
A Paper Checklist566

A.1 Potential negative societal impacts567

While we report results using the best currently established fairness metrics, there is neither a568

universal fairness metric nor a universally accepted definition of fairness. Therefore, although we569

take steps towards proper benchmarking of bias mitigation algorithms, one should still be cautious570

about the chosen metrics before using them in real-world applications. Group parity metrics like571

DP, EqOpp0, EqOpp1, EqOdd can suffer from statistical limitations, as the true underlying protected572

group distributions might differ regardless of other unprotected features used for prediction, thus573

enforcing these metrics can lower accuracies and can harm the very groups designed to protect [47].574

Hence before using any specific metric, the true data distribution should be studied well by designing575

suitable interventions. Real-world assessments and understanding consequences also help in achieving576

equitable metrics. Today with representation learning methods used in automatic decision-making577

applications [43, 44, 45, 46], more interpretable and explainable models are necessary to avoid any578

harmful consequences.579

A.2 Limitations580

The results presented in this work are obtained using binary sensitive attributes. It would be interesting581

to extend the present work to non-binary sensitive attributes in addition to observing the impact of582

bias-mitigation methods on multiple sensitive features. Due to the extensiveness of evaluating all583

these cases, we focused only on single binary attributes. Also, just mitigating the effect of sensitive584

features might not be enough, as there can be proxy features present, which are partially correlated585

with the sensitive features [47], it is aspiring to see fairness research that exploits the correlations586

between input features.587

On a separate note, we have evaluated some of the recent promising bias-mitigation algorithms out588

of many proposed models. This field is expanding rapidly, and we could not evaluate all possible589

models. It would be interesting to evaluate other promising models in the proposed setups of this590

paper and try the proposed settings on more datasets to observe any potential change of performance591

due to difference in the modality of data.592

A.3 Privacy and author consent593

CI-MNIST : This data is an extension of the publicly available MNIST dataset [39], which does not594

contain any personal data. Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset,595

which is a derivative work from original NIST datasets. MNIST dataset is made available under the596

terms of the Creative Commons Attribution-Share Alike 3.0 license (CC BY-SA 3.0).597

Adult: The Adult dataset was originally extracted by Barry Becker from the 1994 Census bureau598

database and the data was first cited in [48]. It was donated by Ronny Kohavi and Barry Becker (Data599

Mining and Visualization, Silicon Graphics) and publicly released to the community on the UCI Data600

Repository [10]. It is licensed under Creative Commons Public Domain (CC0).601

We do not put these datasets in our repository; instead, we provide code and guidelines on processing602

the original dataset to obtain the dataset variants used in our experiments.603

A.4 Reproducibility604

We have released our code at https://github.com/charan223/FairDeepLearning. We have605

provided the instructions to reproduce all experiments reported in the paper. Model details are606

provided in Section C. Dataset, architectural, and hyper-parameter details are presented in Section607

D. The detailed results on all experiments are presented in Section E. For each chart, we provide608

confidence-interval around the mean and run each experiment with three different seeds. We trained609

about 3000 models on 2 16GB NVIDIA Tesla V100 GPUs for 14 days.610
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B Fairness metrics611

Table 1 presents all fairness metrics and their mathematical formulations that we use in our evaluations.612

In Table 2, we present the comprehensive list of fairness metrics taken from the literature along with613

their mathematical definitions and abbreviations. In our code-base that we will release to the fairness614

community, all these metrics are provided and can be used for evaluation. The provided tool by [36]615

is used to compute all of the metrics.616

Table 1: X,Y, S denote the input, label, and the sensitive attribute. Ŷ and p are the model’s prediction and the
output probability of the model. For all metrics, 1 indicates the perfect and 0 the lowest value.

Fairness Criteria Formulation Short form
Demographic Parity 1− |p(Ŷ = 1|S = Protected)− p(Ŷ = 1|S = Unprotected)| DP
Equality of Opportunity (w.r.t y = 1) 1− |p(Ŷ = 1|Y = 1, S = Unprotected)− p(Ŷ = 1|Y = 1, S = Protected)| EqOpp1
Equality of Opportunity (w.r.t y = 0) 1− |p(Ŷ = 1|Y = 0, S = Unprotected)− p(Ŷ = 1|Y = 0, S = Protected)| EqOpp0
Equality of Odds 0.5× [EqOpp0+ EqOpp1] EqOdd
unprotected-accuracy p(Ŷ = y|Y = y, S = Unprotected) up-acc
protected-accuracy p(Ŷ = y|Y = y, S = Protected) p-acc
accuracy 0.5× [up-acc+ p-acc] acc

C Models617

In this section, we describe in detail the models used in our evaluations.618

Baseline Model. We use Mlp and Cnn as our baseline models, which given an input image x, predicts619

the probability p of the eligibility criteria. This probability is then transformed into a classification620

prediction ŷ. These models do not leverage any bias mitigation algorithm and are trained using a621

standard cross-entropy loss. It is meant to show how fair a baseline deep learning model would622

perform under different fairness criteria.623

Learning Adversarially Fair and Transferable Representations (Laftr). Laftr [6] is an adversarial624

based bias mitigation algorithm within the scope of representation learning. In the supervised version625

of Laftr, given an input x, it first learns a latent encoded representation z that is passed to the626

discriminator to be debiased. The learned representation is then passed to a classifier to predict the627

task of interest y. The discriminator is trained by minimizing628

LLaftr
fair = Ex,y,s∈DLS(D(z, y), s) (1)

where LS is the adversarial loss, and y is only passed in debiasing models aimed for equality of629

odds and equality of opportunity fairness metrics. The encoder and classifier are trained jointly by630

minimizing631

LLaftr = Ex,y,s∈DLY(C(z), y)− γLLaftr
fair (2)

where z = E(x) is the encoded feature, passed to both the classifier C and the discriminator D.632

The first term on the right side of the equation measures the classification loss (denoted as LLaftr
cl ),633

and the second term (or the fairness objective) gets the adversarial gradients from the discriminator634

regarding the sensitive attribute s. Following the original paper, four variants of Laftr model are635

considered that represent the desired fairness criteria via LLaftr
fair . This includes:636

(i) Laftr-DP in which the fairness objective is defined as637

LLaftr
DP = 1−

∑
s∈{0,1}

Ex,s∈Ds
|D(z)− s| (3)

(ii) Laftr-EqOpp0 in which the fairness objective is considered as638

LLaftr
EqOpp0 = 1−

∑
s∈{0,1},y=0

Ex,s∈Dy
s
|D(z)− s| (4)

639

(iii) Laftr-EqOpp1 whose fairness objective LLaftr
EqOpp1 is obtained by replacing y = 1 in Eq. (4)640

(iv) Laftr-EqOdd with the equality of odds fairness objective denoted as LLaftr
EqOdd which is the sum of641

LLaftr
EqOpp0 and L

Laftr
EqOpp1 .642
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Table 2: Fairness metrics. X,Y, S denote respectively the input sample, the ground truth label, and the sensitive
attribute. p is the output probability of the model and Ŷ is the model’s prediction. For the metrics presented in
this table, the sensitive attribute S takes binary values in {0, 1}.

Fairness Criteria Definition Abbreviation

Group conditioned s-accuracy p(Ŷ = y|Y = y, S = s) s-accuracy

s-True positive ([37]) |{x|ŷ = 1 for (x, y = 1, S = s) ∈ X}|
where | · | refers to cardinality of a set

s-TP

s-False positive ([37]) |{x|ŷ = 1 for (x, y = 0, S = s) ∈ X}|
where | · | refers to cardinality of a set

s-FP

s-False negative ([37]) |{x|ŷ = 0 for (x, y = 1, S = s) ∈ X}|
where | · | refers to cardinality of a set

s-FN

s-True negative ([37])
|{x|ŷ = 0 for (x, y = 0, S = s) ∈ X}|
where | · | refers to cardinality of a set s-TN

s-True positive rate ([36])

= s-positive predictive value (s-PPV) p(Ŷ = 1|Y = 1, S = s) s-TPR

s-True negative rate p(Ŷ = 0|Y = 0, S = s) s-TNR

s-False positive rate p(Ŷ = 1|Y = 0, S = s)
equivalent to 1− s-TNR s-FPR

s-False negative rate
p(Ŷ = 0|Y = 1, S = s)
equivalent to 1− s-TPR s-FNR

s-Balanced classification rate 0.5× [p(Ŷ = 1|Y = 1, S = s) + p(Ŷ = 0|Y = 0, S = s)]
equivalent to 0.5×(s-TPR + s-TNR ) s-BCR

Equality of odds ([49] & [27])

= Equalized odds ([49]))

= conditional procedure accuracy equality ([50])

= disparate mistreatment ([51])

p(Ŷ = ŷ|Y = y) = p(Ŷ = ŷ|Y = y, S = s)

equivalent to
[
p(Ŷ = 1|Y = 1, S = 1) = p(Ŷ = 1|Y = 1, S = 0) and

p(Ŷ = 1|Y = 0, S = 1) = p(Ŷ = 1|Y = 0, S = 0)
]

equivalent to [ 1-TPR = 0-TPR and 0-TNR = 1-TNR ]

-

s-calibration+ ([36]) p(Y = 1|Ŷ = 1, S = s) -

s-calibration− ([36]) p(Y = 1|Ŷ = 0, S = s) -

Conditional use accuracy equality ([50])

[
p(Y = 1|Ŷ = 1, S = 1) = p(Y = 1|Ŷ = 1, S = 0) and

p(Y = 0|Ŷ = 0, S = 1) = p(Y = 0|Ŷ = 0, S = 0)
]

equivalent to [0-calibration+ = 1-calibration+ and 0-calibration− = 1-calibration−]

-

Calders and Verwer ([52]) 1− [p(Ŷ = 1|S = 1)− p(Ŷ = 1|S 6= 1)] CV
Demographic parity ([49] & [27])

= Group fairness ([17])

= statistical parity ([17])

= equal acceptance rate ([53])

p(Ŷ ) = p(Ŷ |S)
equivalent to 1−CV

equivalent to p(Ŷ = 1|S = 1) = p(Ŷ = 1|S 6= 1)
DP

Disparate Impact ([54] & [40])
p(Ŷ=1|S 6=1)

p(Ŷ=1|S=1)
DI

Equality of opportunity with respect to y ([49])

p(Ŷ = ŷ|Y = y) = p(Ŷ = ŷ|Y = y, S = s)
Equality of odds is stronger than equality of opportunity -

False positive error rate balance ([55])

= predictive equality([56])

p(Ŷ = 1|Y = 0, S = 1) = p(Ŷ = 1|Y = 0, S = 0)

equivalent to p(Ŷ = 0|Y = 0, S = 1) = p(Ŷ = 0|Y = 0, S = 0)
equivalent to 1-TNR = 0-TNR

equivalent to [Equality of opportunity with respect to y = 0]

-

False negative error rate balance ([55])

= equal opportunity ([16] & [49])

p(Ŷ = 0|Y = 1, S = 1) = p(Ŷ = 0|Y = 1, S = 0)

equivalent to p(Ŷ = 1|Y = 1, S = 1) = p(Ŷ = 1|Y = 1, S = 0)

equivalent to 1-TPR = 0-TPR
equivalent to [Equality of opportunity with respect to y = 1]

-

Matthews correlation coefficient TP×TN−FP×FN√
(TP + FP)(TP+FN)(TN+FP)(TN+FN)

MCC

Conditional Learning of Fair Representations (Cfair). Proposed by [7], this model leverages two643

adversarial networks h0 and h1, predicting sensitive attribute s respectively for class labels Y = 0644

and Y = 1. Cfair depends on an objective function called the balanced error rate (BER) [54, 57],645

which guarantees small joint error across demographic groups. The BER represents the sum of false646

positive rate and false negative rate. Therefore, it is equal to minimizing the below two conditional647

errors. BERD(Ŷ ‖Y ) is defined as648

BERD(Ŷ ‖Y ) ∝ p(Ŷ = 1|Y = 0) + p(Ŷ = 0|Y = 1). (5)

and BERD(Ŝ‖S) is defined similarly, where Ŝ is the predicted sensitive random variable. Cfair is649

optimized based on the following min-max formulation.650

LCfair = min
C,E

max
h0,h1

(
BERD(C(E(X))‖Y )− γLCfair

DP

)
(6)

where651

LCfair
DP = BERDy=0 (h0(E(X))‖S) + BERDy=1 (h1(E(X))‖S) (7)
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Figure 4: Sampled images from our dataset.

This approach proposes that using the balanced error rate along with the conditional alignment helps652

in achieving equalized odds across the groups without impacting demographic parity.653

Cfair-EO is a variant of the Cfair model, which considers Cross-Entropy loss instead of BER loss654

for the classifier C to achieve equalized odds. In case of equal target class distribution, Cfair and655

Cfair-EO are the same, refer to Eq. (9) in the Appendix.656

Flexibly Fair Representation Learning by Disentanglement (Ffvae). Inspired by FactorVAE [29],657

Ffvae [8] performs disentanglement by factorizing latent space. It learns a disentangled representation658

of the inputs, which is flexibly fair because it can be easily modified at test time to achieve demographic659

parity across various groups.660

Given x, s = (s1, . . . , sN ), b = (b1, . . . , bN ), and z being respectively the input, the sensitive661

attribute, the sensitive latent, and non-sensitive latent, with N indicating the number of sensitive662

or non-sensitive features (depending on the dataset), Ffvae trains an encoder q(z, b|x), a decoder663

p(x|z, b), as well as an adversarial network. The latent representation is disentangled into sensitive b664

and non sensitive z latent attributes by encouraging bothMI(b, z) andMI (bi, sj) ,∀i 6= j to be low,665

where MI represents mutual information. Ffvae objective is defined as666

LFfvae(p, q) = Eq(z,b|x)[log p(x | z, b) + α log p(s | b)]]− γDKL(q(z, b)‖q(z)
∏
j

q (bj))

−DKL(q(z, b | x)‖p(z, b))
(8)

Eq.(8) has two terms, the first term consists of a reconstruction term (on left) and a predictiveness667

term p(s | b), which aligns sensitive attributes to its respective sensitive latents, the second term is668

the disentanglement term which decorrelates the sensitive latent representation b from z using an669

adversarial network.670

In addition to the models mentioned above, we also did experiments with [9] (based on the code671

released by authors), however, the model was very unstable on our dataset configurations even after672

extensive hyper-parameter search. We hypothesize that this is due to applying adversarial training673

directly to the class labels, which makes the model unstable, as indicated by the authors. Due to674

unstable results, we dropped this model from our evaluation.675

D Experimental Setup676

CI-MNIST dataset: Figure 4 shows samples of the dataset used in our experiments. Unless otherwise677

stated, we used 50000 images for the training set, 10000 images for each validation and test sets. In678

CI-MNIST experiments, the eligible and ineligible groups represent each 50% of the training data679

in both train and test sets. However, while the train set can be imbalanced with respect to sensitive680

attributes, the test set is always balanced. We initially pad the input image of size 28x28 on the top and681

sides to give a 32x32 image for the dataset creation. Blue and red colors with a 10% gaussian noise682

are used as background colors. For the small box, we used a 4x4 sized gray-colored box in the center683

of the top-left half or top-right half of the padded region of the image. We have experimented with684

multiple background colors, box colors and box sizes to understand the impact of colors, positions,685

sizes of the features on our models. Our motivation in choosing the current features is that the models686
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can easily notice these features but find them difficult to remove. CI-MNIST currently supports687

multiple sensitive features (multiple background colors and positions of boxes). For more details688

refer to the released codebase.689

Adult dataset: For training on the Adult dataset, we used the full Adult training set consisting of a690

total of 30,162 samples. We used 20% of the training set as the validation set. In the Adult dataset,691

the eligible and ineligible groups represent each 25%, 75% of the training data; hence the data is692

imbalanced with respect to target label with a skew towards ineligible lower-income class (<=50k).693

We use age as sensitive attribute and threshold it in the training sets (as indicated in Table 3) to create694

various age-ratios. Note that in all age-ratios the size of the training dataset does not change, and the695

eligible and ineligible groups remain at 25% and 75%. However, through thresholding of age as the696

sensitive attribute, we change the number of people in privileged and unprivileged groups. We find697

age-thresholds that closely resemble the dataset ratios used in CI-MNIST , in terms of the percentage698

of unprivileged individuals in eligible and ineligible groups.699

We change the original test set to create a balanced version of it for testing, meaning it is balanced700

in terms of both sensitive attributes and target classes. Hence, the number of testing samples vary701

for each age-ratio. This is because we use age for the sensitive attribute, and when we change its702

threshold, the number of examples belonging to unprivileged and privileged group changes. We drop703

the minimum number of samples from the bigger subgroup of sensitive attribute and target class to704

make the dataset balanced. In Table 3, we mention the age thresholds used for the unprivileged group705

to achieve our desired age-ratios and also indicate the test-set size in each case. The remaining ages706

in either eligible and ineligible groups are considered privileged.707

age-ratio unprivileged age threshold test set size
(0.5, 0.5) 25 <= age < 44 7336
(0.1, 0.1) 32 <= age < 36 1708
(0.01, 0.01) 71 <= age < 75 208
(0.66, 0.33) 38 <= age < 60 5480
(0.06, 0.36) 0 <= age < 30 908

Table 3: Thresholds of age and test set size used for various age-ratios. The test set is balanced in
terms of both sensitive attribute and target class, while the train set is imbalanced and is of fixed size
30,162.

Architecture: In all models, we used three fully connected layers for discriminator and classifier708

networks. In the encoder network, we used three fully connected layers for all models except Ffvae,709

in which we used a convolutional encoder and decoder networks for increased training stability [29].710

Leaky ReLU is used for all activation functions, and Glorot [58] is used to initialize all weights. The711

models are trained using Adam optimizer with a learning rate of 1e-3. Models are trained for 500712

epochs, with early stopping of 5 epochs patience on the validation set’s loss to find the best model.713

Baseline Mlp Setup: The baseline Mlp model consists of an encoder for the input image and a classifier714

for eligibility prediction. Cross entropy loss is used for optimization.715

Baseline Cnn Setup: The baseline Cnn model consists of an Cnn encoder for the input image and an716

Mlp classifier for eligibility prediction. Cross entropy loss is used for optimization.717

Laftr Setup: The model consists of an encoder, a classifier, and a discriminator. We used an adapted718

PyTorch version of the original codebase released by the authors of the original paper [6]. Following719

the original code’s training method, we train the encoder, classifier and train the discriminator in720

alternate steps. We used two discriminator iterations per encoder-classifier iteration and applied721

cross-entropy loss for optimization of both the classifier and discriminator. We used the default722

classification coefficient of 1.0 and used five values of adversarial coefficient γ ∈ [0.1, 0.5, 1, 2, 4], as723

proposed in the original paper.724

Cfair Setup: The model consists of an encoder, a classifier, and two discriminators (one for each725

eligibility class label). We used the code provided by the authors to run the experiments. We726

experimented with five values of adversarial coefficient γ ∈ [0.1, 1, 10, 100, 1000], as proposed in the727

original paper. The binary loss (0-1 loss) in Eq.6 is NP-hard to optimize directly [59, 60], hence the728

model uses a convex relaxation of the binary loss, which is a weighted cross-entropy loss as shown729
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below.730

D(Ŷ 6= y | Y = y) =
D(Ŷ 6= y, Y = y)

D(Y = y)

≤ CEDy (Ŷ ‖Y )

D(Y = y)

(9)

Ffvae Setup: The model consists of a convolutional encoder, a convolutional decoder, a fully connected731

classifier, and a fully connected discriminator. We used the code provided by authors to run the732

experiments. We applied adversarial coefficient γ ∈ [10, 50, 100] and the alignment coefficient733

α ∈ [10, 100, 1000]. We observed that the training of Ffvae becomes unstable for higher values of γ.734

This is due to the fact that the stability between predictiveness and disentanglement gets harder to735

achieve as they work against each other when the sensitive attribute and the eligibility are correlated.736

Ffvae model takes ELBO loss for the VAE and approximates the disentanglement term using the737

mean error difference between discriminator logits [29]. The model uses cross-entropy loss for the738

predictiveness term and the discriminator network.739

In CI-MNIST experiments, we kept the widths of encoder, decoder, discriminator constant at 32,740

and the encoded latent representation size is 16 for all models. We experimented with two values of741

classifier widths 32, 64 and were unable to observe the trend which is recently emphasized by [61]742

that increasing model capacities may lead to being unfair toward minorities while accuracy is getting743

better. However, this needs to be further investigated. Tables 4, 5 show the architectural details for744

CI-MNIST and Adult experiments.745

Table 4: Architectures used for Baseline Mlp, Baseline Cnn, Laftr, Cfair, Ffvae models for CI-MNIST
dataset.

Mlp Encoder Mlp Classifier/Discriminator Cnn Encoder
Input ∈ R3072 Input ∈ R16 Input 32× 32× 3 image
FC. 32 LReLU FC. 32 LReLU 4× 4 conv. 32 LReLU. stride 2, padding 1
FC. 32 LReLU FC. 32 LReLU 4× 4 conv. 64 LReLU. stride 2, padding 1
FC. 16 LReLU FC. 2 LReLU 4× 4 conv. 64 LReLU. stride 2, padding 1

4× 4 conv. 256 LReLU. stride 1
1× 1 conv. 16 LReLU.

Ffvae Encoder Ffvae Decoder
Input: 32× 32× 3 image Input ∈ R16

4× 4 conv. 32 LReLU. stride 2, padding 1 FC. 128 LReLU
4× 4 conv. 64 LReLU. stride 2, padding 1 FC. 1024 LReLU, Resize 64× 4× 4
4× 4 conv. 64 LReLU. stride 2, padding 1 4× 4 upconv. 64 LReLU. stride 2, padding 1
Flatten 1024, FC. 128 LRELU 4× 4 upconv. 32 LReLU. stride 2, padding 1
FC. 2× 16 4× 4 upconv. 3 LReLU. stride 2, padding 1

In Adult experiments, we kept the widths, latent representation sizes the same as their respective746

original papers.747

Table 5: Architectures used for Baseline Mlp, Laftr, Cfair, Ffvae models for Adult dataset.

Mlp Encoder Mlp Classifier Ffvae Encoder Ffvae Classifier/ Discriminator
Input ∈ R112 Input ∈ R16 Input ∈ R112 Input ∈ R60

FC. 32 LReLU FC. 32 LReLU FC. 200 LReLU FC. 200 LReLU
FC. 32 LReLU FC. 32 LReLU FC. 60 LReLU FC. 2 LReLU
FC. 16 LReLU FC. 2 LReLU
Laftr Encoder Laftr Classifier/Discriminator Cfair Encoder Cfair Classifier/Discriminator
Input ∈ R112 Input ∈ R8 Input ∈ R112 Input ∈ R60

FC. 8 LReLU FC. 2 LReLU FC. 60 LReLU FC. 0/50 LReLU
FC. 2 LReLU
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For sensitive information removal experiments in Section 5.1, sensitive features are predicted from748

latent representations from model-specific encoders. We use the same architecture as Mlp Classifier749

in Table 5 for these experiments.750

Hyperparameter details:751

Laftr. We use adversarial coefficient γ ∈ [0.1, 0.5, 1, 2, 4] as hyperparameter as proposed in the752

original paper and we use two discriminator iterations per encoder-classifier iteration.753

Cfair. We use adversarial coefficient γ ∈ [0.1, 1, 10, 100, 1000] as hyperparameter as proposed in754

the original paper.755

Ffvae. We use adversarial coefficient γ ∈ [10, 50, 100] and the alignment coefficient α ∈756

[10, 100, 1000] as hyperparameters as proposed in the original paper. We also use patience epochs 5757

for early stopping in VAE training as a hyperparameter.758

Other general hyperparameters considered for all the models include classifier, encoder, and discrimi-759

nator widths, number of layers, and latent representation size with values mentioned in Tables 4 and 5.760

We take 5 epochs as stopping patience, use Adam as an optimizer with a learning rate of 1e-3. Please761

check our repository for a complete set of hyper-parameters and training setups.762

E Experiments and Results763

E.1 Impact of reducing representation of unprivileged group764

We report the complete set of results for debiasing models of Mlp, Cfair, Ffvae, Laftr-EqOdd,765

Laftr-EqOpp1, Laftr-EqOpp0, and Laftr-DP, in Tables 6 to 21, corresponding to the experimental766

setup described in Setting 1 of Section 4 in the main paper. Each pair in clr-ratio column indicate767

(be, bo), which is the ratio of images with blue background for (even=eligible, odd=ineligible) data.768

Figures 5, 6 compare all models side-by-side. Note that to report results, we initially averaged metrics769

over three seeds, then for each metric, the best value over the fairness coefficients of the models is770

reported on the test set.771

Table 6: Mlp results when decreasing minority representation for Adult dataset, sensitive attribute:age, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.97 0.99 0.92 0.96 0.66
(0.1, 0.1) 0.74 0.77 0.71 0.96 0.99 0.9 0.95 0.51
(0.01, 0.01) 0.74 0.81 0.66 0.91 0.97 0.77 0.87 0.54

Table 7: Cfair results when decreasing minority representation for Adult dataset, sensitive attribute:age, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.82 0.84 0.81 0.99 0.97 0.99 0.98 0.54
(0.1, 0.1) 0.8 0.82 0.79 0.96 0.99 0.98 0.98 0.51
(0.01, 0.01) 0.8 0.87 0.73 0.85 0.92 0.68 0.8 0.54

Table 8: Cfair-EO results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.99 0.99 0.98 0.98 0.52
(0.1, 0.1) 0.73 0.77 0.69 0.98 0.99 0.96 0.97 0.51
(0.01, 0.01) 0.74 0.8 0.67 0.96 0.99 0.88 0.94 0.54
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(a) age-ratio (0.5, 0.5) (b) age-ratio (0.1, 0.1)

(c) age-ratio (0.01, 0.01)

Figure 5: Comparing different models while decreasing minority representation for Adult dataset. In
sub-figures 5(b) and 5(c) the pale colors show the decrease in performance compared to the balanced
case in 5(a).

Table 9: Ffvae results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.74 0.7 0.94 0.99 0.9 0.95 0.93
(0.1, 0.1) 0.7 0.73 0.67 0.92 0.96 0.88 0.92 0.98
(0.01, 0.01) 0.71 0.81 0.61 0.91 0.98 0.76 0.87 0.92

Table 10: Laftr-EqOdd results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.96 0.99 0.92 0.96 0.52
(0.1, 0.1) 0.69 0.71 0.66 0.95 0.98 0.9 0.94 0.52
(0.01, 0.01) 0.67 0.77 0.56 0.86 0.96 0.72 0.84 0.52

Table 11: Laftr-EqOpp1 results when decreasingminority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.7 0.96 0.99 0.91 0.95 0.53
(0.1, 0.1) 0.69 0.72 0.66 0.95 0.98 0.9 0.94 0.52
(0.01, 0.01) 0.67 0.77 0.56 0.86 0.97 0.72 0.84 0.52
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(a) clr-ratio (0.5, 0.5) (b) clr-ratio (0.1, 0.1)

(c) clr-ratio (0.01, 0.01) (d) clr-ratio (0.001, 0.001)

Figure 6: Comparing different models while decreasing minority representation for CI-MNIST
dataset. In sub-figures 6(b), 6(c), and 6(d) the pale colors show the decrease in performance compared
to the balanced case in 6(a).

Table 12: Laftr-EqOpp0 results when decreasingminority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.69 0.96 1.0 0.91 0.96 0.52
(0.1, 0.1) 0.69 0.71 0.66 0.95 0.98 0.91 0.95 0.52
(0.01, 0.01) 0.66 0.76 0.56 0.85 0.97 0.71 0.84 0.52

Table 13: Laftr-DP results when decreasing minority representation for Adult dataset, sensitive attribute:age,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.97 0.99 0.92 0.96 0.60
(0.1, 0.1) 0.69 0.71 0.66 0.96 0.99 0.91 0.95 0.52
(0.01, 0.01) 0.66 0.76 0.55 0.87 0.97 0.72 0.84 0.55

Table 14: Mlp results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.96 0.94 0.98 0.97 0.97 0.97 0.91
(0.1, 0.1) 0.94 0.97 0.9 0.94 0.91 0.94 0.93 0.99
(0.01, 0.01) 0.84 0.96 0.72 0.76 0.96 0.52 0.74 0.9
(0.001, 0.001) 0.77 0.97 0.58 0.59 0.46 0.72 0.59 0.67
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Table 15: Cnn results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 0.99 0.99 0.98 0.98 0.56
(0.1, 0.1) 0.96 0.97 0.95 0.99 0.99 0.98 0.98 0.5
(0.01, 0.01) 0.96 0.97 0.95 0.99 0.99 0.96 0.97 0.5
(0.001, 0.001) 0.93 0.97 0.88 0.93 0.98 0.85 0.92 0.5

Table 16: Cfair results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.94 0.95 0.93 0.98 0.98 0.99 0.98 1.0
(0.1, 0.1) 0.93 0.96 0.89 0.96 0.97 0.92 0.95 1.0
(0.01, 0.01) 0.85 0.96 0.74 0.78 0.87 0.72 0.79 1.0
(0.001, 0.001) 0.78 0.96 0.6 0.66 0.95 0.93 0.94 1.0

Table 17: Ffvae results when decreasing minority representation for CI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.92 0.9 0.98 1.0 0.96 0.98 1.0
(0.1, 0.1) 0.89 0.91 0.87 0.97 0.99 0.92 0.96 1.0
(0.01, 0.01) 0.85 0.92 0.79 0.97 0.98 0.81 0.9 1.0
(0.001, 0.001) 0.72 0.92 0.51 0.82 0.68 0.83 0.76 1.0

Table 18: Laftr-EqOdd results when decreasing minority representation for CI-MNIST dataset, sensitive
attribute:bck, selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.98 0.98 1.0
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.98 0.98 0.98 0.96
(0.01, 0.01) 0.96 0.98 0.93 0.97 0.99 0.93 0.96 0.8
(0.001, 0.001) 0.91 0.98 0.84 0.94 0.99 0.83 0.91 0.8

Table 19: Laftr-EqOpp1 results when decreasing minority representation for CI-MNIST dataset, sensitive
attribute:bck, selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.98 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.98 0.98 0.98 0.95
(0.01, 0.01) 0.95 0.97 0.93 0.99 0.99 0.95 0.97 0.85
(0.001, 0.001) 0.92 0.98 0.85 0.91 0.98 0.83 0.91 0.73

Table 20: Laftr-EqOpp0 results when decreasing minority representation for CI-MNIST dataset, sensitive
attribute:bck, selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.97 0.99 0.98 0.98
(0.01, 0.01) 0.95 0.98 0.92 0.99 0.99 0.95 0.97 0.78
(0.001, 0.001) 0.94 0.98 0.89 0.95 0.96 0.88 0.92 0.67
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Table 21: Laftr-DP resultswhen decreasingminority representation forCI-MNIST dataset, sensitive attribute:bck,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 1.0
(0.1, 0.1) 0.96 0.98 0.95 0.99 0.97 0.98 0.97 1.0
(0.01, 0.01) 0.96 0.98 0.93 0.98 0.98 0.94 0.96 0.86
(0.001, 0.001) 0.92 0.98 0.86 0.91 0.96 0.87 0.92 0.69

E.2 Impact of correlation of sensitive attribute with eligibility772

We report the complete set of results for debiasing models of Mlp, Cfair, Ffvae, Laftr-EqOdd,773

Laftr-EqOpp1, Laftr-EqOpp0, and Laftr-DP, in Tables 22 to 37, corresponding to Setting 2 in Section774

4 of the main paper. Each pair in clr-ratio column indicate (be, bo), which is the ratio of images775

with blue background for (even=qualified, odd=unqualified) data. Figures 7, 8 compare all models776

side-by-side.777

(a) age-ratio (0.5, 0.5) (b) age-ratio (0.66, 0.33)

(c) age-ratio (0.06, 0.36)

Figure 7: Comparing different models while shifting correlation of sensitive attribute (age) with
the eligibility for Adult dataset. In sub-figures 7(b) and 7(c) the pale colors show the decrease in
performance compared to the balanced case in 7(a).

Table 22: Mlp results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected best
result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.97 0.99 0.92 0.96 0.66
(0.66, 0.33) 0.75 0.74 0.76 0.85 0.88 0.83 0.85 0.65
(0.06, 0.36) 0.71 0.75 0.66 0.78 0.86 0.69 0.77 0.65
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(a) clr-ratio (0.5, 0.5) (b) clr-ratio (0.1, 0.9)

(c) clr-ratio (0.01, 0.99)

Figure 8: Comparing different models while shifting correlation of sensitive attribute (bck) and the
eligibility for CI-MNIST dataset. In sub-figures 8(b) and 8(c) the pale colors show the decrease in
performance compared to the balanced case in 8(a).

Table 23: Cfair results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected best
result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.82 0.84 0.81 0.99 0.97 0.99 0.98 0.54
(0.66, 0.33) 0.8 0.82 0.78 0.94 0.96 0.99 0.97 0.64
(0.06, 0.36) 0.8 0.77 0.84 0.98 0.96 0.97 0.96 0.54

Table 24: Cfair-EO results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.78 0.8 0.75 0.99 0.99 0.98 0.98 0.52
(0.66, 0.33) 0.76 0.76 0.76 0.98 0.99 0.98 0.98 0.54
(0.06, 0.36) 0.75 0.75 0.75 0.98 0.98 0.97 0.97 0.53

Table 25: Ffvae results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected best
result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.74 0.7 0.94 0.99 0.9 0.95 0.93
(0.66, 0.33) 0.59 0.57 0.61 0.99 1.0 0.98 0.99 0.92
(0.06, 0.36) 0.62 0.71 0.53 0.81 0.91 0.72 0.81 0.98
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Table 26: Laftr-EqOdd results on correlation of sensitive attribute (age) and eligibility for Adult dataset,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.96 0.99 0.92 0.96 0.52
(0.66, 0.33) 0.7 0.67 0.73 0.88 0.94 0.83 0.89 0.54
(0.06, 0.36) 0.65 0.7 0.59 0.83 0.93 0.72 0.82 0.47

Table 27: Laftr-EqOpp1 results on correlation of sensitive attribute (age) and eligibility for Adult dataset,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.7 0.96 0.99 0.91 0.95 0.53
(0.66, 0.33) 0.7 0.67 0.73 0.89 0.94 0.84 0.89 0.55
(0.06, 0.36) 0.65 0.71 0.59 0.83 0.93 0.72 0.82 0.47

Table 28: Laftr-EqOpp0 results on correlation of sensitive attribute (age) and eligibility for Adult dataset,
selected best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.72 0.75 0.69 0.96 1.0 0.91 0.96 0.52
(0.66, 0.33) 0.7 0.67 0.72 0.88 0.94 0.83 0.89 0.55
(0.06, 0.36) 0.65 0.71 0.59 0.83 0.93 0.73 0.83 0.48

Table 29: Laftr-DP results on correlation of sensitive attribute (age) and eligibility for Adult dataset, selected
best result per attribute

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.71 0.74 0.69 0.97 0.99 0.92 0.96 0.6
(0.66, 0.33) 0.7 0.67 0.73 0.88 0.94 0.83 0.89 0.57
(0.06, 0.36) 0.66 0.71 0.6 0.83 0.93 0.73 0.83 0.55

Table 30: Mlp results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.96 0.94 0.98 0.97 0.97 0.97 0.91
(0.1, 0.9) 0.81 0.82 0.81 0.65 0.66 0.63 0.65 0.96
(0.01, 0.99) 0.56 0.5 0.63 0.14 0.02 0.27 0.15 0.98

Table 31: Cnn results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 0.99 0.99 0.98 0.98 0.56
(0.1, 0.9) 0.88 0.9 0.86 0.79 0.83 0.74 0.78 0.85
(0.01, 0.99) 0.56 0.5 0.62 0.12 0.01 0.22 0.12 1.0

Table 32: Cfair results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.94 0.95 0.93 0.98 0.98 0.99 0.98 1.0
(0.1, 0.9) 0.82 0.85 0.79 0.65 0.73 0.6 0.67 1.0
(0.01, 0.99) 0.55 0.54 0.57 0.09 0.09 0.13 0.11 1.0
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Table 33: Ffvae results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset, selected
best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.92 0.9 0.98 1.0 0.96 0.98 1.0
(0.1, 0.9) 0.71 0.72 0.71 0.45 0.48 0.43 0.45 1.0
(0.01, 0.99) 0.51 0.49 0.53 0.03 0.0 0.05 0.03 1.0

Table 34: Laftr-EqOdd results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.98 0.98 1.0
(0.1, 0.9) 0.92 0.94 0.89 0.85 0.89 0.81 0.85 0.98
(0.01, 0.99) 0.65 0.66 0.64 0.3 0.33 0.28 0.31 0.97

Table 35: Laftr-EqOpp1 results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.98 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.9) 0.92 0.94 0.9 0.86 0.9 0.81 0.85 0.97
(0.01, 0.99) 0.67 0.69 0.65 0.34 0.39 0.28 0.34 0.97

Table 36: Laftr-EqOpp0 results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 0.99
(0.1, 0.9) 0.91 0.94 0.88 0.85 0.91 0.79 0.85 0.94
(0.01, 0.99) 0.64 0.65 0.63 0.28 0.31 0.25 0.28 0.96

Table 37: Laftr-DP results on correlation of sensitive attribute (bck) and eligibility for CI-MNIST dataset,
selected best result per attribute

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 1.0
(0.1, 0.9) 0.92 0.94 0.89 0.85 0.91 0.8 0.85 1.0
(0.01, 0.99) 0.65 0.65 0.65 0.3 0.32 0.28 0.3 0.99

E.3 Impact of correlation of non-sensitive attribute with eligibility778

We report the complete set of results for debiasing models of Mlp, Cnn, Cfair, Ffvae, Laftr-EqOdd,779

Laftr-EqOpp1, Laftr-EqOpp0, and Laftr-DP, in Tables 38 to 45, corresponding to the experimental780

setup described in Setting 3 of Secton 4 in the main paper. Each pair in pos-ratio column indicate781

(le, lo), which specifies the ratio of images with box on left side for (even=eligible, odd=ineligible).782

Figure 9 compare all models side-by-side.783

Table 38: Mlp results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.96 0.94 0.98 0.97 0.97 0.97 0.91
(0.75, 0.25) 0.94 0.95 0.93 0.97 0.98 0.94 0.96 0.98
(0.9, 0.1) 0.86 0.9 0.83 0.96 0.9 0.96 0.93 1.0
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(a) pos-ratio (0.5, 0.5) (b) pos-ratio (0.75, 0.25)

(c) pos-ratio (0.9, 0.1)

Figure 9: Comparing different models while shifting correlation of a non-sensitive attribute and the
eligibility for CI-MNIST dataset. In sub-figures 9(b) and 9(c) the pale colors show the decrease in
performance compared to the balanced case in 9(a).

Table 39: Cnn results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 0.99 0.99 0.98 0.98 0.56
(0.75, 0.25) 0.95 0.96 0.93 0.99 0.98 0.96 0.97 0.57
(0.9, 0.1) 0.9 0.92 0.87 0.98 0.97 0.93 0.95 0.63

Table 40: Cfair results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.94 0.95 0.93 0.98 0.98 0.99 0.98 1.0
(0.75, 0.25) 0.94 0.95 0.92 0.99 0.98 0.98 0.98 1.0
(0.9, 0.1) 0.85 0.88 0.82 0.96 0.94 0.96 0.95 1.0

Table 41: Ffvae results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.92 0.9 0.98 1.0 0.96 0.98 1.0
(0.75, 0.25) 0.92 0.93 0.9 0.98 1.0 0.96 0.98 1.0
(0.9, 0.1) 0.9 0.91 0.89 0.98 0.99 0.95 0.97 1.0
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Table 42: Laftr-EqOdd results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST
dataset, selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.98 0.98 1.0
(0.75, 0.25) 0.95 0.96 0.95 1.0 0.98 0.99 0.98 1.0
(0.9, 0.1) 0.93 0.94 0.91 0.97 0.97 0.97 0.97 1.0

Table 43: Laftr-EqOpp1 results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST
dataset, selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.98 0.96 0.99 0.99 0.99 0.99 0.99
(0.75, 0.25) 0.96 0.97 0.95 0.99 0.98 0.98 0.98 0.99
(0.9, 0.1) 0.92 0.93 0.9 0.97 0.96 0.96 0.96 0.99

Table 44: Laftr-EqOpp0 results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST
dataset, selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 0.99
(0.75, 0.25) 0.96 0.97 0.95 0.99 0.99 0.98 0.98 0.99
(0.9, 0.1) 0.92 0.94 0.9 0.97 0.97 0.95 0.96 0.99

Table 45: Laftr-DP results on correlation of non-sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.97 0.96 0.99 0.99 0.99 0.99 1.0
(0.75, 0.25) 0.96 0.97 0.95 0.99 0.99 0.99 0.99 1.0
(0.9, 0.1) 0.93 0.94 0.91 0.98 0.99 0.97 0.98 1.0

E.4 Impact of position and small features in the input images784

Comparing baseline model with debiasing models of Mlp, Cfair, Ffvae, Laftr-EqOdd, Laftr-EqOpp1,785

Laftr-EqOpp0, and Laftr-DP, when position and a small feature of the image correlates with eligibility.786

Results are depicted in Figure in Tables 46 to 53, corresponding to the experimental setup described787

in Setting 4 of Section 4 in the main paper. Each pair in pos-ratio column indicate (le, lo), which788

specifies the ratio of images with box on left side for (even=eligible, odd=ineligible). Figure 10789

compare all models side-by-side.790

Table 46: Mlp results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.95 0.95 1.0 1.0 0.99 0.99 0.51
(0.75, 0.25) 0.94 0.95 0.93 0.93 0.95 0.92 0.94 0.59
(0.9, 0.1) 0.87 0.89 0.85 0.76 0.8 0.72 0.76 0.67

Table 47: Cnn results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 1.0 1.0 0.99 0.99 0.56
(0.75, 0.25) 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.79
(0.9, 0.1) 0.9 0.91 0.88 0.82 0.86 0.79 0.82 0.88
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(a) pos-ratio (0.5, 0.5) (b) pos-ratio (0.75, 0.25)

(c) pos-ratio (0.9, 0.1)

Figure 10: Impact of position and small visual components on different models’ performance for
CI-MNIST dataset. In sub-figures 10(b) and 10(c) the pale colors show the decrease in performance
compared to the balanced case in 10(a).

Table 48: Cfair results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.95 0.95 0.95 1.0 1.0 1.0 1.0 0.82
(0.75, 0.25) 0.94 0.94 0.94 0.99 1.0 0.99 0.99 0.88
(0.9, 0.1) 0.87 0.86 0.88 0.99 1.0 0.99 0.99 0.92

Table 49: Ffvae results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset, selected
best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.91 0.9 0.91 1.0 1.0 1.0 1.0 1.0
(0.75, 0.25) 0.86 0.86 0.86 0.8 0.81 0.79 0.8 1.0
(0.9, 0.1) 0.76 0.75 0.77 0.54 0.53 0.55 0.54 1.0

Table 50: Laftr-EqOdd results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.97 1.0 1.0 1.0 1.0 0.99
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.94 0.95 0.64
(0.9, 0.1) 0.92 0.93 0.91 0.87 0.89 0.85 0.87 0.72
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Table 51: Laftr-EqOpp1 results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.96 1.0 1.0 1.0 1.0 0.93
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.93 0.95 0.65
(0.9, 0.1) 0.92 0.93 0.91 0.86 0.89 0.84 0.86 0.75

Table 52: Laftr-EqOpp0 results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.97 0.97 0.97 1.0 1.0 1.0 1.0 0.74
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.94 0.95 0.61
(0.9, 0.1) 0.92 0.93 0.91 0.86 0.88 0.84 0.86 0.74

Table 53: Laftr-DP results on correlation of sensitive attribute (pos) and eligibility for CI-MNIST dataset,
selected best result per attribute

pos-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.96 0.96 0.97 1.0 1.0 1.0 1.0 1.0
(0.75, 0.25) 0.95 0.96 0.95 0.95 0.96 0.94 0.95 0.95
(0.9, 0.1) 0.93 0.93 0.92 0.86 0.87 0.86 0.86 0.97

E.5 Impact of seed791

In Figures 11 and 12 we illustrate the standard deviation of all models for all of the experiments of792

Adult and CI-MNIST datasets described in Section 4 of the main paper.793

Figure 11: Standard deviation of different fairness metrics (x-axis) in different models (y-axis) over three seeds
for Adult dataset. Each plot corresponds to a different experimental setup presented in Section 4.

E.6 Correlation between dataset features and model’s prediction.794

In Figure 13 we present Spearman Correlation plots for each dataset and each setting of the experiments795

presented in Section 4. Please check Section 5.1 of the main paper for the corresponding section.796
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Figure 12: Standard deviation of different fairness metrics (x-axis) in different models (y-axis) over three seeds
for CI-MNIST dataset. Each plot corresponds to a different experimental setup presented in Section 4.

E.7 Impact of small population bias797

Table 54 presents results for Cnn and Table 55 for Laftr-EqOpp0, where clr-ratios is kept at (0.001,798

0.001) but the total dataset size has changed from x to 10x, 100x and 1000x. Refer to Small799

percentage of the unprivileged group part in Section 5.2 of the main text.800

Table 54: Cnn results for measuring whether the bias is due to small ratio or small number of samples.

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.001, 0.001) x 0.93 0.97 0.88 0.93 0.98 0.85 0.92 0.5
(0.001, 0.001) 10x 0.96 0.98 0.95 0.99 0.98 0.96 0.97 0.51
(0.001, 0.001) 100x 0.9 0.98 0.82 0.95 0.9 0.79 0.84 0.52
(0.001, 0.001) 1000x 0.9 0.98 0.82 0.95 0.89 0.78 0.83 0.52

Table 55: Laftr-EqOpp0 results for measuring whether the bias is due to small ratio or small number of samples.

clr-ratio acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.001, 0.001) x 0.94 0.98 0.89 0.95 0.96 0.88 0.92 0.67
(0.001, 0.001) 10x 0.91 0.98 0.83 0.94 0.81 0.9 0.85 0.5
(0.001, 0.001) 100x 0.94 0.98 0.89 0.99 0.91 0.9 0.91 0.54
(0.001, 0.001) 1000x 0.96 0.99 0.93 0.99 0.95 0.93 0.94 0.54
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(a) Adult, Setting 1, showing correla-
tion for age-ratio attribute with fair-
ness metrics

(b) Adult, Setting 2, showing correla-
tion for age-ratio attribute with fair-
ness metrics

(c) CI-MNIST, Setting 1, showing
correlation for clr-ratio attribute with
fairness metrics

(d) CI-MNIST, Setting 2, showing
correlation for clr-ratio attribute with
fairness metrics

(e) CI-MNIST, Setting 3, showing
correlation for pos-ratio attribute with
fairness metrics

(f) CI-MNIST, Setting 4, showing cor-
relation for pos-ratio attribute with
fairness metrics

Figure 13: Each plot depicts correlation of one dataset attribute with fairness metrics for one setting and one
dataset in Section 4. On the Adult dataset, we depict the correlation of age-ratio with fairness metrics as this
attribute has been the sensitive feature that is changed in the experiments. On CI-MNIST , in Settings 1 and 2,
we depict clr-ratio, and in Settings 3 and 4, we show pos-ratio, hence showing only the feature that is changed
from the balanced case. Note that contrary to other cases, in Setting 3 pos-ratio is not the sensitive attribute, and
background is the sensitive attribute. We plot the absolute Spearman correlation metric, where we use absolute
difference of the dataset attribute from the balanced case (0.5) as input to the Spearman function. This is because
numbers such as 1 and 0 have a similar meaning as they are equally away from the balanced case. Finally, we
report absolute averaged correlation values over all cases. Values range in [0, 1], where one indicates maximum
correlation. Almost all bias-mitigation models suffer from not mitigating the strong correlation between the
overall accuracy and the sensitive attribute.

E.8 Merging bias-mitigation algorithms.801

Tables 56 and 57 show results for merging Cfair and Ffvae and Tables 58 and 59 show results for802

merging Laftr and Ffvae.803

To merge Ffvae with Laftr we added to Ffvae objective in Eq.(8), the LLaftr
DP term in Eq.(3), yielding804

LFfvae−Laftr
DP = LFfvae(p, q)− ηLLaftr

DP (10)

Similarly, to merge Ffvae with Cfair we added to Ffvae objective in Eq.(8), the LCfair
DP term in Eq.(7),805

yielding806

LFfvae−Cfair
DP = LFfvae(p, q)− ηLCfair

DP (11)

where η is a hyper-parameter, balancing the two losses. In both cases, the added loss (LLaftr
DP or807

LCfair
DP ) is applied to non-sensitive latent z of Ffvae model. Please check Section 5.1 of the main808

paper for the discussion on the obtained results.809
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Table 56: Merged Ffvae and Cfair results when decreasing minority representation for Adult dataset, sensitive
attribute:age. Added LCfair

DP to Eq.(8). Compare with Ffvae Table 9 and Cfair Table 7 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.77 0.81 0.73 0.99 0.99 0.97 0.98 0.92
(0.1, 0.1) 0.75 0.78 0.72 0.99 1.0 0.99 0.99 0.98
(0.01, 0.01) 0.72 0.83 0.62 0.94 1.0 0.85 0.93 0.79

Table 57: Merged Ffvae and Cfair results on correlation of sensitive attribute (age) and eligibility for Adult
dataset. Added LCfair

DP to Eq.(8). Compare with Ffvae Table 25 and Cfair Table 23 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.77 0.81 0.73 0.99 0.99 0.97 0.98 0.92
(0.66, 0.33) 0.74 0.73 0.75 1.0 1.0 1.0 1.0 0.92
(0.06, 0.36) 0.7 0.76 0.64 0.98 0.99 0.96 0.97 0.97

Table 58: Merged Ffvae and Laftr-DP results when decreasing minority representation for Adult dataset,
sensitive attribute:age. Added LLaftr

DP to Eq.(8). Compare with Ffvae Table 9 and Laftr-DP Table 13 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.66 0.71 0.61 0.99 1.0 0.98 0.99 0.93
(0.1, 0.1) 0.6 0.67 0.54 1.0 1.0 1.0 1.0 0.98
(0.01, 0.01) 0.6 0.69 0.52 1.0 1.0 1.0 1.0 0.92

Table 59: Merged Ffvae and Laftr-DP results on correlation of sensitive attribute (age) and eligibility for Adult
dataset. Added LLaftr

DP to Eq.(8). Compare with Ffvae Table 25 and Laftr-DP Table 29 results.

(u-elg, u-inelg) acc p-acc up-acc DP EqOpp0 EqOpp1 EqOdd sens-acc
(0.5, 0.5) 0.66 0.71 0.61 0.99 1.0 0.98 0.99 0.93
(0.66, 0.33) 0.49 0.5 0.49 1.0 1.0 1.0 1.0 0.93
(0.06, 0.36) 0.6 0.69 0.51 0.97 0.99 0.95 0.97 0.98
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