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Abstract

With the recent expanding attention of machine learning researchers and
practitioners to fairness, there is a void of a common framework to analyze and
compare the capabilities of proposed models in deep representation learning. In this
paper, we evaluate different fairness methods trained with deep neural networks on
a common synthetic dataset and a real-world dataset to obtain better insights on how
these methods work. In particular, we train about 3000 different models in various
setups, including imbalanced and correlated data configurations, to verify the limits
of the current models and better understand in which setups they are subject to
failure. Our results show that the bias of models increase as datasets become more
imbalanced or datasets attributes become more correlated, the level of dominance
of correlated sensitive dataset features impact bias, and the sensitive information
remains in the latent representation even when bias-mitigation algorithms are
applied. Overall, we present a dataset, propose various challenging evaluation
setups, and rigorously evaluate recent promising bias-mitigation algorithms in
a common framework and publicly release this benchmark†, hoping the research
community would take it as a common entry point for fair deep learning.

1 Introduction

The success of deep learning models and their quick adoption in many application domains has brought
up important questions on the fairness of these models when deployed in the real world. Recent studies
have highlighted the biases encoded by representation learning algorithms and have questioned the
reliability of such approaches to make decisions. In particular, [1] outline the biases exhibited by learn-
ing algorithms whose goal is to match the data distribution in an adversarial setting. Similar findings
have been revealed in the context of visual question answering [2], image search tasks [3], language
models [4] and gender classification [5]. As a result, there is increasing interest in understanding
the sources of bias in learning algorithms and developing bias-mitigation strategies [6, 7, 8, 9].
The goal of bias-mitigation algorithms is to mitigate the influence of sensitive data features on the
made decisions of eligibility. Sensitive features are private and protected features of a dataset such as
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gender or race, which should not affect output decisions of eligibility. The eligibility is the criteria
that makes an individual qualified or unqualified for a given task, such as giving loans or hiring. Bias
mitigation models aim at making eligibility decisions on dataset samples without having bias towards
the sensitive attributes of the input data. The difficulty of bias-mitigation tasks is often determined by
the dataset distribution, which in turn, is a function of the potential label and feature imbalance, the
correlation of potentially sensitive features with other features in the data, and the perhaps inevitable
distribution shift from training to the development phase, to name a few. We argue that without
evaluation of bias-mitigation models in various challenging setups, their merits remain unclear.
In addition to the challenges associated with each dataset and task, the current state of the
bias-mitigation literature hinders method comparisons due to inconsistencies in the experimentation
and dataset setups. Given the importance and possibly tangible impact of the proposed algorithms
when in production, we advocate for a rigorous and unified evaluation protocol to assess the
capabilities of bias-mitigation models. We argue the need for a systematic analysis that would
benchmark different bias-mitigation approaches under the perspective of different fairness metrics
to ensure replication of concluded results. This would help elucidate the most promising research
contributions and possible future avenues to explore.
Therefore, this paper aims to provide a unified framework to benchmark bias-mitigation approaches
and perform an in-depth analysis of existing approaches leveraging the proposed framework. We
start with introducing a synthetic dataset that facilitates creating challenging scenarios by controlling
data imbalance or correlation among eligibility and sensitive or non-sensitive attributes. Contrary to
real datasets, where the different components of data generation cannot be controlled independently,
this synthetic dataset enables the soft modification of dataset characteristics, by e.g. changing one
component and keeping all others unchanged, which in turn allows the study of different sources
and levels of bias in the data. We also consider a real and commonly used dataset, the Adult
dataset [10], to investigate the impact of our settings on real data. In this case, we adapt the dataset
characteristics by altering the binarization process of its sensitive attributes, obtaining variations
of the data reminiscent of those explored in the synthetic dataset we introduced.
We then provide an in-depth analysis of baselines and recent bias-mitigation models, leveraging
both datasets mentioned above. In particular, we evaluate three promising bias-mitigation models
– and seven variants – together with two baseline models. The analysis is performed by considering
a unified set of fairness metrics and reporting results by carrying extensive hyper-parameter search
in all cases, ensuring that the drawn conclusions can be attributed to modeling or loss choices. In
doing so, we train about 3000 models in increasingly difficult scenarios, in which we transition from
balanced dataset setups towards challenging imbalanced and correlated setups, where the eligibility
criterion is correlated with sensitive or non-sensitive attributes.
Given the importance of bias-mitigation approaches and the severe implications of their misuse, we
intentionally try to push these models to their breaking point by creating various challenging datasets.
We make the following observations through extensive experiments: (1) when the correlation between
the eligibility and the sensitive attribute in the training data increases, models tend to exploit it and
become more biased in their predictions. These biases are further accentuated as the sensitive features
become more predominant; (2) when a group is under-represented, bias can arise due to imbalance
or scarceness of the data, both of which affect existing models in different ways. Moreover, as the
under-represented group becomes proportionally more imbalanced, the models act more biased; (3)
bias-mitigationmodels do not completely remove sensitive information from their latent representations.
Instead, they successfully reduce the bias in their results by designing loss functions that balance
different subgroups; (4) the robustness to random seeds is model dependent, with some models
exhibiting high variance in their results, making the choice of random seed a source of potential bias.
To summarize, we make the following contributions:

• We provide a dataset with controllable sets of features and correlation levels to facilitate
research in bias-mitigation in a wide range of scenarios.

• We propose challenging test setups to evaluate bias-mitigation models by considering
increasingly imbalanced and correlated scenarios and perform a rigorous analysis of existing
methods, showing there remains much room for improvement.

• We release a benchmarking codebase composed of seven state of the art models and two
baselines to the community for reproducible evaluation of bias-mitigation algorithms.
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It is noteworthy that our analysis is not to undermine the effectiveness of any bias-mitigation method
but instead to set the expectations and boundaries for different use cases and to encourage the
community to investigate models under more extensive scenarios.

2 Related Works

There is increasing literature studying how biased datasets can bias learning algorithms to discriminate
[1, 2, 6, 7, 11, 12, 13]. These recent studies have led researchers to propose new evaluation tools
and datasets [5, 14, 15, 16, 17, 18], to identify potential error rate gaps among different groups in
machine learning.
Bias-mitigation algorithms can be roughly categorized into pre-processing, in-processing, and post-
processing approaches. Pre-processing techniques include reweighting of training samples [19], editing
features and labels [20], resampling datasets [21]. Post-processing techniques calibrate predictions
given sensitive attributes at inference time [14, 22, 23]. In-processing techniques [6, 7, 8, 9, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33] try to remove sensitive information from the learned representation space.
Due to the emergence of more in-processing models in the deep learning community, we focus on
this group of models, as bias-mitigation algorithms are mainly applied directly to the learning models.
Deep learning approaches have become more popular in the fairness community. For example,
Louizos et al. [25] employs a deep variational autoencoder [34] to learn fair latent representations.
At the same time, adversarial learning – introduced initially within the framework of Generative
Adversarial Networks (GANs) [35] – has also been extensively leveraged in the bias-mitigation
literature [6, 7, 8, 9, 26, 27, 28, 29, 30, 31, 32, 33] to make different groups indistinguishable from
one another with respect to a sensitive attribute. Due to more widespread usage of adversarial
approaches, we analyse this group of models. Adversarial bias-mitigation techniques can be divided
into approaches which: (i) seek to mitigate bias through adversarial training directly applied on the
class labels, where the class label is an indicator of eligibility [9]; (ii) focus on mitigating bias through
enforcing group fairness on the learned latent space where the latent is directly used for classification of
eligibility [6, 7, 27, 32, 33]; and (iii) discard sensitive features for downstream tasks after disentangling
the learned latent space into sensitive and non-sensitive features [8, 26, 28]. This line of research
is motivated by the recent development in disentangled representation learning [25, 29, 30, 31].
To evaluate bias-mitigation models, some contributions have emerged to probe machine learning
systems at different levels and reduce discrimination from the perspective of modeling. Friedler et al.
[36] evaluate the fairness of pre-processing, in-processing, and post-processing machine learning
approaches. Verma and Rubin [37] evaluate how fair an off-the-shelf logistic regression model is,
given a set of fairness metric definitions. Contrary to these works, we evaluate deep learning-based
bias-mitigation models. In particular, due to the popularity and further usage of in-processing
adversarial methods, we take some of the promising approaches from this category and assess their
merits in challenging setups. [38] provide a review on sources of bias in deep learning models and
different approaches applied to them; however, they do not evaluate and contrast models experimentally.
To the best of our knowledge, we provide the first benchmark to compare deep learning-based bias-
mitigation approaches systematically in varied and increasingly challenging scenarios, in particular,
in imbalanced and correlated dataset setups with the goal of bringing further insights into the working
of bias-mitigation methods and proposing new frameworks for evaluating them.

3 Methodology

In this study, we empirically analyze the performance of two baselines without any bias-mitigation
learning criteria: an Mlp (multi-layer perceptron) and a Cnn (convolutional neural network). We
compare these baselines with four variants of Laftr [6] (Laftr-DP, Laftr-EqOpp1, Laftr-EqOpp0, and
Laftr-EqOdd), which apply adversarial learning to achieve group fairness by leveraging different
fairness criteria, two variants of Cfair [7] (Cfair and Cfair-EO) which perform conditional alignment
of representations to achieve accuracy-fairness trade-off, and finally, Ffvae [8], which disentangles
latent representations into sensitive and non-sensitive features. Check Section C in Appendix for a
complete description of these models.
For simplicity, we introduce the following shorthand notation. We denote by X ⊆ Rd and Y = {0, 1}
the set of inputs and outputs, respectively. Two sets of random variables X and Y take associated
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values x ∈ X and y ∈ Y . Variable y determines eligibility, and we denote the sensitive binary variable
by S taking values s ∈ {0, 1}. Moreover, p indicates the output probability of the classifier as a real
number and Ŷ is the class predicted random variable based on p, which takes values ŷ ∈ {0, 1} using
a threshold of 0.5. Furthermore, the term Dy

s is the conditional distribution of the joint distribution D
over X × Y × S, given Y = y, S = s.

3.1 Datasets

We use two datasets in our evaluations: a synthetic dataset, which facilitates a controlled data
manipulation and generation, and a real dataset, to verify that the obtained results carry over to real data.

CI-MNIST . In order to evaluate the bias-
mitigation approaches in challenging setups
and be capable of controlling different dataset
configurations; we design a variant of the
MNIST dataset [39], called Correlated and
Imbalanced MNIST or in short CI-MNIST ,
where we introduce different types of correla-
tions between attributes, dataset features, and
an artificial eligibility criterion. For an input
imagex, the label y ∈ {1, 0} indicates eligibil-
ity or ineligibility, respectively, given that x is
even or odd. We define the background colors
(bck) as the protected or sensitive attribute s ∈
{0, 1}, where blue denotes the unprivileged
group and red denotes the privileged group.

Figure 1: The conversion process used to generate samples.
Input image is first padded to become 32x32. The attributes
clr-ratio is then applied, which decides the background
color (blue or red). Noise is then added to the background
color. Finally, pos-ratio affects the positioning of the box
(top row, left half or top row, right half). Check SectionD of
the Supplementary for more details. Best viewed in color.

The primary motivation for using this dataset is to control different features of the data generation
process to simulate increasingly correlated and imbalanced datasets. In doing so, we can analyze
models in setups exhibiting different levels of bias and measure their robustness. In particular, we use
the following dataset components to create such challenging setups.
clr-ratio: Denoted as (be, bo) pair and used to refer to the percentage of images in the dataset with
blue backgrounds in (even, odd) classes. When background is used as a sensitive attribute, the pair
(be, bo) indicate the percentage of unprivileged population in (eligible, ineligible) groups, as blue
is used for unprivileged group and even and odd indicate respectively eligibility and ineligibility.
The rest of the digits in each group have red backgrounds. Using this feature, one can control the
correlation between the sensitive attribute (background color) and the eligibility (being even or odd)
or create imbalanced datasets between under-represented and over-represented groups.
pos-ratio: Denoted as (le, lo) pair where le (lo) refers to the percentage of even (odd) digits in the
dataset with a small box in the top-left half of the image. The rest of the digits have the box in the
top-right half. Figure 1 depicts image samples with such small boxes. Note that when pos-ratio
is (1, 0) the small box is always on the top-left for even digits and always on top-right for odd digits,
so its location indicates the eligibility of the sample (being even or odd), yielding the completely
correlated setup. On the other hand, when pos-ratio is (0.5, 0.5), for either even and odd digits, in
50% of samples the small box is on top-left and in the other 50% samples it is on top-right of the
image, hence its location is not correlated with eligibility, yielding the completely decorrelated setup.
By transitioning between these two extreme cases one can control the degree of correlation between
eligibility and the position of the box, as a non-sensitive or sensitive attribute, in order to create
correlated setups. We do not apply any correlation between small box location and background color.
While training sets can be imbalanced, we use a balanced test set, meaning clr-ratio=(0.5, 0.5) and
pos-ratio=(0.5, 0.5) in order to evaluate results on balanced dataset sub-groups and ease comparison
between different setups. See Section D in Appendix for complete details of data generation process.

Adult dataset. To verify the configurations evaluated on the proposed synthetic dataset carry over
to more realistic cases, we use the Adult database [10] given its ubiquitous use in the community
[6, 7, 9]. The Adult dataset consists of 30,162 training and 15,060 testing samples of individuals
with 112 features such as gender, age, and nationality. Given the features of an adult, the prediction
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task is to determine whether the person makes over 50,000 (eligible) or not (ineligible). The binary
eligibility value y is defined by salary being over or less than 50,000.
To generate configurations on theAdult dataset with varying complexity, we consider various thresholds
to binarize the sensitive attribute age, which is a multi-valued sensitive attribute and is often binarized
[40, 41, 24]. Note that we evaluate the aforementioned bias-mitigation approaches on a new Adult test
set, which is a subset of the Adult test set but balanced in terms of eligibility and sensitive attributes,
similar to our CI-MNIST (see Section D in Appendix for more details). Our goal is to assess different
possible configurations of a real-world dataset in similar setups as the ones used in CI-MNIST .
age-ratio: Finding settings in a real dataset that resembles the ones chosen in a synthetic dataset is not
trivial since contrary to synthetic datasets the features of a real dataset cannot be controlled for data
generation. We binarize age by thresholding it to find correlations between this sensitive attribute
and the eligibility in the Adult dataset that are closest to the ones we used in the CI-MNIST dataset.
We call this feature age-ratio and show it in pair (ae, ai), which refers to the ratio of people who are
unprivileged in (eligible, ineligible) classes. The rest of the people in each class are considered as
privileged. Refer to the Table 3 in Section D of Supplementary for various thresholds of age used in
our experiments.

3.2 Evaluation Metrics

We use the same set of fairness metrics, as reported in Laftr [6], Cfair [7], and Ffvae[8] to evaluate
these bias-mitigation strategies. In particular, we use Demographic Parity (DP), Equality of
Opportunity with respect to label classes y equal to 0 and 1 (EqOpp0 and EqOpp1), Equality of Odds
(EqOdd), and label accuracy (acc) in our experiments. Please see Table 1 in Appendix for details
on the used fairness metrics such as their mathematical formulations and their abbreviations used
in the paper. Our framework provides all metrics listed in Table 2; however, due to space limitations,
we focus on the metrics mentioned above given their widespread usage.

4 Experiments

To evaluate the robustness of the bias-mitigation approaches, we leverage the datasets introduced
in section 3.1 and create challenging scenarios where we change the balance of the under-represented
group, correlate sensitive attribute and eligibility, and also include scenarios where small features in
the image, considered as either sensitive or non-sensitive attributes, are correlated with the eligibility.
In all scenarios, we change the dataset from a balanced setup to different imbalanced setups at training,
while at test time, we always evaluate the models in a balanced setup, meaning the dataset is at 50% for
eligible and ineligible groups as well as for privileged and unprivileged groups. This way, we report the
model’s performance on a balanced setup of different sub-groups. On CI-MNIST in the balanced setup,
the ratio of unprivileged (blue) and privileged (red) background is at 50% for both eligible and ineligible
groups, giving clr-ratio of (0.5, 0.5). Moreover, the small-box location and eligibility are uncorrelated
with pos-ratio being (0.5, 0.5). On Adults, the value of age-ratios is (0.5, 0.5) in the balanced setup.
To report results, we initially average metrics over three random seeds, then for each metric, the best
value over hyper-parameters is reported on the test set. By doing so, we report the best performance
on each metric without choosing how to compromise between accuracy and a fairness metric (which
usually have a tradeoff and improving one deteriorates the other). This would allow us to illustrate
bias even when the best variation of a model is considered on each metric. Note that this is in favor
of the models as the best possible result is reported. Hence each column can correspond to a different
hyper-parameter. The details of all datasets, architectures and hyper-parameter setups are provided
in Section D of Appendix. Next, we present results in each setting.
Setting 1. Impact of reducing the representation of the unprivileged group. We first evaluate the
impact of the representation percentage of the unprivileged group in both eligible and ineligible groups.
The question wewant to ask is whether the models are robust to the small presence of under-represented
groups. To obtain such a setup, in CI-MNIST dataset we change clr-ratio from the balanced setup of
(0.5, 0.5) to imbalanced cases of (0.1, 0.1), (0.01, 0.01), and (0.001, 0.001). In the Adult dataset, we
change age-ratio from (0.5, 0.5) to the imbalanced cases of (0.1, 0.1) and (0.01, 0.01). Figures 2(a),
2(b) and Figures 3(a), 3(b) compare models trained on balanced and reduced representation data, both
on Adult and CI-MNIST datasets. We observe that, through the transition from balanced to imbalanced
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setups, for all models both unprivileged group accuracy and fairness metrics drop. This indicates even
the bias-mitigation algorithms are susceptible to under-representation of the unprivileged groups. On
both CI-MNIST and Adults, we observe the same trend and bias enlarges when the datasets become
more imbalanced. Figures 5 and 6 in Section E.1 of Appendix provide results for all dataset configura-
tions. Tables 6 to 13 for Adults and tables 14 to 21 for CI-MNIST report detailed results for each model.

(a) age-ratio (0.5, 0.5) (b) age-ratio (0.01, 0.01) (c) age-ratio (0.06, 0.36)

Figure 2: Comparing models on Adults dataset. Sub-figure 2(a) shows the balanced case. Sub-figure 2(b)
shows the impact of reducing unprivileged group in Setting 1. Sub-figure 2(c) shows the impact of correlation
of sensitive attribute and eligibility in Setting 2. Compare both 2(b) and 2(c) with 2(a) to observe the biased
setting’s impact. In sub-figures 2(b) and 2(c) the pale colors show the decrease in performance compared to
the balanced case in 2(a). Note that in 2(a) the models are not perfect as the performance is not always 1. Higher
is better for all metrics. For each bar, the standard deviation is also shown. Best viewed in colors.

Setting 2. Impact of correlation of sensitive attribute with eligibility. In this setting, we want to
evaluate the resistance of models to the correlation between sensitive attribute and eligibility. The
goal is to evaluate whether models perform fairly in the presence of such correlations. To that end, we
train models on a training set exhibiting sensitive attribute and eligibility correlations.
To provide such a scenario, in CI-MNIST we change clr-ratio from the balanced case of (0.5, 0.5)
to correlated cases of (0.1, 0.9) and (0.01, 0.99), and for Adult dataset we change age-ratio from
(0.5, 0.5) to (0.06, 0.36), where the unprivileged group becomes under-represented in the eligible
group and over-represented in the ineligible group, hence correlating eligibility and sensitive features.
Note that the setting selected for the Adult dataset is the closest to the selected CI-MNIST setting that
we could emulate with this data.
Figures 2(a), 2(c) and Figures 3(a), 3(c), 3(d) compare model performances under different metrics for
the Adult and CI-MNIST datasets. For all models, we observe a big drop in both accuracy and fairness
metrics on both Adult and CI-MNIST . Note that the bias increases when the correlation level increases
from 3(c) to 3(d). The drop is bigger than in the previous evaluation setting, where the unprivileged
representation was reduced. This suggests that models are even more susceptible to correlations
between eligibility and sensitive attributes. Also note that in both Settings 1 and 2 we observe the same
trends in CI-MNIST as in Adults, highlighting the transferability of the observations between datasets.
Figures 7, 8 and Tables 22 to 37 in Section E.2 of Appendix present all models and their detailed results.
Setting 3. Impact of correlation of non-sensitive attribute with eligibility. In this setting, we
want to evaluate to what extent a model can exploit the correlation between non-sensitive and
non-predominant attributes and eligibility? To evaluate this setting on CI-MNIST , we keep clr-ratio
at (0.5, 0.5); however, we change pos-ratio from the balanced setting of (0.5, 0.5) to the imbalanced
settings of (0.9, 0.1). Note that this would make the position of box highly correlated with eligibility.
Figures 3(a) and 3(e) compare different models under this setting. In this case, since pos-ratio is
a non-predominant non-sensitive feature compared to clr-ratio, we do not observe any specific trend
in drop of fairness measures among models, but we do see a consistent drop in accuracy metrics,
highlighting a slight bias in the models. Note that fairness metrics are measured on the sensitive
feature, which in this case is the background color. Figure 9 and Tables 38 to 45 in Section E.3 show
detailed results for all models.
Setting 4. Impact of correlation of non-predominant features with eligibility: We did not
observe a strong bias in the previous setting when a non-predominant, non-sensitive feature was
correlated with eligibility. In this setting, we would like to evaluate whether models would exhibit any
bias when such a non-predominant feature, which is correlated with eligibility, becomes a sensitive
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(a) clr-ratio (.5, .5), pos-ratio (.5, .5) (b) clr-ratio (.001, .001), pos-ratio (.5, .5) (c) clr-ratio (.1, .9), pos-ratio (.5, .5)

(d) clr-ratio (.01, .99), pos-ratio (.5, .5) (e) clr-ratio (.5, .5), pos-ratio (.9, .1) (f) clr-ratio (.5, .5), pos-ratio (.9, .1)

Figure 3: Comparing models on CI-MNIST dataset. 3(a) shows the balanced case. 3(b) shows the impact of
Reducing unprivileged group in Setting 1. 3(c) and 3(d) show the impact of correlation of background sensitive
attribute and eligibility in Setting 2. 3(e) shows the impact of correlation of non-sensitive attribute and eligibility
in Setting 3. Finally, 3(f) shows the impact of correlation of small box sensitive attribute and eligibility in Setting 4.
Compare all sub-figures with 3(a) to observe each biased setting’s impact. In all sub-figures except 3(a), the pale
colors show the decrease in performance compared to the balanced case in 3(a). Higher is better for all metrics.

attribute. Note that bias-mitigation models take sensitive attribute as input, and fairness metrics
are measured for the chosen sensitive attribute.
We use the same configuration as in Setting 3, but change the sensitive attribute from background
color to the small box location. Figures 3(a) and 3(f) compare the performance of different models.
As we can observe, the performances of most of the models drop, except that of Cfair, which mostly
maintains its previous fairness performance. The obtained results indicate that correlation of even
non-predominant sensitive features with eligibility can cause bias, although the impact is lower
compared to Setting 2, where the predominant component (background color) was correlated with
eligibility. Hence, the level of the predominance of the sensitive attribute can change the degree of
bias of the trained models. Figure 10 and Tables 46 to 53 give detailed results for all models.
Notes on all settings. In settings 3 and 4, we could not emulate similar scenarios on the Adults
dataset, as each feature (such as age) is one out of 112 components; hence they all occupy a single
dimension. Moreover, in settings 1 and 2, we could not emulate the extreme scenarios of CI-MNIST
dataset either. This highlights the difficulty of emulating all scenarios in real datasets and motivates
the usage of the proposed synthetic data in conjunction with real datasets.

5 Discussion

In this section, we discuss the results presented in section 4.

5.1 Model Stability and Performance

Variation due to random seeds. In deep learning models, the random seed is a potential source of
variation due to its usage in the initialization of the model parameters and the data sampling done
during training, which can converge the model to different solutions in the course of training. To
assess the impact of the random seed, we trained each model three times, using three random seeds
and reported the mean and standard deviation of the results – see Figures 11 and 12 in Appendix for
all of the settings described in our experiments. We observed that the choice of seed could impact
some models more than others. Depending on the experiment, almost all models show instability in
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terms of variation of results given different seeds; however, Laftr models show more stability over all
experiments. We advocate verification of any bias-mitigation method under different seeds, as this
indicates how much the model is susceptible to minor training variations. This is complementary to
other studies of stability, such as cross-validation studied in [36].
Correlation between dataset features andmodel’s prediction. If a model’s prediction is correlated
with dataset features, the model could rely on correlations in the data when making predictions and
thus be unfair when applied. To verify this, for each model, we measured the correlation between
dataset features and fairness metrics using Spearman correlation matrices, measured separately
for each setting in Section 4. The results are presented in Figure 13. We observe that all models
are subject to bias as their predictions correlate with dataset features; however, Cfair is slightly less
biased in capturing correlations in some setups.
One interesting observation is that despite not observing high bias in Setting 3, the correlation plot
of this setting indicates that the models are still picking up on the correlation of the non-sensitive
attribute and the eligibility. This suggests that better fairness results in such cases are partially due
to how fairness metrics are calculated (w.r.t. the selected sensitive feature, which was the background
attribute in this case), regardless of the fact that models remain biased towards unobserved yet
potentially sensitive features.
Sensitive information removal. In bias-mitigation algorithms, the models try to remove sensitive
information from the latent space. One natural question would be to what extent models are
successful in achieving this goal? To verify whether the sensitive information still exists in the latent
representation, we freeze a model’s parameters after training and train a classifier that, given the
latent features of the model, attempts to predict the sensitive attribute class. For each configuration in
Section 4, we train such a classifier on its training set and report the results on the test set, which is
shown in sens-acc column in Tables 6 to 53 of Settings 1 to 4.
We observe some interesting trends: First, when the sensitive attribute is predominant, there is more
information about the sensitive attribute in the latent representation of models compared to the cases
where the sensitive attribute is less dominant. This is observedwhen the background color inCI-MNIST
is the sensitive attribute in settings 1, 2, and 3, compared to the small box in setting 4. On theAdult, since
age is one out of 112 features, it has been relatively easy for models to remove the sensitive information.
Second, despite bias-mitigation approaches exhibiting fairer results than the baselines (MLP, Cnn), in
many cases, we observe that the sensitive information is higher in the latent representation of models
trained with bias-mitigation algorithms. We hypothesize that the success of these bias-mitigation
approaches in achieving fairer results mainly rely on the sensitive group balancing enforced through
their loss functions rather than completely removing the sensitive information from their latent space.
Model performances. While the performance of models were often close, depending on the experi-
ment, we often found either Cfair or Laftr to be performing slightly better compared to other models. It
is worth noting that both of these models apply fairness criteria directly onto their learned latent spaces,
rather than disentangling their latent representations into sensitive and non-sensitive components, as
done in Ffvae. Overall, we observed that disentanglement of features was less successful in removing
sensitive information. This is especially highlighted in setting 1 and 2 of the Adults dataset results
– see Tables 9 and 25, respectively, and in setting 4 of the CI-MNIST dataset – see Table 49), as we
observe sens-acc is higher in the non-sensitive latent space of Ffvae compared to Cfair and Laftr.
Since bias mitigation applied to a unified latent space and explicit latent space disentangling constitute
two prominent bias-mitigation strategies, a natural question is whether these strategies can benefit
from one another. To verify this, we merged both strategies and investigated the effect on the models’
performances. In one setup, we merged Laftr-DP with Ffvae, and in another setup, we merged Cfair
with Ffvae. Check Section E.8 for details of merging models. We evaluated these merged models in
settings 1 and 2 of the Adults dataset. Tables 56 to 59 present results for the merged models. We
observe an improvement of the fairness metrics (DP, EqOpp, EqOdd) in joint models compared to
individual models while accuracy has not changed or deteriorated. In particular, when comparing the
results in Tables 56 to 59 to the tables obtained from individual models, we observe on average over
different cases the fairness metrics DP, EqOpp0, EqOpp1, and EqOdd have improved in Ffvae+Cfair
by 5.83%, 3.41%, 9.15%, 5.98% and in Ffvae+Laftr by 9.63%, 3.4%, 19.4%, 10.53%, while accuracy
has improved in Ffvae+Cfair by only 1.15% and dropped in Ffvae+Laftr by 12.66%. This emphasizes
that further investigation in merging the seemingly different bias-mitigation strategies can bring
improvement w.r.t fairness metrics while maintaining model accuracy.
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5.2 Sources of Bias

In our experiments, in addition to random seed we have considered three different sources of bias:
Reduced representation of the unprivileged group. This scenario causes bias due to the small
ratio of the unprivileged group compared to the privileged group. In this case, the bias can be
two-fold; one is due to the imbalance between the two groups, another can be due to scarcity
of data from the unprivileged group. In particular, the clr-ratios of (0.1, 0.1), (0.01, 0.01), and
(0.001, 0.001) are all subject to group imbalances. However, the latter two cases have 250 and 25
samples from the unprivileged group in CI-MNIST , compared to the 24,750 and 24,975 samples
respectively from the privileged group. So, the model not only has to handle the group imbalance
but also the secondary aspect of the bias, which is scarcity of the data.
To further disentangle the cause of bias, we performed an experiment where we kept the ratio of
(0.001, 0.001) in all settings, but increased the number of total samples by 10, 100, and 1000 times
in order to alleviate data scarceness, especially in the 1000× case where the under-represented
group is as numerous as the original dataset size. The results are shown in Tables 54 for
Cnn (without any bias-mitigation strategy) and in 55 for Laftr-EqOpp0, which is one of the
strongest bias-mitigation models. Interestingly, in these models, the source of bias is different.
In Laftr, the scarceness of data seems to be a source of bias, and as the number of samples in
the under-represented group increases, the model’s performance improves, although it is still
not as good as in the balanced setup shown in the first row of Table 20. In Cnn, however,
the imbalance in the data distribution seems to be the main cause of bias, as the model does
not effectively leverage the increasing number of samples. These results indicate that different
models may be susceptible to different sources of bias, including both data imbalance and data scarcity.

Correlation of a feature with eligibility. In some datasets, the unprivileged group, might exhibit
lower eligibility, e.g., due to historical reasons like lack of access to facilities or limited resources
compared to a privileged group [42]. As observed in settings 2 and 4, correlations between features
and eligibility in the data can be somewhat easily picked up by the model, causing bias at test
time. In such settings, however, we observe that if the sensitive attribute/features are predominant,
i.e., occupies a more significant portion of the input data, the bias becomes stronger, causing
the fairness metrics to drop further, as observed when comparing setting 2 to setting 4. More-
over, in both settingswe observe that as the correlation increases, the degree of bias inmodels augments.

Impact of non-predominant correlated features. The bias-mitigation algorithms work based on
the assumption that the sensitive or biased attributes are known a priori, and hence can be addressed
by removing these features from the learned representations. However, some features, especially small
(non-predominant) ones, might not be noticed by the model or a potential annotator. For example,
wearing glasses can correlate with age. If this is not known a priori, the bias-mitigation algorithm
will most likely not address it adequately. Our results in setting 3 and the Spearman correlation plot
in this setting indicate that such non-predominant but correlated features can be a source of bias and
the models still capture the correlation in the data.

6 Conclusion

With the increasing use of representation learning algorithms in automatic decision-making tools
[43, 44, 45, 46], the rigorous benchmarking of bias-mitigation algorithms has become imperative.
In this paper, we introduced a framework to benchmark bias-mitigation algorithms in a wide variety
of scenarios to push these methods to their limits. We systematically compared and analyzed a
set of deep learning-based bias-mitigation models using the proposed benchmark on challenging
variations of the introduced synthetic CI-MNIST and Adults datasets, where we control the correlation
and balance between different dataset subgroups. Although the models under analysis proved their
effectiveness to the community and were able to perform on some of our settings and dataset variants
adequately, we showed that we could purposefully push them to their breaking point. Throughout
our analysis, we observed that these models could exploit and hence induce biases when: 1) the
unprivileged group is under-represented, which can be due to either imbalance or scarceness of its
population; and 2) there is a correlation between the sensitive attribute and the eligibility. In both
cases, we observed a stronger bias when imbalance or correlation increases. Our results also showed
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that the dimensionality/predominance of the biased input features could affect the model’s degree
of bias. Further, we found that the sensitive information is present in the latent representation of the
models trained with bias-mitigation strategies, and hence using representation from these models for
downstream tasks can still result in a biased treatment. Our results also showed that some models are
more susceptible to the random seed than others and hence variation of random seed can be a source of
bias. Therefore, not all models may be well-suited to operate in all scenarios, and using models without
a proper understanding of their limitations could lead to undesirable consequences. We also note that
with the abundance of fairness metrics there is room for improvement in model selection, as we cannot
pinpoint a single model that works best across all metrics. We hope our benchmark serves as a starting
point to verify robustness of bias-mitigationmodels. Finally, wewill release our dataset and codebase to
the community to provide a framework for evaluating deep learning-based bias-mitigation algorithms.
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A Paper Checklist

A.1 Potential negative societal impacts

While we report results using the best currently established fairness metrics, there is neither a
universal fairness metric nor a universally accepted definition of fairness. Therefore, although we
take steps towards proper benchmarking of bias mitigation algorithms, one should still be cautious
about the chosen metrics before using them in real-world applications. Group parity metrics like
DP, EqOpp0, EqOpp1, EqOdd can suffer from statistical limitations, as the true underlying protected
group distributions might differ regardless of other unprotected features used for prediction, thus
enforcing these metrics can lower accuracies and can harm the very groups designed to protect [47].
Hence before using any specific metric, the true data distribution should be studied well by designing
suitable interventions. Real-world assessments and understanding consequences also help in achieving
equitable metrics. Today with representation learning methods used in automatic decision-making
applications [43, 44, 45, 46], more interpretable and explainable models are necessary to avoid any
harmful consequences.

A.2 Limitations

The results presented in this work are obtained using binary sensitive attributes. It would be interesting
to extend the present work to non-binary sensitive attributes in addition to observing the impact of
bias-mitigation methods on multiple sensitive features. Due to the extensiveness of evaluating all
these cases, we focused only on single binary attributes. Also, just mitigating the effect of sensitive
features might not be enough, as there can be proxy features present, which are partially correlated
with the sensitive features [47], it is aspiring to see fairness research that exploits the correlations
between input features.
On a separate note, we have evaluated some of the recent promising bias-mitigation algorithms out
of many proposed models. This field is expanding rapidly, and we could not evaluate all possible
models. It would be interesting to evaluate other promising models in the proposed setups of this
paper and try the proposed settings on more datasets to observe any potential change of performance
due to difference in the modality of data.

A.3 Privacy and author consent

CI-MNIST : This data is an extension of the publicly available MNIST dataset [39], which does not
contain any personal data. Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset,
which is a derivative work from original NIST datasets. MNIST dataset is made available under the
terms of the Creative Commons Attribution-Share Alike 3.0 license (CC BY-SA 3.0).
Adult: The Adult dataset was originally extracted by Barry Becker from the 1994 Census bureau
database and the data was first cited in [48]. It was donated by Ronny Kohavi and Barry Becker (Data
Mining and Visualization, Silicon Graphics) and publicly released to the community on the UCI Data
Repository [10]. It is licensed under Creative Commons Public Domain (CC0).
We do not put these datasets in our repository; instead, we provide code and guidelines on processing
the original dataset to obtain the dataset variants used in our experiments.

A.4 Reproducibility

We have released our code at https://github.com/charan223/FairDeepLearning. We have
provided the instructions to reproduce all experiments reported in the paper. Model details are
provided in Section C. Dataset, architectural, and hyper-parameter details are presented in Section
D. The detailed results on all experiments are presented in Section E. For each chart, we provide
confidence-interval around the mean and run each experiment with three different seeds. We trained
about 3000 models on 2 16GB NVIDIA Tesla V100 GPUs for 14 days.
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B Fairness metrics

Table 1 presents all fairness metrics and their mathematical formulations that we use in our evaluations.
In Table 2, we present the comprehensive list of fairness metrics taken from the literature along with
their mathematical definitions and abbreviations. In our code-base that we will release to the fairness
community, all these metrics are provided and can be used for evaluation. The provided tool by [36]
is used to compute all of the metrics.

Table 1: X,Y, S denote the input, label, and the sensitive attribute. Ŷ and p are the model’s prediction and the
output probability of the model. For all metrics, 1 indicates the perfect and 0 the lowest value.

Fairness Criteria Formulation Short form
Demographic Parity 1− |p(Ŷ = 1|S = Protected)− p(Ŷ = 1|S = Unprotected)| DP
Equality of Opportunity (w.r.t y = 1) 1− |p(Ŷ = 1|Y = 1, S = Unprotected)− p(Ŷ = 1|Y = 1, S = Protected)| EqOpp1
Equality of Opportunity (w.r.t y = 0) 1− |p(Ŷ = 1|Y = 0, S = Unprotected)− p(Ŷ = 1|Y = 0, S = Protected)| EqOpp0
Equality of Odds 0.5× [EqOpp0+ EqOpp1] EqOdd
unprotected-accuracy p(Ŷ = y|Y = y, S = Unprotected) up-acc
protected-accuracy p(Ŷ = y|Y = y, S = Protected) p-acc
accuracy 0.5× [up-acc+ p-acc] acc

C Models

In this section, we describe in detail the models used in our evaluations.
Baseline Model. We use Mlp and Cnn as our baseline models, which given an input image x, predicts
the probability p of the eligibility criteria. This probability is then transformed into a classification
prediction ŷ. These models do not leverage any bias mitigation algorithm and are trained using a
standard cross-entropy loss. It is meant to show how fair a baseline deep learning model would
perform under different fairness criteria.
Learning Adversarially Fair and Transferable Representations (Laftr). Laftr [6] is an adversarial
based bias mitigation algorithm within the scope of representation learning. In the supervised version
of Laftr, given an input x, it first learns a latent encoded representation z that is passed to the
discriminator to be debiased. The learned representation is then passed to a classifier to predict the
task of interest y. The discriminator is trained by minimizing

LLaftr
fair = Ex,y,s∈DLS(D(z, y), s) (1)

where LS is the adversarial loss, and y is only passed in debiasing models aimed for equality of
odds and equality of opportunity fairness metrics. The encoder and classifier are trained jointly by
minimizing

LLaftr = Ex,y,s∈DLY(C(z), y)− γLLaftr
fair (2)

where z = E(x) is the encoded feature, passed to both the classifier C and the discriminator D.
The first term on the right side of the equation measures the classification loss (denoted as LLaftr

cl ),
and the second term (or the fairness objective) gets the adversarial gradients from the discriminator
regarding the sensitive attribute s. Following the original paper, four variants of Laftr model are
considered that represent the desired fairness criteria via LLaftr

fair . This includes:
(i) Laftr-DP in which the fairness objective is defined as

LLaftr
DP = 1−

∑
s∈{0,1}

Ex,s∈Ds
|D(z)− s| (3)

(ii) Laftr-EqOpp0 in which the fairness objective is considered as

LLaftr
EqOpp0 = 1−

∑
s∈{0,1},y=0

Ex,s∈Dy
s
|D(z)− s| (4)

(iii) Laftr-EqOpp1 whose fairness objective LLaftr
EqOpp1 is obtained by replacing y = 1 in Eq. (4)

(iv) Laftr-EqOdd with the equality of odds fairness objective denoted as LLaftr
EqOdd which is the sum of

LLaftr
EqOpp0 and L

Laftr
EqOpp1 .
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Table 2: Fairness metrics. X,Y, S denote respectively the input sample, the ground truth label, and the sensitive
attribute. p is the output probability of the model and Ŷ is the model’s prediction. For the metrics presented in
this table, the sensitive attribute S takes binary values in {0, 1}.

Fairness Criteria Definition Abbreviation

Group conditioned s-accuracy p(Ŷ = y|Y = y, S = s) s-accuracy

s-True positive ([37]) |{x|ŷ = 1 for (x, y = 1, S = s) ∈ X}|
where | · | refers to cardinality of a set

s-TP

s-False positive ([37]) |{x|ŷ = 1 for (x, y = 0, S = s) ∈ X}|
where | · | refers to cardinality of a set

s-FP

s-False negative ([37]) |{x|ŷ = 0 for (x, y = 1, S = s) ∈ X}|
where | · | refers to cardinality of a set

s-FN

s-True negative ([37])
|{x|ŷ = 0 for (x, y = 0, S = s) ∈ X}|
where | · | refers to cardinality of a set s-TN

s-True positive rate ([36])

= s-positive predictive value (s-PPV) p(Ŷ = 1|Y = 1, S = s) s-TPR

s-True negative rate p(Ŷ = 0|Y = 0, S = s) s-TNR

s-False positive rate p(Ŷ = 1|Y = 0, S = s)
equivalent to 1− s-TNR s-FPR

s-False negative rate
p(Ŷ = 0|Y = 1, S = s)
equivalent to 1− s-TPR s-FNR

s-Balanced classification rate 0.5× [p(Ŷ = 1|Y = 1, S = s) + p(Ŷ = 0|Y = 0, S = s)]
equivalent to 0.5×(s-TPR + s-TNR ) s-BCR

Equality of odds ([49] & [27])

= Equalized odds ([49]))

= conditional procedure accuracy equality ([50])

= disparate mistreatment ([51])

p(Ŷ = ŷ|Y = y) = p(Ŷ = ŷ|Y = y, S = s)

equivalent to
[
p(Ŷ = 1|Y = 1, S = 1) = p(Ŷ = 1|Y = 1, S = 0) and

p(Ŷ = 1|Y = 0, S = 1) = p(Ŷ = 1|Y = 0, S = 0)
]

equivalent to [ 1-TPR = 0-TPR and 0-TNR = 1-TNR ]

-

s-calibration+ ([36]) p(Y = 1|Ŷ = 1, S = s) -

s-calibration− ([36]) p(Y = 1|Ŷ = 0, S = s) -

Conditional use accuracy equality ([50])

[
p(Y = 1|Ŷ = 1, S = 1) = p(Y = 1|Ŷ = 1, S = 0) and

p(Y = 0|Ŷ = 0, S = 1) = p(Y = 0|Ŷ = 0, S = 0)
]

equivalent to [0-calibration+ = 1-calibration+ and 0-calibration− = 1-calibration−]

-

Calders and Verwer ([52]) 1− [p(Ŷ = 1|S = 1)− p(Ŷ = 1|S 6= 1)] CV
Demographic parity ([49] & [27])

= Group fairness ([17])

= statistical parity ([17])

= equal acceptance rate ([53])

p(Ŷ ) = p(Ŷ |S)
equivalent to 1−CV

equivalent to p(Ŷ = 1|S = 1) = p(Ŷ = 1|S 6= 1)
DP

Disparate Impact ([54] & [40])
p(Ŷ=1|S 6=1)

p(Ŷ=1|S=1)
DI

Equality of opportunity with respect to y ([49])

p(Ŷ = ŷ|Y = y) = p(Ŷ = ŷ|Y = y, S = s)
Equality of odds is stronger than equality of opportunity -

False positive error rate balance ([55])

= predictive equality([56])

p(Ŷ = 1|Y = 0, S = 1) = p(Ŷ = 1|Y = 0, S = 0)

equivalent to p(Ŷ = 0|Y = 0, S = 1) = p(Ŷ = 0|Y = 0, S = 0)
equivalent to 1-TNR = 0-TNR

equivalent to [Equality of opportunity with respect to y = 0]

-

False negative error rate balance ([55])

= equal opportunity ([16] & [49])

p(Ŷ = 0|Y = 1, S = 1) = p(Ŷ = 0|Y = 1, S = 0)

equivalent to p(Ŷ = 1|Y = 1, S = 1) = p(Ŷ = 1|Y = 1, S = 0)

equivalent to 1-TPR = 0-TPR
equivalent to [Equality of opportunity with respect to y = 1]

-

Matthews correlation coefficient TP×TN−FP×FN√
(TP + FP)(TP+FN)(TN+FP)(TN+FN)

MCC

Conditional Learning of Fair Representations (Cfair). Proposed by [7], this model leverages two
adversarial networks h0 and h1, predicting sensitive attribute s respectively for class labels Y = 0
and Y = 1. Cfair depends on an objective function called the balanced error rate (BER) [54, 57],
which guarantees small joint error across demographic groups. The BER represents the sum of false
positive rate and false negative rate. Therefore, it is equal to minimizing the below two conditional
errors. BERD(Ŷ ‖Y ) is defined as

BERD(Ŷ ‖Y ) ∝ p(Ŷ = 1|Y = 0) + p(Ŷ = 0|Y = 1). (5)

and BERD(Ŝ‖S) is defined similarly, where Ŝ is the predicted sensitive random variable. Cfair is
optimized based on the following min-max formulation.

LCfair = min
C,E

max
h0,h1

(
BERD(C(E(X))‖Y )− γLCfair

DP

)
(6)

where
LCfair
DP = BERDy=0 (h0(E(X))‖S) + BERDy=1 (h1(E(X))‖S) (7)
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Figure 4: Sampled images from our dataset.

This approach proposes that using the balanced error rate along with the conditional alignment helps
in achieving equalized odds across the groups without impacting demographic parity.
Cfair-EO is a variant of the Cfair model, which considers Cross-Entropy loss instead of BER loss
for the classifier C to achieve equalized odds. In case of equal target class distribution, Cfair and
Cfair-EO are the same, refer to Eq. (9) in the Appendix.
Flexibly Fair Representation Learning by Disentanglement (Ffvae). Inspired by FactorVAE [29],
Ffvae [8] performs disentanglement by factorizing latent space. It learns a disentangled representation
of the inputs, which is flexibly fair because it can be easily modified at test time to achieve demographic
parity across various groups.
Given x, s = (s1, . . . , sN ), b = (b1, . . . , bN ), and z being respectively the input, the sensitive
attribute, the sensitive latent, and non-sensitive latent, with N indicating the number of sensitive
or non-sensitive features (depending on the dataset), Ffvae trains an encoder q(z, b|x), a decoder
p(x|z, b), as well as an adversarial network. The latent representation is disentangled into sensitive b
and non sensitive z latent attributes by encouraging bothMI(b, z) andMI (bi, sj) ,∀i 6= j to be low,
where MI represents mutual information. Ffvae objective is defined as

LFfvae(p, q) = Eq(z,b|x)[log p(x | z, b) + α log p(s | b)]]− γDKL(q(z, b)‖q(z)
∏
j

q (bj))

−DKL(q(z, b | x)‖p(z, b))
(8)

Eq.(8) has two terms, the first term consists of a reconstruction term (on left) and a predictiveness
term p(s | b), which aligns sensitive attributes to its respective sensitive latents, the second term is
the disentanglement term which decorrelates the sensitive latent representation b from z using an
adversarial network.
In addition to the models mentioned above, we also did experiments with [9] (based on the code
released by authors), however, the model was very unstable on our dataset configurations even after
extensive hyper-parameter search. We hypothesize that this is due to applying adversarial training
directly to the class labels, which makes the model unstable, as indicated by the authors. Due to
unstable results, we dropped this model from our evaluation.

D Experimental Setup

CI-MNIST dataset: Figure 4 shows samples of the dataset used in our experiments. Unless otherwise
stated, we used 50000 images for the training set, 10000 images for each validation and test sets. In
CI-MNIST experiments, the eligible and ineligible groups represent each 50% of the training data
in both train and test sets. However, while the train set can be imbalanced with respect to sensitive
attributes, the test set is always balanced. We initially pad the input image of size 28x28 on the top and
sides to give a 32x32 image for the dataset creation. Blue and red colors with a 10% gaussian noise
are used as background colors. For the small box, we used a 4x4 sized gray-colored box in the center
of the top-left half or top-right half of the padded region of the image. We have experimented with
multiple background colors, box colors and box sizes to understand the impact of colors, positions,
sizes of the features on our models. Our motivation in choosing the current features is that the models
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can easily notice these features but find them difficult to remove. CI-MNIST currently supports
multiple sensitive features (multiple background colors and positions of boxes). For more details
refer to the released codebase.
Adult dataset: For training on the Adult dataset, we used the full Adult training set consisting of a
total of 30,162 samples. We used 20% of the training set as the validation set. In the Adult dataset,
the eligible and ineligible groups represent each 25%, 75% of the training data; hence the data is
imbalanced with respect to target label with a skew towards ineligible lower-income class (<=50k).
We use age as sensitive attribute and threshold it in the training sets (as indicated in Table 3) to create
various age-ratios. Note that in all age-ratios the size of the training dataset does not change, and the
eligible and ineligible groups remain at 25% and 75%. However, through thresholding of age as the
sensitive attribute, we change the number of people in privileged and unprivileged groups. We find
age-thresholds that closely resemble the dataset ratios used in CI-MNIST , in terms of the percentage
of unprivileged individuals in eligible and ineligible groups.
We change the original test set to create a balanced version of it for testing, meaning it is balanced
in terms of both sensitive attributes and target classes. Hence, the number of testing samples vary
for each age-ratio. This is because we use age for the sensitive attribute, and when we change its
threshold, the number of examples belonging to unprivileged and privileged group changes. We drop
the minimum number of samples from the bigger subgroup of sensitive attribute and target class to
make the dataset balanced. In Table 3, we mention the age thresholds used for the unprivileged group
to achieve our desired age-ratios and also indicate the test-set size in each case. The remaining ages
in either eligible and ineligible groups are considered privileged.

age-ratio unprivileged age threshold test set size
(0.5, 0.5) 25 <= age < 44 7336
(0.1, 0.1) 32 <= age < 36 1708
(0.01, 0.01) 71 <= age < 75 208
(0.66, 0.33) 38 <= age < 60 5480
(0.06, 0.36) 0 <= age < 30 908

Table 3: Thresholds of age and test set size used for various age-ratios. The test set is balanced in
terms of both sensitive attribute and target class, while the train set is imbalanced and is of fixed size
30,162.

Architecture: In all models, we used three fully connected layers for discriminator and classifier
networks. In the encoder network, we used three fully connected layers for all models except Ffvae,
in which we used a convolutional encoder and decoder networks for increased training stability [29].
Leaky ReLU is used for all activation functions, and Glorot [58] is used to initialize all weights. The
models are trained using Adam optimizer with a learning rate of 1e-3. Models are trained for 500
epochs, with early stopping of 5 epochs patience on the validation set’s loss to find the best model.
Baseline Mlp Setup: The baseline Mlp model consists of an encoder for the input image and a classifier
for eligibility prediction. Cross entropy loss is used for optimization.
Baseline Cnn Setup: The baseline Cnn model consists of an Cnn encoder for the input image and an
Mlp classifier for eligibility prediction. Cross entropy loss is used for optimization.
Laftr Setup: The model consists of an encoder, a classifier, and a discriminator. We used an adapted
PyTorch version of the original codebase released by the authors of the original paper [6]. Following
the original code’s training method, we train the encoder, classifier and train the discriminator in
alternate steps. We used two discriminator iterations per encoder-classifier iteration and applied
cross-entropy loss for optimization of both the classifier and discriminator. We used the default
classification coefficient of 1.0 and used five values of adversarial coefficient γ ∈ [0.1, 0.5, 1, 2, 4], as
proposed in the original paper.
Cfair Setup: The model consists of an encoder, a classifier, and two discriminators (one for each
eligibility class label). We used the code provided by the authors to run the experiments. We
experimented with five values of adversarial coefficient γ ∈ [0.1, 1, 10, 100, 1000], as proposed in the
original paper. The binary loss (0-1 loss) in Eq.6 is NP-hard to optimize directly [59, 60], hence the
model uses a convex relaxation of the binary loss, which is a weighted cross-entropy loss as shown
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below.

D(Ŷ 6= y | Y = y) =
D(Ŷ 6= y, Y = y)

D(Y = y)

≤ CEDy (Ŷ ‖Y )

D(Y = y)

(9)

Ffvae Setup: The model consists of a convolutional encoder, a convolutional decoder, a fully connected
classifier, and a fully connected discriminator. We used the code provided by authors to run the
experiments. We applied adversarial coefficient γ ∈ [10, 50, 100] and the alignment coefficient
α ∈ [10, 100, 1000]. We observed that the training of Ffvae becomes unstable for higher values of γ.
This is due to the fact that the stability between predictiveness and disentanglement gets harder to
achieve as they work against each other when the sensitive attribute and the eligibility are correlated.
Ffvae model takes ELBO loss for the VAE and approximates the disentanglement term using the
mean error difference between discriminator logits [29]. The model uses cross-entropy loss for the
predictiveness term and the discriminator network.
In CI-MNIST experiments, we kept the widths of encoder, decoder, discriminator constant at 32,
and the encoded latent representation size is 16 for all models. We experimented with two values of
classifier widths 32, 64 and were unable to observe the trend which is recently emphasized by [61]
that increasing model capacities may lead to being unfair toward minorities while accuracy is getting
better. However, this needs to be further investigated. Tables 4, 5 show the architectural details for
CI-MNIST and Adult experiments.

Table 4: Architectures used for Baseline Mlp, Baseline Cnn, Laftr, Cfair, Ffvae models for CI-MNIST
dataset.

Mlp Encoder Mlp Classifier/Discriminator Cnn Encoder
Input ∈ R3072 Input ∈ R16 Input 32× 32× 3 image
FC. 32 LReLU FC. 32 LReLU 4× 4 conv. 32 LReLU. stride 2, padding 1
FC. 32 LReLU FC. 32 LReLU 4× 4 conv. 64 LReLU. stride 2, padding 1
FC. 16 LReLU FC. 2 LReLU 4× 4 conv. 64 LReLU. stride 2, padding 1

4× 4 conv. 256 LReLU. stride 1
1× 1 conv. 16 LReLU.

Ffvae Encoder Ffvae Decoder
Input: 32× 32× 3 image Input ∈ R16

4× 4 conv. 32 LReLU. stride 2, padding 1 FC. 128 LReLU
4× 4 conv. 64 LReLU. stride 2, padding 1 FC. 1024 LReLU, Resize 64× 4× 4
4× 4 conv. 64 LReLU. stride 2, padding 1 4× 4 upconv. 64 LReLU. stride 2, padding 1
Flatten 1024, FC. 128 LRELU 4× 4 upconv. 32 LReLU. stride 2, padding 1
FC. 2× 16 4× 4 upconv. 3 LReLU. stride 2, padding 1

In Adult experiments, we kept the widths, latent representation sizes the same as their respective
original papers.

Table 5: Architectures used for Baseline Mlp, Laftr, Cfair, Ffvae models for Adult dataset.

Mlp Encoder Mlp Classifier Ffvae Encoder Ffvae Classifier/ Discriminator
Input ∈ R112 Input ∈ R16 Input ∈ R112 Input ∈ R60

FC. 32 LReLU FC. 32 LReLU FC. 200 LReLU FC. 200 LReLU
FC. 32 LReLU FC. 32 LReLU FC. 60 LReLU FC. 2 LReLU
FC. 16 LReLU FC. 2 LReLU
Laftr Encoder Laftr Classifier/Discriminator Cfair Encoder Cfair Classifier/Discriminator
Input ∈ R112 Input ∈ R8 Input ∈ R112 Input ∈ R60

FC. 8 LReLU FC. 2 LReLU FC. 60 LReLU FC. 0/50 LReLU
FC. 2 LReLU
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For sensitive information removal experiments in Section 5.1, sensitive features are predicted from
latent representations from model-specific encoders. We use the same architecture as Mlp Classifier
in Table 5 for these experiments.
Hyperparameter details:
Laftr. We use adversarial coefficient γ ∈ [0.1, 0.5, 1, 2, 4] as hyperparameter as proposed in the
original paper and we use two discriminator iterations per encoder-classifier iteration.
Cfair. We use adversarial coefficient γ ∈ [0.1, 1, 10, 100, 1000] as hyperparameter as proposed in
the original paper.
Ffvae. We use adversarial coefficient γ ∈ [10, 50, 100] and the alignment coefficient α ∈
[10, 100, 1000] as hyperparameters as proposed in the original paper. We also use patience epochs 5
for early stopping in VAE training as a hyperparameter.
Other general hyperparameters considered for all the models include classifier, encoder, and discrimi-
nator widths, number of layers, and latent representation size with values mentioned in Tables 4 and 5.
We take 5 epochs as stopping patience, use Adam as an optimizer with a learning rate of 1e-3. Please
check our repository for a complete set of hyper-parameters and training setups.

E Experiments and Results

E.1 Impact of reducing representation of unprivileged group

We report the complete set of results for debiasing models of Mlp, Cfair, Ffvae, Laftr-EqOdd,
Laftr-EqOpp1, Laftr-EqOpp0, and Laftr-DP, in Tables 6 to 21, corresponding to the experimental
setup described in Setting 1 of Section 4 in the main paper. Each pair in clr-ratio column indicate
(be, bo), which is the ratio of images with blue background for (even=eligible, odd=ineligible) data.
Figures 5, 6 compare all models side-by-side. Note that to report results, we initially averaged metrics
over three seeds, then for each metric, the best value over the fairness coefficients of the models is
reported on the test set.

Table 6: Mlp results when decreasing minority representation for Adult dataset, sensitive attribute:age, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.97 0.99 0.92 0.96 0.66
(0.1, 0.1) 0.74 0.77 0.71 0.96 0.99 0.9 0.95 0.51
(0.01, 0.01) 0.74 0.81 0.66 0.91 0.97 0.77 0.87 0.54

Table 7: Cfair results when decreasing minority representation for Adult dataset, sensitive attribute:age, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.82 0.84 0.81 0.99 0.97 0.99 0.98 0.54
(0.1, 0.1) 0.8 0.82 0.79 0.96 0.99 0.98 0.98 0.51
(0.01, 0.01) 0.8 0.87 0.73 0.85 0.92 0.68 0.8 0.54

Table 8: Cfair-EO results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.99 0.99 0.98 0.98 0.52
(0.1, 0.1) 0.73 0.77 0.69 0.98 0.99 0.96 0.97 0.51
(0.01, 0.01) 0.74 0.8 0.67 0.96 0.99 0.88 0.94 0.54
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(a) age-ratio (0.5, 0.5) (b) age-ratio (0.1, 0.1)

(c) age-ratio (0.01, 0.01)

Figure 5: Comparing different models while decreasing minority representation for Adult dataset. In
sub-figures 5(b) and 5(c) the pale colors show the decrease in performance compared to the balanced
case in 5(a).

Table 9: Ffvae results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.74 0.7 0.94 0.99 0.9 0.95 0.93
(0.1, 0.1) 0.7 0.73 0.67 0.92 0.96 0.88 0.92 0.98
(0.01, 0.01) 0.71 0.81 0.61 0.91 0.98 0.76 0.87 0.92

Table 10: Laftr-EqOdd results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.96 0.99 0.92 0.96 0.52
(0.1, 0.1) 0.69 0.71 0.66 0.95 0.98 0.9 0.94 0.52
(0.01, 0.01) 0.67 0.77 0.56 0.86 0.96 0.72 0.84 0.52

Table 11: Laftr-EqOpp1 results when decreasingminority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.7 0.96 0.99 0.91 0.95 0.53
(0.1, 0.1) 0.69 0.72 0.66 0.95 0.98 0.9 0.94 0.52
(0.01, 0.01) 0.67 0.77 0.56 0.86 0.97 0.72 0.84 0.52
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(a) clr-ratio (0.5, 0.5) (b) clr-ratio (0.1, 0.1)

(c) clr-ratio (0.01, 0.01) (d) clr-ratio (0.001, 0.001)

Figure 6: Comparing different models while decreasing minority representation for CI-MNIST
dataset. In sub-figures 6(b), 6(c), and 6(d) the pale colors show the decrease in performance compared
to the balanced case in 6(a).

Table 12: Laftr-EqOpp0 results when decreasingminority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.69 0.96 1.0 0.91 0.96 0.52
(0.1, 0.1) 0.69 0.71 0.66 0.95 0.98 0.91 0.95 0.52
(0.01, 0.01) 0.66 0.76 0.56 0.85 0.97 0.71 0.84 0.52

Table 13: Laftr-DP results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.97 0.99 0.92 0.96 0.60
(0.1, 0.1) 0.69 0.71 0.66 0.96 0.99 0.91 0.95 0.52
(0.01, 0.01) 0.66 0.76 0.55 0.87 0.97 0.72 0.84 0.55

Table 14: Mlp results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.96 0.94 0.98 0.97 0.97 0.97 0.91
(0.1, 0.1) 0.94 0.97 0.9 0.94 0.91 0.94 0.93 0.99
(0.01, 0.01) 0.84 0.96 0.72 0.76 0.96 0.52 0.74 0.9
(0.001, 0.001) 0.77 0.97 0.58 0.59 0.46 0.72 0.59 0.67
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Table 15: Cnn results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 0.99 0.99 0.98 0.98 0.56
(0.1, 0.1) 0.96 0.97 0.95 0.99 0.99 0.98 0.98 0.5
(0.01, 0.01) 0.96 0.97 0.95 0.99 0.99 0.96 0.97 0.5
(0.001, 0.001) 0.93 0.97 0.88 0.93 0.98 0.85 0.92 0.5

Table 16: Cfair results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.94 0.95 0.93 0.98 0.98 0.99 0.98 1.0
(0.1, 0.1) 0.93 0.96 0.89 0.96 0.97 0.92 0.95 1.0
(0.01, 0.01) 0.85 0.96 0.74 0.78 0.87 0.72 0.79 1.0
(0.001, 0.001) 0.78 0.96 0.6 0.66 0.95 0.93 0.94 1.0

Table 17: Ffvae results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.92 0.9 0.98 1.0 0.96 0.98 1.0
(0.1, 0.1) 0.89 0.91 0.87 0.97 0.99 0.92 0.96 1.0
(0.01, 0.01) 0.85 0.92 0.79 0.97 0.98 0.81 0.9 1.0
(0.001, 0.001) 0.72 0.92 0.51 0.82 0.68 0.83 0.76 1.0

Table 18: Laftr-EqOdd results when decreasing minority representation for CI-MNIST dataset, sensitive
attribute:bck, selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.98 0.98 1.0
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.98 0.98 0.98 0.96
(0.01, 0.01) 0.96 0.98 0.93 0.97 0.99 0.93 0.96 0.8
(0.001, 0.001) 0.91 0.98 0.84 0.94 0.99 0.83 0.91 0.8

Table 19: Laftr-EqOpp1 results when decreasing minority representation for CI-MNIST dataset, sensitive
attribute:bck, selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.98 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.98 0.98 0.98 0.95
(0.01, 0.01) 0.95 0.97 0.93 0.99 0.99 0.95 0.97 0.85
(0.001, 0.001) 0.92 0.98 0.85 0.91 0.98 0.83 0.91 0.73

Table 20: Laftr-EqOpp0 results when decreasing minority representation for CI-MNIST dataset, sensitive
attribute:bck, selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.97 0.99 0.98 0.98
(0.01, 0.01) 0.95 0.98 0.92 0.99 0.99 0.95 0.97 0.78
(0.001, 0.001) 0.94 0.98 0.89 0.95 0.96 0.88 0.92 0.67
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Table 21: Laftr-DP resultswhen decreasingminority representation forCI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 1.0
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.97 0.98 0.97 1.0
(0.01, 0.01) 0.96 0.98 0.93 0.98 0.98 0.94 0.96 0.86
(0.001, 0.001) 0.92 0.98 0.86 0.91 0.96 0.87 0.92 0.69

E.2 Impact of correlation of sensitive attribute with eligibility

We report the complete set of results for debiasing models of Mlp, Cfair, Ffvae, Laftr-EqOdd,
Laftr-EqOpp1, Laftr-EqOpp0, and Laftr-DP, in Tables 22 to 37, corresponding to Setting 2 in Section
4 of the main paper. Each pair in clr-ratio column indicate (be, bo), which is the ratio of images
with blue background for (even=qualified, odd=unqualified) data. Figures 7, 8 compare all models
side-by-side.

(a) age-ratio (0.5, 0.5) (b) age-ratio (0.66, 0.33)

(c) age-ratio (0.06, 0.36)

Figure 7: Comparing different models while shifting correlation of sensitive attribute (age) with
the eligibility for Adult dataset. In sub-figures 7(b) and 7(c) the pale colors show the decrease in
performance compared to the balanced case in 7(a).

Table 22: Mlp results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected best
result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.97 0.99 0.92 0.96 0.66
(0.66, 0.33) 0.75 0.74 0.76 0.85 0.88 0.83 0.85 0.65
(0.06, 0.36) 0.71 0.75 0.66 0.78 0.86 0.69 0.77 0.65
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(a) clr-ratio (0.5, 0.5) (b) clr-ratio (0.1, 0.9)

(c) clr-ratio (0.01, 0.99)

Figure 8: Comparing different models while shifting correlation of sensitive attribute (bck) and the
eligibility for CI-MNIST dataset. In sub-figures 8(b) and 8(c) the pale colors show the decrease in
performance compared to the balanced case in 8(a).

Table 23: Cfair results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected best
result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.82 0.84 0.81 0.99 0.97 0.99 0.98 0.54
(0.66, 0.33) 0.8 0.82 0.78 0.94 0.96 0.99 0.97 0.64
(0.06, 0.36) 0.8 0.77 0.84 0.98 0.96 0.97 0.96 0.54

Table 24: Cfair-EO results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.99 0.99 0.98 0.98 0.52
(0.66, 0.33) 0.76 0.76 0.76 0.98 0.99 0.98 0.98 0.54
(0.06, 0.36) 0.75 0.75 0.75 0.98 0.98 0.97 0.97 0.53

Table 25: Ffvae results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected best
result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.74 0.7 0.94 0.99 0.9 0.95 0.93
(0.66, 0.33) 0.59 0.57 0.61 0.99 1.0 0.98 0.99 0.92
(0.06, 0.36) 0.62 0.71 0.53 0.81 0.91 0.72 0.81 0.98
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Table 26: Laftr-EqOdd results on correlation of sensitive attribute (age) and eligibility for Adult dataset,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.96 0.99 0.92 0.96 0.52
(0.66, 0.33) 0.7 0.67 0.73 0.88 0.94 0.83 0.89 0.54
(0.06, 0.36) 0.65 0.7 0.59 0.83 0.93 0.72 0.82 0.47

Table 27: Laftr-EqOpp1 results on correlation of sensitive attribute (age) and eligibility for Adult dataset,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.7 0.96 0.99 0.91 0.95 0.53
(0.66, 0.33) 0.7 0.67 0.73 0.89 0.94 0.84 0.89 0.55
(0.06, 0.36) 0.65 0.71 0.59 0.83 0.93 0.72 0.82 0.47

Table 28: Laftr-EqOpp0 results on correlation of sensitive attribute (age) and eligibility for Adult dataset,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.69 0.96 1.0 0.91 0.96 0.52
(0.66, 0.33) 0.7 0.67 0.72 0.88 0.94 0.83 0.89 0.55
(0.06, 0.36) 0.65 0.71 0.59 0.83 0.93 0.73 0.83 0.48

Table 29: Laftr-DP results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.97 0.99 0.92 0.96 0.6
(0.66, 0.33) 0.7 0.67 0.73 0.88 0.94 0.83 0.89 0.57
(0.06, 0.36) 0.66 0.71 0.6 0.83 0.93 0.73 0.83 0.55

Table 30: Mlp results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.96 0.94 0.98 0.97 0.97 0.97 0.91
(0.1, 0.9) 0.81 0.82 0.81 0.65 0.66 0.63 0.65 0.96
(0.01, 0.99) 0.56 0.5 0.63 0.14 0.02 0.27 0.15 0.98

Table 31: Cnn results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 0.99 0.99 0.98 0.98 0.56
(0.1, 0.9) 0.88 0.9 0.86 0.79 0.83 0.74 0.78 0.85
(0.01, 0.99) 0.56 0.5 0.62 0.12 0.01 0.22 0.12 1.0

Table 32: Cfair results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.94 0.95 0.93 0.98 0.98 0.99 0.98 1.0
(0.1, 0.9) 0.82 0.85 0.79 0.65 0.73 0.6 0.67 1.0
(0.01, 0.99) 0.55 0.54 0.57 0.09 0.09 0.13 0.11 1.0
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Table 33: Ffvae results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.92 0.9 0.98 1.0 0.96 0.98 1.0
(0.1, 0.9) 0.71 0.72 0.71 0.45 0.48 0.43 0.45 1.0
(0.01, 0.99) 0.51 0.49 0.53 0.03 0.0 0.05 0.03 1.0

Table 34: Laftr-EqOdd results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.98 0.98 1.0
(0.1, 0.9) 0.92 0.94 0.89 0.85 0.89 0.81 0.85 0.98
(0.01, 0.99) 0.65 0.66 0.64 0.3 0.33 0.28 0.31 0.97

Table 35: Laftr-EqOpp1 results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.98 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.9) 0.92 0.94 0.9 0.86 0.9 0.81 0.85 0.97
(0.01, 0.99) 0.67 0.69 0.65 0.34 0.39 0.28 0.34 0.97

Table 36: Laftr-EqOpp0 results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.9) 0.91 0.94 0.88 0.85 0.91 0.79 0.85 0.94
(0.01, 0.99) 0.64 0.65 0.63 0.28 0.31 0.25 0.28 0.96

Table 37: Laftr-DP results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 1.0
(0.1, 0.9) 0.92 0.94 0.89 0.85 0.91 0.8 0.85 1.0
(0.01, 0.99) 0.65 0.65 0.65 0.3 0.32 0.28 0.3 0.99

E.3 Impact of correlation of non-sensitive attribute with eligibility

We report the complete set of results for debiasing models of Mlp, Cnn, Cfair, Ffvae, Laftr-EqOdd,
Laftr-EqOpp1, Laftr-EqOpp0, and Laftr-DP, in Tables 38 to 45, corresponding to the experimental
setup described in Setting 3 of Secton 4 in the main paper. Each pair in pos-ratio column indicate
(le, lo), which specifies the ratio of images with box on left side for (even=eligible, odd=ineligible).
Figure 9 compare all models side-by-side.

Table 38: Mlp results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.96 0.94 0.98 0.97 0.97 0.97 0.91
(0.75, 0.25) 0.94 0.95 0.93 0.97 0.98 0.94 0.96 0.98
(0.9, 0.1) 0.86 0.9 0.83 0.96 0.9 0.96 0.93 1.0
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(a) pos-ratio (0.5, 0.5) (b) pos-ratio (0.75, 0.25)

(c) pos-ratio (0.9, 0.1)

Figure 9: Comparing different models while shifting correlation of a non-sensitive attribute and the
eligibility for CI-MNIST dataset. In sub-figures 9(b) and 9(c) the pale colors show the decrease in
performance compared to the balanced case in 9(a).

Table 39: Cnn results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 0.99 0.99 0.98 0.98 0.56
(0.75, 0.25) 0.95 0.96 0.93 0.99 0.98 0.96 0.97 0.57
(0.9, 0.1) 0.9 0.92 0.87 0.98 0.97 0.93 0.95 0.63

Table 40: Cfair results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.94 0.95 0.93 0.98 0.98 0.99 0.98 1.0
(0.75, 0.25) 0.94 0.95 0.92 0.99 0.98 0.98 0.98 1.0
(0.9, 0.1) 0.85 0.88 0.82 0.96 0.94 0.96 0.95 1.0

Table 41: Ffvae results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.92 0.9 0.98 1.0 0.96 0.98 1.0
(0.75, 0.25) 0.92 0.93 0.9 0.98 1.0 0.96 0.98 1.0
(0.9, 0.1) 0.9 0.91 0.89 0.98 0.99 0.95 0.97 1.0
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Table 42: Laftr-EqOdd results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST
dataset, selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.98 0.98 1.0
(0.75, 0.25) 0.95 0.96 0.95 1.0 0.98 0.99 0.98 1.0
(0.9, 0.1) 0.93 0.94 0.91 0.97 0.97 0.97 0.97 1.0

Table 43: Laftr-EqOpp1 results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST
dataset, selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.98 0.96 0.99 0.99 0.99 0.99 0.99
(0.75, 0.25) 0.96 0.97 0.95 0.99 0.98 0.98 0.98 0.99
(0.9, 0.1) 0.92 0.93 0.9 0.97 0.96 0.96 0.96 0.99

Table 44: Laftr-EqOpp0 results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST
dataset, selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 0.99
(0.75, 0.25) 0.96 0.97 0.95 0.99 0.99 0.98 0.98 0.99
(0.9, 0.1) 0.92 0.94 0.9 0.97 0.97 0.95 0.96 0.99

Table 45: Laftr-DP results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 1.0
(0.75, 0.25) 0.96 0.97 0.95 0.99 0.99 0.99 0.99 1.0
(0.9, 0.1) 0.93 0.94 0.91 0.98 0.99 0.97 0.98 1.0

E.4 Impact of position and small features in the input images

Comparing baseline model with debiasing models of Mlp, Cfair, Ffvae, Laftr-EqOdd, Laftr-EqOpp1,
Laftr-EqOpp0, and Laftr-DP, when position and a small feature of the image correlates with eligibility.
Results are depicted in Figure in Tables 46 to 53, corresponding to the experimental setup described
in Setting 4 of Section 4 in the main paper. Each pair in pos-ratio column indicate (le, lo), which
specifies the ratio of images with box on left side for (even=eligible, odd=ineligible). Figure 10
compare all models side-by-side.

Table 46: Mlp results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.95 0.95 1.0 1.0 0.99 0.99 0.51
(0.75, 0.25) 0.94 0.95 0.93 0.93 0.95 0.92 0.94 0.59
(0.9, 0.1) 0.87 0.89 0.85 0.76 0.8 0.72 0.76 0.67

Table 47: Cnn results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 1.0 1.0 0.99 0.99 0.56
(0.75, 0.25) 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.79
(0.9, 0.1) 0.9 0.91 0.88 0.82 0.86 0.79 0.82 0.88
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(a) pos-ratio (0.5, 0.5) (b) pos-ratio (0.75, 0.25)

(c) pos-ratio (0.9, 0.1)

Figure 10: Impact of position and small visual components on different models’ performance for
CI-MNIST dataset. In sub-figures 10(b) and 10(c) the pale colors show the decrease in performance
compared to the balanced case in 10(a).

Table 48: Cfair results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.95 0.95 1.0 1.0 1.0 1.0 0.82
(0.75, 0.25) 0.94 0.94 0.94 0.99 1.0 0.99 0.99 0.88
(0.9, 0.1) 0.87 0.86 0.88 0.99 1.0 0.99 0.99 0.92

Table 49: Ffvae results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.9 0.91 1.0 1.0 1.0 1.0 1.0
(0.75, 0.25) 0.86 0.86 0.86 0.8 0.81 0.79 0.8 1.0
(0.9, 0.1) 0.76 0.75 0.77 0.54 0.53 0.55 0.54 1.0

Table 50: Laftr-EqOdd results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.97 1.0 1.0 1.0 1.0 0.99
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.94 0.95 0.64
(0.9, 0.1) 0.92 0.93 0.91 0.87 0.89 0.85 0.87 0.72
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Table 51: Laftr-EqOpp1 results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 1.0 1.0 1.0 1.0 0.93
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.93 0.95 0.65
(0.9, 0.1) 0.92 0.93 0.91 0.86 0.89 0.84 0.86 0.75

Table 52: Laftr-EqOpp0 results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.97 0.97 1.0 1.0 1.0 1.0 0.74
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.94 0.95 0.61
(0.9, 0.1) 0.92 0.93 0.91 0.86 0.88 0.84 0.86 0.74

Table 53: Laftr-DP results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.97 1.0 1.0 1.0 1.0 1.0
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.94 0.95 0.95
(0.9, 0.1) 0.93 0.93 0.92 0.86 0.87 0.86 0.86 0.97

E.5 Impact of seed

In Figures 11 and 12 we illustrate the standard deviation of all models for all of the experiments of
Adult and CI-MNIST datasets described in Section 4 of the main paper.

Figure 11: Standard deviation of different fairness metrics (x-axis) in different models (y-axis) over three seeds
for Adult dataset. Each plot corresponds to a different experimental setup presented in Section 4.

E.6 Correlation between dataset features and model’s prediction.

In Figure 13 we present Spearman Correlation plots for each dataset and each setting of the experiments
presented in Section 4. Please check Section 5.1 of the main paper for the corresponding section.
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Figure 12: Standard deviation of different fairness metrics (x-axis) in different models (y-axis) over three seeds
for CI-MNIST dataset. Each plot corresponds to a different experimental setup presented in Section 4.

E.7 Impact of small population bias

Table 54 presents results for Cnn and Table 55 for Laftr-EqOpp0, where clr-ratios is kept at (0.001,
0.001) but the total dataset size has changed from x to 10x, 100x and 1000x. Refer to Small
percentage of the unprivileged group part in Section 5.2 of the main text.

Table 54: Cnn results for measuring whether the bias is due to small ratio or small number of samples.

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.001, 0.001) x 0.93 0.97 0.88 0.93 0.98 0.85 0.92 0.5
(0.001, 0.001) 10x 0.96 0.98 0.95 0.99 0.98 0.96 0.97 0.51
(0.001, 0.001) 100x 0.9 0.98 0.82 0.95 0.9 0.79 0.84 0.52
(0.001, 0.001) 1000x 0.9 0.98 0.82 0.95 0.89 0.78 0.83 0.52

Table 55: Laftr-EqOpp0 results for measuring whether the bias is due to small ratio or small number of samples.

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.001, 0.001) x 0.94 0.98 0.89 0.95 0.96 0.88 0.92 0.67
(0.001, 0.001) 10x 0.91 0.98 0.83 0.94 0.81 0.9 0.85 0.5
(0.001, 0.001) 100x 0.94 0.98 0.89 0.99 0.91 0.9 0.91 0.54
(0.001, 0.001) 1000x 0.96 0.99 0.93 0.99 0.95 0.93 0.94 0.54
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(a) Adult, Setting 1, showing correla-
tion for age-ratio attribute with fair-
ness metrics

(b) Adult, Setting 2, showing correla-
tion for age-ratio attribute with fair-
ness metrics

(c) CI-MNIST, Setting 1, showing
correlation for clr-ratio attribute with
fairness metrics

(d) CI-MNIST, Setting 2, showing
correlation for clr-ratio attribute with
fairness metrics

(e) CI-MNIST, Setting 3, showing
correlation for pos-ratio attribute with
fairness metrics

(f) CI-MNIST, Setting 4, showing cor-
relation for pos-ratio attribute with
fairness metrics

Figure 13: Each plot depicts correlation of one dataset attribute with fairness metrics for one setting and one
dataset in Section 4. On the Adult dataset, we depict the correlation of age-ratio with fairness metrics as this
attribute has been the sensitive feature that is changed in the experiments. On CI-MNIST , in Settings 1 and 2,
we depict clr-ratio, and in Settings 3 and 4, we show pos-ratio, hence showing only the feature that is changed
from the balanced case. Note that contrary to other cases, in Setting 3 pos-ratio is not the sensitive attribute, and
background is the sensitive attribute. We plot the absolute Spearman correlation metric, where we use absolute
difference of the dataset attribute from the balanced case (0.5) as input to the Spearman function. This is because
numbers such as 1 and 0 have a similar meaning as they are equally away from the balanced case. Finally, we
report absolute averaged correlation values over all cases. Values range in [0, 1], where one indicates maximum
correlation. Almost all bias-mitigation models suffer from not mitigating the strong correlation between the
overall accuracy and the sensitive attribute.

E.8 Merging bias-mitigation algorithms.

Tables 56 and 57 show results for merging Cfair and Ffvae and Tables 58 and 59 show results for
merging Laftr and Ffvae.

To merge Ffvae with Laftr we added to Ffvae objective in Eq.(8), the LLaftr
DP term in Eq.(3), yielding

LFfvae−Laftr
DP = LFfvae(p, q)− ηLLaftr

DP (10)

Similarly, to merge Ffvae with Cfair we added to Ffvae objective in Eq.(8), the LCfair
DP term in Eq.(7),

yielding
LFfvae−Cfair
DP = LFfvae(p, q)− ηLCfair

DP (11)

where η is a hyper-parameter, balancing the two losses. In both cases, the added loss (LLaftr
DP or

LCfair
DP ) is applied to non-sensitive latent z of Ffvae model. Please check Section 5.1 of the main

paper for the discussion on the obtained results.
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Table 56: Merged Ffvae and Cfair results when decreasing minority representation for Adult dataset, sensitive
attribute:age. Added LCfair

DP to Eq.(8). Compare with Ffvae Table 9 and Cfair Table 7 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.77 0.81 0.73 0.99 0.99 0.97 0.98 0.92
(0.1, 0.1) 0.75 0.78 0.72 0.99 1.0 0.99 0.99 0.98
(0.01, 0.01) 0.72 0.83 0.62 0.94 1.0 0.85 0.93 0.79

Table 57: Merged Ffvae and Cfair results on correlation of sensitive attribute (age) and eligibility for Adult
dataset. Added LCfair

DP to Eq.(8). Compare with Ffvae Table 25 and Cfair Table 23 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.77 0.81 0.73 0.99 0.99 0.97 0.98 0.92
(0.66, 0.33) 0.74 0.73 0.75 1.0 1.0 1.0 1.0 0.92
(0.06, 0.36) 0.7 0.76 0.64 0.98 0.99 0.96 0.97 0.97

Table 58: Merged Ffvae and Laftr-DP results when decreasing minority representation for Adult dataset,
sensitive attribute:age. Added LLaftr

DP to Eq.(8). Compare with Ffvae Table 9 and Laftr-DP Table 13 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.66 0.71 0.61 0.99 1.0 0.98 0.99 0.93
(0.1, 0.1) 0.6 0.67 0.54 1.0 1.0 1.0 1.0 0.98
(0.01, 0.01) 0.6 0.69 0.52 1.0 1.0 1.0 1.0 0.92

Table 59: Merged Ffvae and Laftr-DP results on correlation of sensitive attribute (age) and eligibility for Adult
dataset. Added LLaftr

DP to Eq.(8). Compare with Ffvae Table 25 and Laftr-DP Table 29 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.66 0.71 0.61 0.99 1.0 0.98 0.99 0.93
(0.66, 0.33) 0.49 0.5 0.49 1.0 1.0 1.0 1.0 0.93
(0.06, 0.36) 0.6 0.69 0.51 0.97 0.99 0.95 0.97 0.98
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