagging).

2 Related Work

Weak Supervision. Weak supervision builds on many previous approaches in machine learning,
such as distant supervision [69, 34, 89], crowdsourcing [26, 42], co-training methods [6], pattern-
based supervision [28], and feature annotation [65, 103]. Specifically, weak supervision methods
take multiple noisy supervision sources and an unlabeled dataset as input, aiming to generate training
labels to train an end model (two-stage method) or directly produce the end model for the downstream
task (one-stage method) without any manual annotation. Weak supervision has been widely applied
on both classification [78, 76, 22, 102, 79] and sequence tagging [53, 72, 84, 50, 45] to help reduce
human annotation efforts.

Weak Supervision Sources Generation. To further reduce the efforts of designing supervision
sources, many works propose to generate supervision sources automatically. Snuba [93] generates
heuristics based on a small set of labeled datasets. IWS [7] and Darwin [25] interactively generate
labeling functions based on user feedback. TALLOR [46] and GLaRA [108] automatically augment
an initial set of labeling functions with new ones. Different from existing works that optimize the
task performance, the procedural labeling function generators in WRENCH facilitate the study of the
impact of different weak supervision sources. Therefore, we assume access to a fully-labeled dataset
and generate diverse types of weak supervision sources.

The Scope of this Benchmark. We are aware that there are numerous works on learning with
noisy or distantly labeled data for various tasks, including relation extraction [59, 69, 89], sequence
tagging [51, 56, 73, 86], image classification [29, 48, 70] and visual relation detection [101, 106].
There are also several benchmarks targeting on this topic [30, 37, 80, 100, 10] with different noise
levels and patterns. However, these studies mainly concentrate on learning with single-source noisy
labels and cannot leverage complementary information from multiple annotation sources in weak
supervision. Separately, there are several works [3, 38, 62, 68, 67] leveraging additional clean,
labeled data for denoising multiple weak supervision sources, while our focus is on benchmarking
weak supervision methods that do not require any labeled data. So we currently do not include these
methods in WRENCH, that being said, we plan to gradually incorporate them in the future.

3 Background: Weak Supervision

We first give some background on weak supervision (WS) at a high level. In the WS paradigm,
multiple weak supervision sources are provided which assign labels to data, which may be inaccurate,
correlated, or otherwise noisy. The goal of a WS approach is the same as in supervised learning: to
train an end model based on the data and weak supervision source labels. This can be broken up into
a two-stage approach–separating the integration and modeling of WS from the training of the end
model–or tackled jointly as a one-stage approach.

3.1 Problem Setup

We more formally define the setting of WS here. We are given a dataset containing n data points
X = [X1, X2, . . . , Xn] with i-th data point denoted byXi ∈ X . Letm be the number of WS sources
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Table 1: Statistics of all the tasks, domains and datasets
included in WRENCH.

Train Dev Test
Task (↓) Domain (↓) Dataset (↓) #Label #LF #Data #Data #Data
Income Class. Tabular Data Census [40, 3] 2 83 10,083 5,561 16,281

Sentiment Class. Movie IMDb [61, 79] 2 5 20,000 2,500 2,500
Review Yelp [107, 79] 2 8 30,400 3,800 3,800

Spam Class. Review Youtube [1] 2 10 1,586 120 250
Text Message SMS [2, 3] 2 73 4,571 500 500

Topic Class. News AGNews [107, 79] 4 9 96,000 12,000 12,000

Question Class. Web Query TREC [49, 3] 6 68 4,965 500 500

Relation Class.

News Spouse [11, 77] 2 9 22,254 2,811 2,701
Biomedical CDR [13, 77] 2 33 8,430 920 4,673
Web Text SemEval [31, 109] 9 164 1,749 200 692
Chemical ChemProt [41, 102] 10 26 12,861 1,607 1,607

Image Class. Video
Commercial [22] 2 4 64,130 9,479 7,496
Tennis Rally [22] 2 6 6,959 746 1,098
Basketball [22] 2 4 17,970 1,064 1,222

Sequence Tagging

News CoNLL-03 [85, 53] 4 16 14,041 3250 3453

Web Text WikiGold [5, 53] 4 16 1,355 169 170
OntoNotes 5.0 [96] 18 17 115,812 5,000 22,897

Biomedical BC5CDR [47, 50] 2 9 500 500 500
NCBI-Disease [16, 50] 1 5 592 99 99

Review Laptop-Review [74, 50] 1 3 2,436 609 800
MIT-Restaurant [55] 8 16 7,159 500 1,521

Movie MIT-Movies [54] 12 7 9,241 500 2,441

Figure 2: Box plots: The coverage, over-
lap, conflict and accuracy of LFs in col-
lected datasets. We can see the LFs have
diverse properties across datasets.

{Sj}mj=1, each assigning a label λj ∈ Y to Xi to vote on its respective Yi or abstaining (λj = −1).
We define the propensity of one source Sj as p(λj 6= −1). For concreteness, we follow the general
convention of WS [78] and refer to these sources as labeling functions (LFs) throughout the paper. In
WRENCH, we focus on two major machine learning tasks:

Classification: for each Xi, there is an unobserved true label denoted by Yi ∈ Y . A label matrix
L ∈ Rn×m is obtained via applying m LFs to the dataset X = [X1, X2, . . . , Xn]. We seek to build
an end model fw : X → Y to infer the labels Ŷ for each X ∈X .

Sequence tagging: each Xi ∈X is a sequence of tokens [xi,1, xi,2, . . . , xi,t], where t is the length
of Xi, with an unobserved true label list denoted by Yi = [yi,1, yi,2, . . . , yi,t] where yi,j ∈ Y . For
each sequence Xi with its associated label matrix Li ∈ Rn×t, we aim to produce an sequence tagger
model fw : X → Y which infers labels Ŷ = [ŷ1, ŷ1, . . . , ŷt] for each sequence.

It is worth noting that, different from the semi-supervised setting, and some recent WS work, where
some ground-truth labeled data is available [3, 62, 38, 67, 68], we consider the setting where we train
the end model without observing any ground truth training labels. However, we note that WRENCH
can be extended in future work to accommodate these settings as well.

3.2 Two-stage Method

Two-stage methods usually decouple the process of training label models and end models. In the
first stage, a label model is used to combine the label matrix L with either probabilistic soft labels or
one-hot hard labels, which are in turn used to train the desired end model in the second stage. Most
studies focus on developing label models while leaving the end model flexible to the downstream
tasks. Existing label models include Majority Voting (MV), Probabilistic Graphical Models (PGM)
[14, 78, 76, 22, 53, 84, 50], etc.. Note that prior crowd-worker modeling work can be included and
subsumed by this set of approaches, e.g. [14].

3.3 One-stage Method

One-stage methods attempt to effectively train a label model and end model simultaneously [79,
45]. Specifically, they usually design a neural network for aggregating the prediction of labeling
functions while utilizing another neural network for final prediction. We refer to the model designed
for one-stage methods as a joint model.
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Table 2: The initial set of methods included in WRENCH. A brief introduction of each method can be
found in App. C. We plan to add more methods in near future.

Task Module Method Abbr.

Classification

Label Model

Majority Voting MV
Weighted Majority Voting WMV
Dawid-Skene [14] DS
Data Progamming [78] DP
MeTaL [76] MeTaL
FlyingSquid [22] FS

End Model

Logistic Regression LR
Multi-Layer Perceptron Neural Network MLP
BERT [15] B
RoBERTa [58] R
COSINE-BERT [102] BC
COSINE-RoBERTa [102] RC

Joint Model Denoise [79] Denoise

Sequence Tagging

Label Model Hidden Markov Model [53] HMM
Conditional Hidden Markov Model [50] CHMM

End Model LSTM-CNNs-CRF [60] LSTM-CNNs-CRF
BERT [15] BERT

Joint Model Consensus Network [45] ConNet

4 Wrench Benchmark Platform

We propose the first benchmark platform, WRENCH, for weak supervision (WS). Specifically,
WRENCH includes the following components:

A collection of 22 real-world datasets. We collect 22 publicly available real-world datasets and
the corresponding user-provided LFs from the literature. The statistics of the datasets is in Table 1.
The datasets cover a wide range of topics, including both generic domains such as web text, news,
videos and specialized ones including biomedical and chemical publications. The corresponding
LFs have various forms, such as key words [86], regular expressions [3], knowledge bases [51] and
human-provided rules [22]. Some relevant statistics of the LFs is in Fig. 2; the box plots demonstrate
that the LFs have diverse properties across datasets, enabling more thorough comparisons among WS
approaches. The description of each dataset and detailed statistics are in App. B.

A range of procedural labeling function generators. In addition to the manually-created LFs
coupled with each dataset, WRENCH provides a range of procedural labeling function generators for
the first time, giving users fine-grain control over the space of weak supervision sources. It facilitates
researchers to evaluate and diagnose WS methods on (1) synthetic datasets or (2) real-world datasets
with procedurally generated LFs. Based on the generators, users could study the relationship between
different weak supervision sources and WS method performances. The details of the generators and
the provided studies are in Sec. 5. Notably, the unified interface of WRENCH allows users to add
more generators covering new types of LFs easily.

Abundant baseline methods and extensive comparisons. WRENCH provides unified interfaces
for a range of publicly available and popular methods. A summary of models currently included
in WRENCH is in Table 2. With careful modularization, users could pick any label model and end
model to form a two-stage WS method, while also choosing to use soft or hard labels for training the
end model, leading to more than 100 method variants. We conduct extensive experiments to offer a
systematic comparison over all the models and possible variants on the collected 22 datasets (Sec. 6).
Another benefit of this modularity is that other approaches can be easily contributed, and we plan to
add more models in the future.

5 Labeling Function Generators

In addition to user-generated labeling functions collected as part of the 22 benchmark datasets in
WRENCH, we provide two types of weak supervision source generators in WRENCH in order to
enable fine-grain exploration of WS method efficacy across different types of weak supervision: (1)
synthetic labeling function generators, which directly generate labels from simple generative label
models; (2) procedural labeling function generators, which automatically generate different varieties
of real labeling functions given an input labeled dataset. In this section, we introduce the generators
in detail and provide some sample studies to demonstrate the efficacy of these generators in enabling
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(a) (b)

Figure 3: Label models performance (AUC) on synthetic LFs with varying (a) radius of LF’s accuracy
and (b) propensity. We can see that when the radius of LF’s accuracy is large or the propensity of LFs
is small, the label model performance are more divergent.

finer-grain exploration of the relationship between weak supervision source qualities and WS method
performances. For simplicity, in this section we constrain our study to binary classification tasks and
the details on implementation and parameter can be found in App. E.3.

5.1 Synthetic Labeling Function Generator

The synthetic labeling function generators are independent of the input data X; instead, they directly
generate the labeling function output labels. We provide one initial synthetic generator to start in
WRENCH’s first release, which generates labels according to a classic model where the LF outputs are
conditionally independent given the unseen true label Y [14, 78]. For this model, WRENCH provides
users with control over two important dimensions: accuracy and propensity. In addition, users can
control the variance of the LF accuracies and propensities via the respective radius of accuracy
and propensity parameters. For example, the accuracy of each LF could be chosen to be uniformly
sampled from [a− b, a+ b], where a is the mean accuracy and b is the radius of accuracy, resulting in
a variance of b2

12 . We construct the synthetic label generators to be extensible, for example, to include
more controllable parameters and more complex models.

Based on this generator, we study different dimensions of LFs and found that the comparative
performance of label models are largely dependent on the variance of accuracy and propensity of
LFs. First, we fix other dimensions and vary the radius of LF’s accuracy, and generate Y and LFs for
binary classification. As shown in Fig. 3(a), we can see that the performance of label models diverge
when we increase the variance of LFs’ accuracy by increasing the radius of accuracy. Secondly, we
vary the propensity of LFs. From the curves in Fig. 3(b), we can see that if we increase the propensity
of LFs, the label models’ performance keep increasing and converge eventually, while when the
propensity is lower, the label models perform differently. These observations indicate the importance
of the dimensions of LFs, which could lead to the distinct comparative performance of label models.

5.2 Procedural Labeling Function Generator

The procedural labeling function generator class in WRENCH requires the input of a labeled dataset
(X,Y ), i.e. with data features and ground truth training labels. The procedural generators create a
pool of candidate LFs based on a given feature lexicon. Each candidate LF S consists of a single
or composite feature from the provided lexicon and a label. The final set of generated LFs is those
candidate LFs whose individual parameters (e.g. accuracies and propensities) and group parameters
(e.g. correlation and data-dependency) meet user-provided thresholds. These procedurally-generated
LFs mimic the form of user-provided ones, but enable fine-grain control over the LF attributes.

In this section, we provide an example study of how label models perform with different types of
LFs on two real-world text classification datasets, Yelp and Youtube, to demonstrate the utility of
these procedural generators. For simplicity, we adopt (n, m)-gram features, where n and m are the
minimum and maximum length of gram respectively and are input by users. Specifically, a candidate
LF S consists of one label value y and an (n, m)-gram feature f ; for each data point, if the feature
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Figure 4: Label models performance (AUC) on Youtube and Yelp with varying types of procedural
LFs, namely, top-k accurate, correlated, or data-dependent LFs. We can see that the dependency
properties of LF (correlated and data-dependent) have a major effect on the comparative performance
of label models.

f exists, then S assigns label y, otherwise returns abstain (λ = −1). We generate and examine
three sets of LFs, namely, the LFs with highest (1) accuracies, (2) pairwise correlations and (3)
data-dependencies (Fig. 4). For (2), the correlations of LFs are measured by the conditional mutual
information of a pair of candidate LFs given the ground truth labels Y . We are interested in (2)
because existing works often assume the LFs are independent conditional on Y [78, 4], however,
users can hardly generate perfectly conditionally independent LFs; therefore, it is of great importance
to study how label models perform when LFs are not conditionally independent. The reason for (3) is
that previous studies typically assume the LFs are uniformly accurate across the dataset [78, 4, 76,
22], however, in practice, this is another often violated assumption–e.g. specific LFs are often more
accurate on some subset of data than the other. Thus, we measure the data-dependency of LFs by the
variance of accuracies of LF over clusters of data and pick LFs with the highest data dependency.

The results are in Fig. 4. First, in the case of top-k accurate LFs (Fig. 4(a)&(d)), the label models
perform similarly, however, for the other two types of LFs, there are large gaps between label model
performance and the superiority of recently-proposed methods, i.e., DP, MeTaL, FS, can be clearly
seen. Secondly, even within the same type of LFs, one label model can result in varying performance
on different datasets; for example, when correlated LFs are generated (Fig. 4(b)&(e)), the DS model
performs much better on Yelp than Youtube compared to the MV model. These observations further
confirm that the LFs have a major effect on the efficacy of different WS approaches, and it is critical
to provide a benchmark suite for WS with varied datasets and varying types of LFs.

6 Benchmark Experiments

To demonstrate the utility of WRENCH in providing fair and rigorous comparisons among WS
methods, we conduct extensive experiments on the collected real-world datasets with real labeling
functions. Here, we consider all the possible ways to compose a two-stage method using the initial
models that we implement in WRENCH (Table 2), ablating over the choice of soft and hard labels, as
well as considering the one-stage methods listed.
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Table 3: Classification. The performance of the best gold method and top 3 best weak supervision
methods for each dataset. EM and LM stand for the end model and label model respectively.
Underline indicates using the soft label for training end model. Datasets with * are non-textual data
on which BERT/RoBERTa are not applicable. Each metric value is averaged over 5 runs. The detailed
results and average performance can be found in App. F.

Best Gold Top 1 Top 2 Top 3
Dataset Metric EM Value EM LM Value EM LM Value EM LM Value
IMDb Acc. R 93.25 RC MeTaL 88.86 RC FS 88.48 RC MV 88.48

Yelp Acc. R 97.13 RC FS 95.45 RC FS 95.33 RC DS 95.01

Youtube Acc. B 97.52 BC MV 98.00 RC MV 97.60 RC MV 97.60

SMS F1 B 96.96 RC WMV 98.02 RC MeTaL 97.71 RC WMV 97.27

AGNews Acc. R 91.39 RC DS 88.20 RC MV 88.15 RC WMV 88.11

TREC Acc. R 96.68 RC DP 82.36 RC MeTaL 79.84 BC DP 78.72

Spouse F1 – – BC FS 56.52 – MeTaL 46.62 RC MV 46.28

CDR F1 R 65.86 – MeTaL 69.61 – DP 63.51 RC DP 61.40

SemEval Acc. B 95.43 BC DP 88.77 BC MV 86.80 RC DP 86.73

ChemProt Acc. B 89.76 BC DP 61.56 RC MV 59.43 RC MV 59.32

Commerical* F1 MLP 91.69 Denoise 91.34 LR MV 90.62 MLP MV 90.55

Tennis Rally* F1 LR 82.73 MLP FS 83.77 MLP MeTaL 83.70 LR FS 83.68

Basketball* F1 MLP 64.97 MLP FS 43.18 MLP WMV 40.73 MLP DP 40.70

Census* F1 MLP 67.13 LR MeTaL 58.16 MLP MeTaL 57.84 MLP MeTaL 57.66

6.1 Classification

6.1.1 Evaluation Protocol

We evaluate the performance of (1) the label model directly applied on test data; (2) the end model
trained with labels provided by label model for two-stage methods; (3) the end model trained within
a joint model for one-stage methods; and (4) the "gold" method, namely training an end model with
ground truth labels, with different end models. We include all the possible two-stage methods as well
as the variants using soft or hard labels in our comparison, leading to 83 methods in total.

For each dataset, we adopt the evaluation metric used in previous work. For LR and MLP applied on
textual datasets, we use a pre-trained BERT model to extract the features. Note that for the Spouse
dataset, we do not have the ground truth training labels, so we do not include gold methods for it. In
addition, due to privacy issues, for the video frame classification datasets (i.e., Commerical, Tennis
Rally and Basketball), we only have access to the features extracted by pre-trained image classifier
instead of raw images, thus, we choose LR and MLP as end models.

6.1.2 Evaluation Results

Due to the space limit, we defer the complete results as well as the standard deviations to the App.F,
while only presenting the top 3 best WS methods and the gold method with the best end model
for each dataset in Table 3. From the table, we could observe a diversity of the best WS methods
on different datasets. In other words, there is no such method that could consistently outperform
others. This observation demonstrates that it remains challenging to design a generic method that
works for diverse tasks. For textual datasets, it is safe to conclude that fine-tuning a large pretrain
language model is the best option of the end model, and COSINE could successfully improve the
performance of fine-tuned language models. Moreover, fine-tuning a pre-trained language model is,
not surprisingly, much better than directly applying label model on test data in most cases, because it
is well-known that large pre-trained language models like BERT can easily adapt to new tasks with
good generalization performance.
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6.2 Sequence Tagging

6.2.1 Evaluation Protocol

Same as the evaluation scheme on classification tasks, we evaluate the performance of (1) the label
models; (2) the end models trained by predictions from the label models; (3) the joint models; and (4)
the end models trained by gold labels on the training set. Note that following previous works [45, 84,
86], we adopt hard labels in order to fit end models which contain CRF layers. To adapt label models
designed for classification tasks to sequence tagging tasks, we split each sequence by tokens and
reformulate it as a token-level classification task. We discuss the detailed procedure on adapting label
model for sequence tagging tasks in App. D. However, these models neglect the internal dependency
between labels within the sequence. In contrast, HMM and CHMM take the whole sequence as input
and predict the label for tokens in the whole sequence. For the end model with LSTM/BERT, we
run experiments with two settings: (1) stacking a CRF layer on the top of the model, (2) using a
classification head for token-level classification; and the best performance is reported.

Following the standard protocols, we use entity-level F1-score as the metric [53, 60] and use BIO
schema [90, 50, 53], which labels the beginning token of an entity as B-X and the other tokens inside
that entity as I-X, while non-entity tokens are marked as O. For methods that predict token-level
labels (e.g.MV), we transform token-level predictions to entity-level predictions when calculating the
F1 score. Since BERT tokenizer may separate a word into multiple subwords, for each word, we use
the result of its first token as its prediction.

6.2.2 Evaluation Results

Table 4 demonstrates the main result of different methods on sequence tagging tasks. For label
models, we conclude that considering dependency relationships among token-level labels during
learning generally leads to better performance, as HMM-based models achieve best performance on
7 of 8 datasets. One exception is the MIT-Restaurants dataset, where weak labels have very small
coverage. In this case, the simple majority voting-based methods achieve superior performance
compared with other complex probabilistic models. For end models, surprisingly, directly training a
neural model with weak labels does not guarantee the performance gain, especially for LSTM-based
model which is trained from scratch. Such a phenomenon arrives when the quality of LFs is poor
(e.g. MIT-Restaurants, LaptopReview). Under this circumstance, the weak labels generated through
LFs are often noisy and incomplete [51, 56], and the end model can easily overfit to them. As a result,
there is still a significant performance gap between the results trained by gold labels and weak labels,
which motivates the future research on designing methods robust against the induced noise.

7 Discussion and Recommendation

• Correctly categorization of method and comparing it to right baselines are critical. As
stated in Sec. 3, weak supervision methods could be categorized into label model, end model
and joint model. However, we observed that in previous work, researchers, more or less, did not
clearly categorize their method and compare it to inappropriate baselines. For example, COSINE
is an end model but in the original paper, the authors coupled COSINE with MV (a label model)
and compared it with another label model, MeTaL1, without coupling MeTaL with an end model.
This comparison is hardly fair and effective.

• When the end models become deeper, using soft label may be a good idea. Based on the
average performance of models across tasks, we observe that using soft labels to train the end
model is better than hard labels in most cases, especially when the end model become deeper
(from logistic regression to pretrained language model). We think this is relevant to the idea of
"label smoothing" [71], which prevents the deep models from overfitting to (noisy) training data.

• Uncovered data should be used when training end models. A common practice of weak
supervision is to train an end model using only covered data2, i.e., the subset of data which receive
at least one weak signal. However, the superiority of COSINE suggests that those uncovered data

1The Snorkel baseline in their paper.
2https://www.snorkel.org/use-cases/01-spam-tutorial
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Table 4: Sequence Tagging. Comparisons among different methods. The number stands for the F1
score. Each metric value is averaged over 5 runs. red and blue indicate the best and second best result
for each end model respectively, and gray is the best weak supervision method. The first 8 rows
with end model as – indicates directly apply label models on test data. The detailed results are in
App. F.2.

End Model (↓) Label Model (↓) CoNLL-03 WikiGold BC5CDR NCBI-Disease Laptop-Review MIT-Restaurant MIT-Movies Ontonotes 5.0 Average

–

MV 60.36 52.24 83.49 78.44 73.27 48.71 59.68 58.85 64.38
WMV 60.26 52.87 83.49 78.44 73.27 48.19 60.37 57.58 64.31

DS 46.76 42.17 83.49 78.44 73.27 46.81 54.06 37.70 57.84
DP 62.43 54.81 83.50 78.44 73.27 47.92 59.92 61.85 65.27

MeTaL 60.32 52.09 83.50 78.44 64.36 47.66 56.60 58.27 62.66
FS 62.49 58.29 56.71 40.67 28.74 13.86 43.04 5.31 38.64

HMM 62.18 56.36 71.57 66.80 73.63 42.65 60.56 55.67 61.88
CHMM 63.22 58.89 83.66 78.74 73.26 47.34 61.38 64.06 66.32

LSTM-CNN

Gold 87.46 80.45 78.59 79.39 71.25 79.18 87.07 79.52 79.83

MV 66.33 58.27 74.75 72.44 63.52 41.70 62.41 61.92 62.47
WMV 64.60 55.39 74.31 72.21 63.02 41.27 61.79 59.22 61.37

DS 50.60 40.61 75.37 72.86 63.96 41.21 55.99 44.92 55.58
DP 67.15 57.89 74.79 72.50 62.59 41.62 62.29 63.82 62.83

MeTaL 65.05 56.31 74.66 72.42 63.87 41.48 62.10 60.43 61.85
FS 66.49 60.49 54.49 44.90 28.35 13.09 45.77 43.25 44.51

HMM 66.18 62.51 64.07 59.12 62.57 37.90 61.94 59.43 59.17
CHMM 66.67 61.34 74.54 72.15 62.28 41.59 62.97 63.71 62.97

LSTM-ConNet 66.02 58.04 72.04 63.04 50.36 39.26 60.46 60.58 58.73

BERT

Gold 89.41 87.21 82.49 84.05 81.22 78.85 87.56 84.11 84.36

MV 67.08 63.17 77.93 77.93 71.12 42.95 63.71 63.97 65.62
WMV 65.96 61.28 77.76 78.53 71.60 42.62 63.44 61.63 63.92

DS 54.04 49.09 77.57 78.69 71.41 42.26 58.89 48.55 58.87
DP 67.66 62.91 77.67 78.18 71.46 42.27 63.92 65.16 65.97

MeTaL 66.34 61.74 77.80 79.02 71.80 42.26 64.19 63.08 65.61
FS 67.54 66.58 62.89 46.50 38.57 13.80 49.79 49.63 49.11

HMM 68.48 64.25 68.70 65.52 71.51 39.51 63.38 61.29 62.59
CHMM 68.30 65.16 77.98 78.20 71.17 42.79 64.58 66.03 66.50

BERT-ConNet 67.83 64.18 72.87 71.40 67.32 42.37 64.12 60.36 63.81

should also be used in training an end model; this inspires future direction of exploring new end
model training strategy combined with semi-supervised learning techniques.

• For sequence tagging tasks, selecting appropriate tagging scheme is important. As studied
in App. D.2, choosing different tagging schema can cause up to 10% performance in terms of F1
score. This is mainly because when adopting more complex tagging schema (e.g., BIO), the label
model could predict incorrect label sequences, which may hurt final performance especially for
the case where the number of entity types is small. Under this circumstance, it is recommended to
use IO schema during model training. For other datasets including more types of entities, there is
no clear winners for different schemes.

• For classification tasks, MeTaL and MV are the most worth-a-try label models and for end
model, deeper is better. According to the model performance averaged over datasets, we find
MeTaL and MV are the best label models when using different end models or directly applying
label models on test set. For the choices of end model, not surprisingly, deeper model is better.

• For sequence tagging tasks, CHMM gains an advantage over other baselines in terms of
label model. CHMM generally outperforms other label models and achieves highest average
score. We remark that CHMM is the only label model that combines the outputs of labeling
function with data feature (i.e. BERT embeddings). The superiority of CHMM indicates that
developing data-dependent label model will be a promising direction for the future research.
For the end model, pre-trained language models are more suitable end models, as it can capture
general semantics and syntactic information [81] which will benefit the downstream tasks.

8 Conclusion and Future Work

We introduce WRENCH, a comprehensive benchmark for weak supervision. It includes 22 datasets
for classification and sequence tagging with a wide range of domains, modalities, and sources of
supervision. Through extensive comparisons, we conclude that designing general-purpose weak
supervision methods still remains challenging. We believe that WRENCH provides an increasingly
needed foundation for addressing this challenge. In addition, WRENCH provides procedural labeling
function generators for systematic study of various types of weak supervision sources. Based on the
generators, we study a range of aspects of weak supervision, in order to help understand the weak
supervision problem and motivate future research directions.
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[16] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. “NCBI disease corpus: a resource
for disease name recognition and concept normalization”. In: Journal of biomedical informat-
ics 47 (2014), pp. 1–10.

[17] Jared A. Dunnmon, Alexander J. Ratner, Khaled Saab, Nishith Khandwala, Matthew Markert,
Hersh Sagreiya, Roger E. Goldman, Christopher Lee-Messer, Matthew P. Lungren, Daniel
L. Rubin, and Christopher Ré. “Cross-Modal Data Programming Enables Rapid Medical
Machine Learning”. In: Patterns 1.2 (2020), p. 100019. DOI: 10.1016/j.patter.2020.
100019. URL: https://doi.org/10.1016/j.patter.2020.100019.

11

https://doi.org/10.1109/ICMLA.2015.37
https://openreview.net/forum?id=SkeuexBtDr
https://openreview.net/forum?id=SkeuexBtDr
https://openreview.net/forum?id=kmVA04ltlG_
https://openreview.net/forum?id=kmVA04ltlG_
http://www.jstor.org/stable/2346806
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.patter.2020.100019
https://doi.org/10.1016/j.patter.2020.100019
https://doi.org/10.1016/j.patter.2020.100019


[18] Eibe Frank and Ian H Witten. “Generating Accurate Rule Sets Without Global Optimization”.
In: ICML. 1998, pp. 144–151.

[19] Jason Fries, Sen Wu, Alex Ratner, and Christopher Ré. “Swellshark: A generative
model for biomedical named entity recognition without labeled data”. In: arXiv preprint
arXiv:1704.06360 (2017).

[20] Jason Alan Fries, E. Steinberg, S. Khattar, S. Fleming, J. Posada, A. Callahan, and N.
Shah. “Ontology-driven weak supervision for clinical entity classification in electronic health
records”. In: Nature Communications 12 (2021).

[21] Jason Alan Fries, P. Varma, V. Chen, K. Xiao, H. Tejeda, Priyanka Saha, Jared A Dunn-
mon, H. Chubb, S. Maskatia, M. Fiterau, S. Delp, E. Ashley, Christopher Ré, and J. Priest.
“Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI
sequences”. In: Nature Communications 10 (2019).

[22] Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M. Hooper, Kayvon Fatahalian, and
Christopher Ré. “Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods”.
In: ICML. 2020, pp. 3280–3291.

[23] Daniel Y. Fu, Will Crichton, James Hong, Xinwei Yao, Haotian Zhang, Anh Truong,
Avanika Narayan, Maneesh Agrawala, Christopher Ré, and Kayvon Fatahalian. “Rekall:
Specifying Video Events using Compositions of Spatiotemporal Labels”. In: arXiv preprint
arXiv:1910.02993 (2019).

[24] Jonathan Fürst, Mauricio Fadel Argerich, Kalyanaraman Shankari, Gürkan Solmaz, and Bin
Cheng. “Applying Weak Supervision to Mobile Sensor Data: Experiences with Transport-
Mode Detection”. In: AAAI Workshop. 2020.

[25] Sainyam Galhotra, Behzad Golshan, and Wang-Chiew Tan. “Adaptive Rule Discovery for
Labeling Text Data”. In: SIGMOD. 2021, pp. 2217–2225. ISBN: 9781450383431.

[26] Huiji Gao, Geoffrey Barbier, and Rebecca Goolsby. “Harnessing the Crowdsourcing Power
of Social Media for Disaster Relief”. In: IEEE Intelligent Systems 26 (2011), pp. 10–14.

[27] Karan Goel, Laurel J. Orr, Nazneen Fatema Rajani, Jesse Vig, and Christopher Ré. “Goodwill
Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems”. In:
NAACL-HLT. 2021, pp. 205–213.

[28] S. Gupta and Christopher D. Manning. “Improved Pattern Learning for Bootstrapped Entity
Extraction”. In: CoNLL. 2014.

[29] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and
Masashi Sugiyama. “Co-teaching: Robust training of deep neural networks with extremely
noisy labels”. In: NeurIPS. Vol. 31. 2018. URL: https://proceedings.neurips.cc/
paper/2018/file/a19744e268754fb0148b017647355b7b-Paper.pdf.

[30] Michael A Hedderich, Dawei Zhu, and Dietrich Klakow. “Analysing the Noise Model Error
for Realistic Noisy Label Data”. In: AAAI. Vol. 35. 2021, pp. 7675–7684.

[31] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha,
Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. “SemEval-
2010 task 8: Multi-way classification of semantic relations between pairs of nominals”. In:
Semeval. 2010, pp. 33–38.

[32] Geoffrey E. Hinton. “Training Products of Experts by Minimizing Contrastive Divergence”.
In: Neural Comput. 14.8 (Aug. 2002), pp. 1771–1800. ISSN: 0899-7667. DOI: 10.1162/
089976602760128018. URL: https://doi.org/10.1162/089976602760128018.

[33] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computa-
tion 9 (1997), pp. 1735–1780.

[34] R. Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S. Weld. “Knowledge-
Based Weak Supervision for Information Extraction of Overlapping Relations”. In: ACL.
2011.

[35] Sarah Hooper, Michael Wornow, Ying Hang Seah, Peter Kellman, Hui Xue, Frederic Sala,
Curtis Langlotz, and Christopher Re. “Cut out the annotator, keep the cutout: better segmen-
tation with weak supervision”. In: ICLR. 2020.

[36] Chenghao Jia, Yongliang Shen, Yechun Tang, Lu Sun, and Weiming Lu. “Heterogeneous
Graph Neural Networks for Concept Prerequisite Relation Learning in Educational Data”. In:
NAACL-HLT. 2021.

12

https://proceedings.neurips.cc/paper/2018/file/a19744e268754fb0148b017647355b7b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a19744e268754fb0148b017647355b7b-Paper.pdf
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018


[37] Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. “Beyond Synthetic Noise: Deep Learning
on Controlled Noisy Labels”. In: ICML. Vol. 119. 2020, pp. 4804–4815. URL: http://
proceedings.mlr.press/v119/jiang20c.html.

[38] Giannis Karamanolakis, Subhabrata Mukherjee, Guoqing Zheng, and Ahmed Hassan Awadal-
lah. “Self-Training with Weak Supervision”. In: NAACL-HLT. 2021, pp. 845–863. DOI:
10.18653/v1/2021.naacl-main.66. URL: https://www.aclweb.org/anthology/
2021.naacl-main.66.

[39] Saelig Khattar, Hannah O’Day, Paroma Varma, Jason Fries, Jennifer Hicks, Scott Delp, Helen
Bronte-Stewart, and Chris Re. “Multi-frame weak supervision to label wearable sensor data”.
In: ICML Time Series Workshop. 2019.

[40] Ron Kohavi. “Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid.” In:
KDD. Vol. 96. 1996, pp. 202–207.

[41] Martin Krallinger, Obdulia Rabal, Saber A Akhondi, et al. “Overview of the BioCreative
VI chemical-protein interaction Track”. In: BioCreative evaluation Workshop. Vol. 1. 2017,
pp. 141–146.

[42] R. Krishna, Yuke Zhu, O. Groth, Justin Johnson, K. Hata, J. Kravitz, Stephanie Chen, Yannis
Kalantidis, Li-Jia Li, D. Shamma, Michael S. Bernstein, and Li Fei-Fei. “Visual Genome:
Connecting Language and Vision Using Crowdsourced Dense Image Annotations”. In: IJCV
123 (2016), pp. 32–73.

[43] Volodymyr Kuleshov, Jialin Ding, Christopher Vo, Braden Hancock, Alexander J. Ratner,
Yang I. Li, C. Ré, S. Batzoglou, and M. Snyder. “A machine-compiled database of genome-
wide association studies”. In: Nature Communications 10 (2019).

[44] John D Lafferty, Andrew McCallum, and Fernando CN Pereira. “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data”. In: ICML. 2001, pp. 282–
289.

[45] Ouyu Lan, Xiao Huang, Bill Yuchen Lin, He Jiang, Liyuan Liu, and Xiang Ren. “Learning to
Contextually Aggregate Multi-Source Supervision for Sequence Labeling”. In: ACL. 2020,
pp. 2134–2146. DOI: 10.18653/v1/2020.acl-main.193. URL: https://www.aclweb.
org/anthology/2020.acl-main.193.

[46] Jiacheng Li, Haibo Ding, Jingbo Shang, Julian McAuley, and Zhe Feng. “Weakly Supervised
Named Entity Tagging with Learnable Logical Rules”. In: ACL. 2021, pp. 4568–4581. DOI:
10.18653/v1/2021.acl-long.352. URL: https://aclanthology.org/2021.acl-
long.352.

[47] Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sciaky, Chih-Hsuan Wei, Robert Leaman,
Allan Peter Davis, Carolyn J Mattingly, Thomas C Wiegers, and Zhiyong Lu. “BioCreative V
CDR task corpus: a resource for chemical disease relation extraction”. In: Database 2016
(2016).

[48] Junnan Li, Caiming Xiong, and Steven Hoi. “MoPro: Webly Supervised Learning with
Momentum Prototypes”. In: ICLR. 2021. URL: https://openreview.net/forum?id=0-
EYBhgw80y.

[49] Xin Li and Dan Roth. “Learning question classifiers”. In: COLING. 2002.
[50] Yinghao Li, Pranav Shetty, Lucas Liu, Chao Zhang, and Le Song. “BERTifying the Hidden

Markov Model for Multi-Source Weakly Supervised Named Entity Recognition”. In: ACL.
2021, pp. 6178–6190.

[51] Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and Chao Zhang.
“Bond: Bert-assisted open-domain named entity recognition with distant supervision”. In:
KDD. 2020, pp. 1054–1064.

[52] Pierre Lison, Jeremy Barnes, and Aliaksandr Hubin. “skweak: Weak Supervision Made Easy
for NLP”. In: arXiv preprint arXiv:2104.09683 (2021).

[53] Pierre Lison, Jeremy Barnes, Aliaksandr Hubin, and Samia Touileb. “Named Entity Recog-
nition without Labelled Data: A Weak Supervision Approach”. In: ACL. 2020, pp. 1518–
1533.

[54] Jingjing Liu, Panupong Pasupat, Scott Cyphers, and Jim Glass. “Asgard: A portable architec-
ture for multilingual dialogue systems”. In: ICASSP. IEEE. 2013, pp. 8386–8390.

[55] Jingjing Liu, Panupong Pasupat, Yining Wang, Scott Cyphers, and Jim Glass. “Query under-
standing enhanced by hierarchical parsing structures”. In: Workshop on ASRU. IEEE. 2013,
pp. 72–77.

13

http://proceedings.mlr.press/v119/jiang20c.html
http://proceedings.mlr.press/v119/jiang20c.html
https://doi.org/10.18653/v1/2021.naacl-main.66
https://www.aclweb.org/anthology/2021.naacl-main.66
https://www.aclweb.org/anthology/2021.naacl-main.66
https://doi.org/10.18653/v1/2020.acl-main.193
https://www.aclweb.org/anthology/2020.acl-main.193
https://www.aclweb.org/anthology/2020.acl-main.193
https://doi.org/10.18653/v1/2021.acl-long.352
https://aclanthology.org/2021.acl-long.352
https://aclanthology.org/2021.acl-long.352
https://openreview.net/forum?id=0-EYBhgw80y
https://openreview.net/forum?id=0-EYBhgw80y


[56] Kun Liu, Yao Fu, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, and Sheng
Gao. “Noisy-Labeled NER with Confidence Estimation”. In: NAACL. 2021, pp. 3437–3445.

[57] Liyuan Liu, Xiang Ren, Qi Zhu, Shi Zhi, Huan Gui, Heng Ji, and Jiawei Han. “Heterogeneous
Supervision for Relation Extraction: A Representation Learning Approach”. In: EMNLP.
2017, pp. 46–56.

[58] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. “Roberta: A robustly optimized bert
pretraining approach”. In: arXiv preprint arXiv:1907.11692 (2019).

[59] Bingfeng Luo, Yansong Feng, Zheng Wang, Zhanxing Zhu, Songfang Huang, Rui Yan, and
Dongyan Zhao. “Learning with Noise: Enhance Distantly Supervised Relation Extraction with
Dynamic Transition Matrix”. In: ACL. 2017, pp. 430–439. DOI: 10.18653/v1/P17-1040.
URL: https://www.aclweb.org/anthology/P17-1040.

[60] Xuezhe Ma and Eduard Hovy. “End-to-end Sequence Labeling via Bi-directional LSTM-
CNNs-CRF”. In: ACL. 2016, pp. 1064–1074.

[61] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. “Learning Word Vectors for Sentiment Analysis”. In: ACL. 2011, pp. 142–150.
URL: https://www.aclweb.org/anthology/P11-1015.

[62] Ayush Maheshwari, Oishik Chatterjee, Krishnateja Killamsetty, Ganesh Ramakrishnan, and
Rishabh Iyer. “Semi-Supervised Data Programming with Subset Selection”. In: Findings of
ACL. 2021, pp. 4640–4651.

[63] Neil Mallinar, Abhishek Shah, Rajendra Ugrani, Ayush Gupta, Manikandan Gurusankar, Tin
Kam Ho, Q. Vera Liao, Yunfeng Zhang, Rachel K. E. Bellamy, Robert Yates, Chris Desmarais,
and Blake McGregor. “Bootstrapping Conversational Agents with Weak Supervision”. In:
AAAI. 2019, pp. 9528–9533. DOI: 10.1609/aaai.v33i01.33019528. URL: https:
//doi.org/10.1609/aaai.v33i01.33019528.

[64] Emily K. Mallory, Matthieu de Rochemonteix, Alexander J. Ratner, Ambika Acharya,
Christoper M Re, R. Bright, and R. Altman. “Extracting chemical reactions from text using
Snorkel”. In: BMC Bioinformatics 21 (2020).

[65] Gideon S. Mann and A. McCallum. “Generalized Expectation Criteria for Semi-Supervised
Learning with Weakly Labeled Data”. In: J. Mach. Learn. Res. 11 (2010), pp. 955–984.

[66] Jose Mathew, Meghana Negi, Rutvik Vijjali, and Jairaj Sathyanarayana. “DeFraudNet: An
End-to-End Weak Supervision Framework to Detect Fraud in Online Food Delivery”. In:
ECML-PKDD. 2021.

[67] A. Mazzetto, C. Cousins, D. Sam, S. H. Bach, and E. Upfal. “Adversarial Multiclass Learning
under Weak Supervision with Performance Guarantees”. In: ICML. 2021.

[68] A. Mazzetto, D. Sam, A. Park, E. Upfal, and S. H. Bach. “Semi-Supervised Aggregation of
Dependent Weak Supervision Sources With Performance Guarantees”. In: AISTATS. 2021.

[69] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. “Distant supervision for relation
extraction without labeled data”. In: ACL. 2009, pp. 1003–1011. URL: https://www.
aclweb.org/anthology/P09-1113.

[70] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. “Coresets for Robust Training of
Deep Neural Networks against Noisy Labels”. In: NeurIPS 33 (2020).

[71] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. “When does label smoothing
help?” In: Advances in Neural Information Processing Systems. Vol. 32. Curran Asso-
ciates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/file/
f1748d6b0fd9d439f71450117eba2725-Paper.pdf.

[72] An Thanh Nguyen, Byron Wallace, Junyi Jessy Li, Ani Nenkova, and Matthew Lease.
“Aggregating and Predicting Sequence Labels from Crowd Annotations”. In: ACL. 2017,
pp. 299–309. DOI: 10 . 18653 / v1 / P17 - 1028. URL: https : / / www . aclweb . org /
anthology/P17-1028.

[73] Minlong Peng, Xiaoyu Xing, Qi Zhang, Jinlan Fu, and Xuan-Jing Huang. “Distantly Su-
pervised Named Entity Recognition using Positive-Unlabeled Learning”. In: ACL. 2019,
pp. 2409–2419.

[74] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopou-
los, and Suresh Manandhar. “SemEval-2014 Task 4: Aspect Based Sentiment Analysis”. In:
SemEval. 2014, pp. 27–35. DOI: 10.3115/v1/S14-2004. URL: https://www.aclweb.
org/anthology/S14-2004.

14

https://doi.org/10.18653/v1/P17-1040
https://www.aclweb.org/anthology/P17-1040
https://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1609/aaai.v33i01.33019528
https://doi.org/10.1609/aaai.v33i01.33019528
https://doi.org/10.1609/aaai.v33i01.33019528
https://www.aclweb.org/anthology/P09-1113
https://www.aclweb.org/anthology/P09-1113
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://doi.org/10.18653/v1/P17-1028
https://www.aclweb.org/anthology/P17-1028
https://www.aclweb.org/anthology/P17-1028
https://doi.org/10.3115/v1/S14-2004
https://www.aclweb.org/anthology/S14-2004
https://www.aclweb.org/anthology/S14-2004


[75] Nikitha Rao, Chetan Bansal, and Joe Guan. “Search4Code: Code Search Intent Classifi-
cation Using Weak Supervision”. In: MSR. ACM/IEEE. May 2021. URL: https://www.
microsoft.com/en- us/research/publication/search4code- code- search-
intent-classification-using-weak-supervision/.

[76] A. J. Ratner, B. Hancock, J. Dunnmon, F. Sala, S. Pandey, and C. Ré. “Training Complex
Models with Multi-Task Weak Supervision”. In: AAAI. 2019, pp. 4763–4771.

[77] Alexander J Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher
Ré. “Snorkel: Rapid training data creation with weak supervision”. In: VLDB. Vol. 11. 2017,
p. 269.

[78] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. “Data
programming: Creating large training sets, quickly”. In: NeurIPS. Vol. 29. 2016, pp. 3567–
3575.

[79] Wendi Ren, Yinghao Li, Hanting Su, David Kartchner, Cassie Mitchell, and Chao Zhang.
“Denoising Multi-Source Weak Supervision for Neural Text Classification”. In: Findings of
EMNLP. 2020, pp. 3739–3754.

[80] Sebastian Riedel, Limin Yao, and Andrew McCallum. “Modeling relations and their mentions
without labeled text”. In: ECML-PKDD. Springer. 2010, pp. 148–163.

[81] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. “A primer in bertology: What we know
about how bert works”. In: TACL 8 (2020), pp. 842–866.

[82] Khaled Saab, Jared Dunnmon, Roger E. Goldman, Alexander Ratner, Hersh Sagreiya, Christo-
pher Ré, and Daniel L. Rubin. “Doubly Weak Supervision of Deep Learning Models for
Head CT”. In: MICCAI. 2019, pp. 811–819.

[83] Khaled Kamal Saab, Jared A Dunnmon, Christopher Ré, D. Rubin, and C. Lee-Messer. “Weak
supervision as an efficient approach for automated seizure detection in electroencephalogra-
phy”. In: NPJ Digital Medicine 3 (2020).

[84] Esteban Safranchik, Shiying Luo, and Stephen Bach. “Weakly supervised sequence tagging
from noisy rules”. In: AAAI. Vol. 34. 2020, pp. 5570–5578.

[85] Erik Tjong Kim Sang and Fien De Meulder. “Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition”. In: CoNLL. 2003, pp. 142–147.

[86] Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren, and Jiawei Han. “Learning
named entity tagger using domain-specific dictionary”. In: EMNLP. 2018, pp. 2054–2064.

[87] Kai Shu, Subhabrata (Subho) Mukherjee, Guoqing Zheng, Ahmed H. Awadallah, Milad
Shokouhi, and Susan Dumais. “Learning with Weak Supervision for Email Intent Detection”.
In: SIGIR. ACM. 2020.

[88] Kai Shu, Guoqing Zheng, Yichuan Li, Subhabrata (Subho) Mukherjee, Ahmed H. Awadallah,
Scott Ruston, and Huan Liu. “Leveraging Multi-Source Weak Social Supervision for Early
Detection of Fake News”. In: ECML-PKDD (2020).

[89] Shingo Takamatsu, Issei Sato, and H. Nakagawa. “Reducing Wrong Labels in Distant Super-
vision for Relation Extraction”. In: ACL. 2012.

[90] Erik F. Tjong Kim Sang. “Introduction to the CoNLL-2002 Shared Task: Language-
Independent Named Entity Recognition”. In: COLING. 2002. URL: https://www.aclweb.
org/anthology/W02-2024.

[91] P. Varma, Bryan D. He, Payal Bajaj, Nishith Khandwala, I. Banerjee, D. Rubin, and Christo-
pher Ré. “Inferring Generative Model Structure with Static Analysis”. In: Advances in neural
information processing systems 30 (2017), pp. 239–249.

[92] P. Varma, Frederic Sala, Ann He, Alexander J. Ratner, and C. Ré. “Learning Dependency
Structures for Weak Supervision Models”. In: ICML. 2019.

[93] Paroma Varma and Christopher Ré. “Snuba: Automating weak supervision to label training
data”. In: VLDB. Vol. 12. NIH Public Access. 2018, p. 223.

[94] Paroma Varma, Frederic Sala, Shiori Sagawa, Jason Fries, Daniel Fu, Saelig Khattar,
Ashwini Ramamoorthy, Ke Xiao, Kayvon Fatahalian, James Priest, and Christopher
Ré. “Multi-Resolution Weak Supervision for Sequential Data”. In: NeurIPS. Vol. 32.
2019. URL: https : / / proceedings . neurips . cc / paper / 2019 / file /
93db85ed909c13838ff95ccfa94cebd9-Paper.pdf.

15

https://www.microsoft.com/en-us/research/publication/search4code-code-search-intent-classification-using-weak-supervision/
https://www.microsoft.com/en-us/research/publication/search4code-code-search-intent-classification-using-weak-supervision/
https://www.microsoft.com/en-us/research/publication/search4code-code-search-intent-classification-using-weak-supervision/
https://www.aclweb.org/anthology/W02-2024
https://www.aclweb.org/anthology/W02-2024
https://proceedings.neurips.cc/paper/2019/file/93db85ed909c13838ff95ccfa94cebd9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/93db85ed909c13838ff95ccfa94cebd9-Paper.pdf


[95] Yanshan Wang, S. Sohn, Sijia Liu, F. Shen, Liwei Wang, E. Atkinson, S. Amin, and H. Liu.
“A clinical text classification paradigm using weak supervision and deep representation”. In:
BMC Medical Informatics 19 (2019).

[96] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Martha Palmer, Nianwen Xue, Mitchell
Marcus, Ann Taylor, Craig Greenberg, Eduard Hovy, Robert Belvin, et al. “Ontonotes release
5.0”. In: Linguistic Data Consortium (2011).

[97] Lloyd R Welch. “Hidden Markov models and the Baum-Welch algorithm”. In: IEEE Infor-
mation Theory Society Newsletter 53 (2003), pp. 10–13.

[98] Zhenzhen Weng, P. Varma, Alexander Masalov, Jeffrey M. Ota, and C. Ré. “Utilizing Weak
Supervision to Infer Complex Objects and Situations in Autonomous Driving Data”. In: IEEE
Intelligent Vehicles Symposium (2019), pp. 119–125.

[99] Shanchan Wu and Yifan He. “Enriching pre-trained language model with entity information
for relation classification”. In: CIKM. 2019, pp. 2361–2364.

[100] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. “Learning From Massive
Noisy Labeled Data for Image Classification”. In: CVPR. 2015.

[101] Yuan Yao, Ao Zhang, Xu Han, Mengdi Li, Cornelius Weber, Zhiyuan Liu, Stefan Wermter,
and Maosong Sun. “Visual Distant Supervision for Scene Graph Generation”. In: arXiv
preprint arXiv:2103.15365 (2021).

[102] Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo Zhao, and Chao Zhang. “Fine-
Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized
Self-Training Approach”. In: NAACL-HLT. 2021, pp. 1063–1077. URL: https://www.
aclweb.org/anthology/2021.naacl-main.84.

[103] Omar Zaidan and Jason Eisner. “Modeling Annotators: A Generative Approach to Learning
from Annotator Rationales”. In: EMNLP. 2008.

[104] Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and Patrick Lucey. “Generating Multi-
Agent Trajectories using Programmatic Weak Supervision”. In: ICLR. 2019. URL: https:
//openreview.net/forum?id=rkxw-hAcFQ.

[105] Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo, Tony Wu, Hanqing Lu, Yiwei Song, Bing
Yin, Tuo Zhao, and Qiang Yang. “QUEACO: Borrowing Treasures from Weakly-labeled
Behavior Data for Query Attribute Value Extraction”. In: CIKM. 2021.

[106] Hanwang Zhang, Zawlin Kyaw, Jinyang Yu, and Shih-Fu Chang. “PPR-FCN: Weakly Super-
vised Visual Relation Detection via Parallel Pairwise R-FCN”. In: ICCV. 2017.

[107] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level Convolutional Networks
for Text Classification”. In: NeurIPS. 2015, pp. 649–657. URL: http://papers.nips.
cc / paper / 5782 - character - level - convolutional - networks - for - text -
classification.pdf.

[108] Xinyan Zhao, Haibo Ding, and Zhe Feng. “GLaRA: Graph-based Labeling Rule Augmenta-
tion for Weakly Supervised Named Entity Recognition”. In: EACL. 2021, pp. 3636–3649.
URL: https://aclanthology.org/2021.eacl-main.318.

[109] Wenxuan Zhou, Hongtao Lin, Bill Yuchen Lin, Ziqi Wang, Junyi Du, Leonardo Neves, and
Xiang Ren. “Nero: A neural rule grounding framework for label-efficient relation extraction”.
In: The Web Conference. 2020, pp. 2166–2176.

16

https://www.aclweb.org/anthology/2021.naacl-main.84
https://www.aclweb.org/anthology/2021.naacl-main.84
https://openreview.net/forum?id=rkxw-hAcFQ
https://openreview.net/forum?id=rkxw-hAcFQ
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
https://aclanthology.org/2021.eacl-main.318

	Introduction
	Related Work
	Background: Weak Supervision
	Problem Setup
	Two-stage Method
	One-stage Method

	Wrench Benchmark Platform
	Labeling Function Generators
	Synthetic Labeling Function Generator
	Procedural Labeling Function Generator

	Benchmark Experiments
	Classification
	Evaluation Protocol
	Evaluation Results

	Sequence Tagging
	Evaluation Protocol
	Evaluation Results


	Discussion and Recommendation
	Conclusion and Future Work
	Acknowledgement
	Key Information
	Dataset Documentations
	Intended Uses
	Hosting and Maintenance Plan
	Licensing
	Author Statement
	Limitations
	 Potential Negative Societal Impacts

	Real-world Datasets
	Detailed Statistics and Visualization
	Classification Datasets
	Sequence Tagging Datasets

	Compared Methods
	Classification
	Label Model
	End Model
	Joint Model

	Sequence Tagging
	Label Models
	End Model
	Joint Model


	Adapting Label Model for Sequence Tagging Problem
	Label Correction Technique
	Comparision of IO and BIO Tagging Schema

	Implementation Details
	Hardware and Implementation
	Hyper-parameter Search Space
	Parameters for studies in Sec. 5

	Additional Results
	Classification
	Sequence Tagging




