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Abstract

Large-scale pre-trained language models have achieved tremendous success across
a wide range of natural language understanding (NLU) tasks, even surpassing
human performance. However, recent studies reveal that the robustness of these
models can be challenged by carefully crafted textual adversarial examples. While
several individual datasets have been proposed to evaluate model robustness, a
principled and comprehensive benchmark is still missing. In this paper, we present
Adversarial GLUE (AdvGLUE), a new multi-task benchmark to quantitatively
and thoroughly explore and evaluate the vulnerabilities of modern large-scale
language models under various types of adversarial attacks. In particular, we
systematically apply 14 textual adversarial attack methods to GLUE tasks to
construct AdvGLUE, which is further validated by humans for reliable annotations.
Our findings are summarized as follows. (i) Most existing adversarial attack
algorithms are prone to generating invalid or ambiguous adversarial examples, with
around 90% of them either changing the original semantic meanings or misleading
human annotators as well. Therefore, we perform careful filtering process to
curate a high-quality benchmark. (ii) All the language models and robust training
methods we tested perform poorly on AdvGLUE, with scores lagging far behind
the benign accuracy. We hope our work will motivate the development of new
adversarial attacks that are more stealthy and semantic-preserving, as well as new
robust language models against sophisticated adversarial attacks. AdvGLUE is
available at https://adversarialglue.github.io.

1 Introduction

Pre-trained language models [8, 31, 26, 55, 18, 60, 23, 6] have achieved state-of-the-art performance
over a wide range of Natural Language Understanding (NLU) tasks [49, 48, 21, 45, 38]. However,
recent studies [24, 57, 50, 29, 13] reveal that even these large-scale language models are vulnerable to
carefully crafted adversarial examples, which can fool the models to output arbitrarily wrong answers
by perturbing input sentences in a human-imperceptible way. Real-world systems built upon these
vulnerable models can be misled in ways that would have profound security concerns [27, 28].

To address this challenge, various methods [23, 61, 51, 30] have been proposed to improve the
adversarial robustness of language models. However, the adversary setup considered in these
methods lacks a unified standard. For example, Jiang et al. [23], Liu et al. [30] mainly evaluate their
robustness against human-crafted adversarial datasets [38, 21], while Wang et al. [51] evaluate the
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model robustness against automatic adversarial attack algorithms [24]. The absence of a principled
adversarial benchmark makes it difficult to compare the robustness across different models and
identify the adversarial attacks that most models are vulnerable to. This motivates us to build a
unified and principled robustness evaluation benchmark for natural language models and hope to help
answer the following questions: what types of language models are more robust when evaluated on
the unified adversarial benchmark? Which adversarial attack algorithms against language models
are more effective, transferable, or stealthy to human? How likely can human be fooled by different
adversarial attacks?

We list out the fundamental principles to create a high-quality robustness evaluation benchmark
as follows. First, as also pointed out by [2], a reliable benchmark should be accurately and unam-
biguously annotated by humans. This is especially crucial for the robustness evaluation, as some
adversarial examples generated by automatic attack algorithms can fool humans as well [34]. Given
our analysis in §3.4, among the generated adversarial data, there are only around 10% adversarial
examples that receive at least 4-vote consensus among 5 annotators and align with the original
label. Thus, additional rounds of human filtering are critical to validate the quality of the generated
adversarial attack data. Second, a comprehensive robustness evaluation benchmark should cover
enough language phenomena and generate a systematic diagnostic report to understand and analyze
the vulnerabilities of language models. Finally, a robustness evaluation benchmark needs to be
challenging and unveil the biases shared across different models.

In this paper, we introduce Adversarial GLUE (AdvGLUE), a multi-task benchmark for robust-
ness evaluation of language models. Compared to existing adversarial datasets, there are several
contributions that render AdvGLUE a unique and valuable asset to the community.

• Comprehensive Coverage. We consider textual adversarial attacks from different perspectives and
hierarchies, including word-level transformations, sentence-level manipulations, and human-written
adversarial examples, so that AdvGLUE is able to cover as many adversarial linguistic phenomena
as possible.

• Systematic Annotations. To the best of our knowledge, this is the first work that performs
systematic and comprehensive evaluation and annotation over 14 different textual adversarial
examples. Concretely, AdvGLUE adopts crowd-sourcing to identify high-quality adversarial data
for reliable evaluation.

• General Compatibility. To obtain comprehensive understanding of the robustness of language
models across different NLU tasks, AdvGLUE covers the widely-used GLUE tasks and creates an
adversarial version of the GLUE benchmark to evaluate the robustness of language models.

• High Transferability and Effectiveness. AdvGLUE has high adversarial transferability and can
effectively attack a wide range of state-of-the-art models. We observe a significant performance drop
for models evaluated on AdvGLUE compared with their standard accuracy on GLUE leaderboard.
For instance, the average GLUE score of ELECTRA(Large) [6] drops from 93.16 to 41.69.

Our contributions are summarized as follows. (i) We propose AdvGLUE, a principled and compre-
hensive benchmark that focuses on robustness evaluation of language models. (ii) During the data
construction, we provide a thorough analysis and a fair comparison of existing strong adversarial at-
tack algorithms. (iii) We present thorough robustness evaluation for existing state-of-the-art language
models and defense methods. We hope that AdvGLUE will inspire active research and discussion in
the community. More details are available at https://adversarialglue.github.io.

2 Related Work

Existing robustness evaluation work can be roughly divided into two categories: Evaluation Toolkits
and Benchmark Datasets. (i) Evaluation toolkits, including OpenAttack [58], TextAttack [35],
TextFlint [17] and Robustness Gym [15], integrate various ad hoc input transformations for different
tasks and provide programmable APIs to dynamically test model performance. However, it is
challenging to guarantee the quality of these input transformations. For example, as reported in [57],
the validity of adversarial transformation can be as low as 65.5%, which means that more than one
third of the adversarial sentences have wrong labels. Such a high percentage of annotation errors
could lead to an underestimate of model robustness, making it less qualified to serve as an accurate
and reliable benchmark [2]. (ii) Benchmark datasets for robustness evaluation create challenging
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Table 1: Statistics of AdvGLUE benchmark. We apply all word-level perturbations (C1=Embedding-
similarity, C2=Typos, C3=Context-aware, C4=Knowledge-guided, and C5=Compositions) to the five GLUE
tasks. For sentence-level perturbations, we apply Syntactic-based perturbations (C6) to the five GLUE tasks.
Distraction-based perturbations (C7) are applied to four GLUE tasks without QQP, as they may affect the
semantic similarity. For human-crafted examples, we apply CheckList (C8) to SST-2, QQP, and QNLI; StressTest
(C9) and ANLI (C10) to MNLI; and AdvSQuAD (C11) to QNLI tasks.

Corpus Task |Train| |Test| Word-Level Sent.-Level Human-Crafted
(GLUE) (AdvGLUE) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

SST-2 sentiment 67,349 1,420 204 197 91 175 64 211 320 158 0 0 0
QQP paraphrase 363,846 422 42 151 17 35 75 37 0 65 0 0 0
QNLI NLI/QA 104,743 968 73 139 71 98 72 159 219 80 0 0 57
RTE NLI 2,490 304 43 44 31 27 23 48 88 0 0 0 0
MNLI NLI 392,702 1,864 69 402 114 161 128 217 386 0 194 193 0

Sum of AdvGLUE test set 4,978 431 933 324 496 362 672 1013 303 194 193 57

testing cases by using human-crafted templates or rules [45, 43, 36], or adopting a human-and-model-
in-the-loop manner to write adversarial examples [38, 25, 1]. While the quality and validity of these
adversarial datasets can be well controlled, the scalability and comprehensiveness are limited by
the human annotators. For example, template-based methods require linguistic experts to carefully
construct reasonable rules for specific tasks, and such templates can be barely transferable to other
tasks. Moreover, human annotators tend to complete the writing tasks through minimal efforts and
shortcuts [4, 47], which can limit the coverage of various linguistic phenomena.

3 Dataset Construction

In this section, we provide an overview of our evaluation tasks, as well as the pipeline of how
we construct the benchmark data. During this data construction process, we also compare the
effectiveness of different adversarial attack methods, and present several interesting findings.

3.1 Overview

Tasks. We consider the following five most representative and challenging tasks used in GLUE [49]:
Sentiment Analysis (SST-2), Duplicate Question Detection (QQP), and Natural Language Inference
(NLI, including MNLI, RTE, QNLI). The detailed explanation for each task can be found in Appendix
A.3. Some tasks in GLUE are not included in AdvGLUE, since there are either no well-defined
automatic adversarial attacks (e.g., CoLA), or insufficient data (e.g., WNLI) for the attacks.

Dataset Statistics and Evaluation Metrics. AdvGLUE follows the same training data and evalua-
tion metrics as GLUE. In this way, models trained on the GLUE training data can be easily evaluated
under IID sampled test sets (GLUE benchmark) or carefully crafted adversarial test sets (AdvGLUE
benchmark). Practitioners can understand the model generalization via the GLUE diagnostic test suite
and examine the model robustness against different levels of adversarial attacks from the AdvGLUE
diagnostic report with only one-time training. Given the same evaluation metrics, model developers
can clearly understand the performance gap between models tested in the ideally benign environments
and approximately worst-case adversarial scenarios. We present the detailed dataset statistics under
various attacks in Table 1. Detailed label distribution and evaluation metrics are in Appendix Table 8.

3.2 Adversarial Perturbations

In this section, we detail how we optimize different levels of adversarial perturbations to the benign
source samples and collect the raw adversarial data with noisy labels, which will then be carefully
filtered by human annotators described in the next section. Specifically, we consider the dev sets of
GLUE benchmark as our source samples, upon which we perform different adversarial attacks. For
relatively large-scale tasks (QQP, QNLI, MNLI-m/mm), we sample 1,000 cases from the dev sets for
efficiency purpose. For the remaining tasks, we consider the whole dev sets as source samples.
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Figure 1: Overview of the AdvGLUE dataset construction pipeline.

3.2.1 Word-level Perturbation

Existing word-level adversarial attacks perturb the words through different strategies, such as perturb-
ing words with their synonyms [24] or carefully crafted typo words [27] (e.g., “foolish” to “fo01ish”),
such that the perturbation does not change the semantic meaning of the sentences but dramatically
change the models’ output. To examine the model robustness against different perturbation strategies,
we select one representative adversarial attack method for each strategy as follows.

Typo-based Perturbation. We select TextBugger [27] as the representative algorithm for generating
typo-based adversarial examples. When performing the attack, TextBugger first identifies the
important words and then replaces them with typos.

Embedding-similarity-based Perturbation. We choose TextFooler [24] as the representative adver-
sarial attack that considers embedding similarity as a constraint to generate semantically consistent
adversarial examples. Essentially, TextFooler first performs word importance ranking, and then
substitutes those important ones to their synonyms extracted according to the cosine similarity of
word embeddings.

Context-aware Perturbation. We use BERT-ATTACK [29] to generate context-aware perturbations.
The fundamental difference between BERT-ATTACK and TextFooler lies on the word replacement
procedure. Specifically, BERT-ATTACK uses the pre-trained BERT to perform masked language
prediction to generate contextualized potential word replacements for those crucial words.

Knowledge-guided Perturbation. We consider SememePSO [57] as an example to generate adver-
sarial examples guided by the HowNet [41] knowledge base. SememePSO first finds out substitutions
for each word in HowNet based on sememes, and then searches for the optimal combination based
on particle swarm optimization.

Compositions of different Perturbations. We also implement a whitebox-based adversarial attack
algorithm called CompAttack that integrates the aforementioned perturbations in one algorithm to
evaluate model robustness to various adversarial transformations. Moreover, we efficiently search for
perturbations via optimization so that CompAttack can achieve the attack goal while perturbing the
minimal number of words. The implementation details can be found in Appendix A.4.

We note that the above adversarial attacks require a surrogate model to search for the optimal
perturbations. In our experiments, we follow the setup of ANLI [38] and generate adversarial
examples against three different types of models (BERT, RoBERTa, and RoBERTa ensemble) trained
on the GLUE benchmark. We then perform one round of filtering to retain those examples with high
adversarial transferability between these surrogate models. We discuss more implementation details
and hyper-parameters of each attack method in Appendix A.4.

3.2.2 Sentence-level Perturbation

Different from word-level attacks that perturb specific words, sentence-level attacks mainly focus
on the syntactic and logical structures of sentences. Most of them achieve the attack goal by either
paraphrasing the sentence, manipulating the syntactic structures, or inserting some unrelated sentences
to distract the model attention. AdvGLUE considers the following representative perturbations.
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Table 2: Examples of AdvGLUE benchmark. We show 3 examples from QNLI task. These examples are
generated with three levels of perturbations and they all can successfully change the predictions of all surrogate
models (BERT, RoBERTa and RoBERTa ensemble).

Linguistic
Phenomenon

Samples (Strikethrough = Original Text, red = Adversarial Perturbation) Label →
Prediction

Typo
(Word-level)

Question: What was the population of the Dutch Republic before this
emigration? False→ TrueSentence: This was a huge hu ge influx as the entire population of the
Dutch Republic amounted to ca.

Distraction
(Sent.-level)

Question: What was the population of the Dutch Republic before this
emigration? https://t.co/DlI9kw False→ TrueSentence: This was a huge influx as the entire population of the Dutch
Republic amounted to ca.

CheckList
(Human-crafted)

Question: What is Tony’s profession?
True→ FalseSentence: Both Tony and Marilyn were executives, but there was a

change in Marilyn, who is now an assistant.

Syntactic-based Perturbation. We incorporate three adversarial attack strategies that manipulate
the sentence based on the syntactic structures. (i) Syntax Tree Transformations. SCPN [20] is trained
to produce a paraphrase of a given sentence with specified syntactic structures. Following the default
setting, we select the most frequent 10 templates from ParaNMT-50M corpus [52] to guide the
generation process. An LSTM-based encoder-decoder model (SCPN) is used to generate parses
of target sentences according to the templates. These parses are further fed into another SCPN to
generate full sentences. We use the pre-trained SCPNs released by the official codebase. (ii) Context
Vector Transformations. T3 [50] is a whitebox attack algorithm that can add perturbations on different
levels of the syntax tree and generate the adversarial sentence. In our setting, we add perturbations
to the context vector of the root node given syntax tree, which is iteratively optimized to construct
the adversarial sentence. (iii) Entailment Preserving Transformations. We follow the entailment
preserving rules proposed by AdvFever [45], and transform all the sentences satisfying the templates
into semantically equivalent ones. More details can be found in Appendix A.4.

Distraction-based Perturbation. We integrate two attack strategies: (i) StressTest [36] appends
three true statements (“and true is true”, “and false is not true”, “and true is true” for five times) to the
end of the hypothesis sentence for NLI tasks. (ii) CheckList [43] adds randomly generated URLs
and handles to distract model attention. Since the aforementioned distraction-based perturbations
may impact the linguistic acceptability and the understanding of semantic equivalence, we mainly
apply these rules to part of the GLUE tasks, including SST-2 and NLI tasks (MNLI, RTE, QNLI), to
evaluate whether model can be easily misled by the strong negation words or such lexical similarity.

3.2.3 Human-crafted Examples

To ensure our benchmark covers more linguistic phenomena in addition to those provided by automatic
attack algorithms, we integrate the following high-quality human-crafted adversarial data from crowd-
sourcing or expert-annotated templates and transform them to the formats of GLUE tasks.

CheckList2 [43] is a testing method designed for analysing different capabilities of NLP models using
different test types. For each task, CheckList first identifies necessary natural language capabilities a
model should have, then designs several test templates to generate test cases at scale. We follow the
instructions and collect testing cases for three tasks: SST-2, QQP and QNLI. For each task, we adopt
two capability tests: Temporal and Negation, which test if the model understands the order of events
and if the model is sensitive to negations.

StressTest2 [36] proposes carefully crafted rules to construct “stress tests” and evaluate robustness
of NLI models to specific linguistic phenomena. We adopt the test cases focusing on Numerical
Reasoning into our adversarial MNLI dataset. These premise-hypothesis pairs are able to test whether

2We note that both CheckList and StressTest propose both rule-based distraction sentences and manually
crafted templates to generate test samples. The former is considered as sentence-level distraction-based
perturbations, while the latter is considered as human-crafted examples.
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the model can perform reasoning involving numbers and quantifiers and predict the correct relation
between premise and hypothesis.

ANLI [38] is a large-scale NLI dataset collected iteratively in a human-in-the-loop manner. In each
iteration, human annotators are asked to design sentences to fool current model. Then the model is
further finetuned on a larger dataset incorporating these sentences, which leads to a stronger model.
Finally, annotators are asked to write harder examples to detect the weakness of this stronger model.
In the end, the sentence pairs generated in each round form a comprehensive dataset that aims at
examining the vulnerability of NLI models. We adopt ANLI into our adversarial MNLI dataset. We
obtain the permission from the ANLI authors to include the ANLI dataset as part of our leaderboard.

AdvSQuAD [21] is an adversarial dataset targeting at reading comprehension systems. Adversarial
examples are generated by appending a distracting sentence to the end of the input paragraph. The
distracting sentences are carefully designed to have common words with questions and look like
a correct answer to the question. We mainly consider the examples generated by ADDSENT and
ADDONESENT strategies, and adopt the distracting sentences and questions in the QNLI format with
labels “not answered”. The use of AdvSQuAD in AdvGLUE is authorized by the authors.

We present sampled AdvGLUE examples with the word-level, sentence-level perturbations and
human-crafted samples in Table 2. More examples are provided in Appendix A.5.

3.3 Data Curation

After collecting the raw adversarial dataset, additional rounds of filtering are required to guarantee its
quality and validity. We consider two types of filtering: automatic filtering and human evaluation.

Automatic Filtering mainly evaluates the generated adversarial examples along two fronts: transfer-
ability and fidelity.

1. Transferability evaluates whether the adversarial examples generated against one source model
(e.g., BERT) can successfully transfer and attack the other two (e.g., RoBERTa and RoBERTa
ensemble), given the surrogate models used to generate adversarial examples (BERT, RoBERTa
and RoBERTa ensemble). Only adversarial examples that can successfully transfer to the other
two models will be kept for the next round of fidelity filtering, so that the selected examples can
exploit the biases shared across different models and unveil their fundamental weakness.

2. Fidelity evaluates how the generated adversarial examples maintain the original semantics. For
word-level adversarial examples, we use word modification rate to measure what percentage of
words are perturbed. Concretely, word-level adversarial examples with word modification rate
larger than 15% are filtered out. For sentence-level adversarial examples, we use BERTScore
[59] to evaluate the semantic similarity between the adversarial sentences and their corresponding
original ones. For each sentence-level attack, adversarial examples with the highest similarity
scores are kept to guarantee their semantic closeness to the benign samples.

Human Evaluation validates whether the adversarial examples preserve the original labels and
whether the labels are highly agreed among annotators. Concretely, we recruit annotators from
Amazon Mechanical Turk. To make sure the annotators fully understand the GLUE tasks, each
worker is required to pass a training step to be qualified to work on the main filtering tasks for the
generated adversarial examples. We tune the pay rate for different tasks, as shown in Appendix Table
11. The pay rate of the main filtering phase is twice as much as that of the training phase.

1. Human Training Phase is designed to ensure that the annotators understand the tasks. The
annotation instructions for each task follows [37], and we provide at least two examples for each
class to help annotators understand the tasks.3 Each annotator is required to work on a batch of
20 examples randomly sampled from the GLUE dev set. After annotators answer each example,
a ground-truth answer will be provided to help them understand whether the answer is correct.
Workers who get at least 85% of the examples correct during training are qualified to work on
the main filtering task. A total of 100 crowd workers participated in each task, and the number of
qualified workers are shown in Appendix Table 11. We also test the human accuracy of qualified
annotators for each task on 100 randomly sampled examples from the dev set excluding the
training samples. The details and results can be found in Appendix Table 11.
3Instructions can be found at https://adversarialglue.github.io/instructions.
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Table 3: Statistics of data curation. We report Attack Success Rate (ASR) and ASR after data curation
(Curated ASR) to evaluate the effectiveness of different adversarial attacks. We present the Filter Rate of data
curation and inter-annotator agreement rate (Fleiss Kappa) before and after curation to evaluate the validity of
adversarial examples. Human Accuracy on our curated dataset is evaluated by taking one random annotator’s
annotation as prediction and the majority voted label as ground truth. SPSO: SememePSO, TF: TextFooler,
TB:TextBugger, CA: CompAttack, BA:BERT-ATTACK. ↑/↓: higher/lower the better.

Tasks Metrics Word-level Attacks Sentence-level Attacks Avg
SPSO TF TB CA BA T3 SCPN AdvFever

SST-2

ASR ↑ 89.08 95.38 88.08 31.91 39.77 97.69 65.37 0.57 63.48
Curated ASR ↑ 8.29 8.97 8.85 4.02 4.04 10.45 6.88 0.23 6.47
Filter Rate ↓ 90.71 90.62 90.04 86.63 89.81 89.27 89.47 60.00 85.82
Fleiss Kappa ↑ 0.22 0.20 0.50 0.21 0.24 0.23 0.29 0.12 0.26
Curated Fleiss Kappa ↑ 0.51 0.49 0.67 0.46 0.45 0.44 0.47 0.20 0.52
Human Accuracy ↑ 0.85 0.86 0.91 0.88 0.85 0.78 0.85 0.50 0.87

MNLI

ASR ↑ 78.45 61.50 69.35 68.58 65.02 91.23 87.73 2.25 65.51
Curated ASR ↑ 3.48 1.55 8.94 3.11 2.58 3.41 6.75 0.30 3.77
Filter Rate ↓ 95.59 97.55 87.12 95.45 96.10 96.27 92.31 86.63 93.38
Fleiss Kappa ↑ 0.28 0.24 0.53 0.39 0.32 0.28 0.24 0.35 0.33
Curated Fleiss Kappa ↑ 0.65 0.59 0.74 0.65 0.60 0.56 0.60 0.51 0.67
Human Accuracy ↑ 0.85 0.83 0.91 0.89 0.83 0.84 0.91 0.83 0.89

RTE

ASR ↑ 76.67 75.67 85.89 73.36 72.05 92.39 88.45 6.62 71.39
Curated ASR ↑ 6.20 8.14 10.03 6.97 5.58 7.05 8.30 2.53 6.85
Filter Rate ↓ 91.93 89.21 88.29 90.72 92.16 92.31 90.61 61.34 87.07
Fleiss Kappa ↑ 0.30 0.32 0.58 0.35 0.25 0.33 0.43 0.58 0.38
Curated Fleiss Kappa ↑ 0.49 0.67 0.80 0.63 0.42 0.60 0.64 0.65 0.66
Human Accuracy ↑ 0.77 0.95 0.94 0.87 0.79 0.89 0.91 0.86 0.92

QNLI

ASR ↑ 71.88 67.03 82.54 67.24 60.53 96.41 67.37 0.97 64.25
Curated ASR ↑ 3.92 2.87 5.87 4.09 2.69 7.59 3.90 0.00 3.87
Filter Rate ↓ 94.63 95.89 92.89 93.92 95.78 92.16 94.21 100.00 94.93
Fleiss Kappa ↑ 0.07 0.05 0.16 0.10 0.14 0.07 0.12 -0.16 0.11
Curated Fleiss Kappa ↑ 0.37 0.43 0.49 0.34 0.53 0.37 0.43 - 0.44
Human Accuracy ↑ 0.80 0.86 0.85 0.82 0.92 0.89 0.92 - 0.85

QQP

ASR ↑ 45.86 48.59 57.92 49.33 43.66 48.20 44.37 0.30 42.28
Curated ASR ↑ 1.52 1.74 5.87 3.05 0.76 1.47 1.50 0.00 1.99
Filter Rate ↓ 96.73 96.50 89.90 93.83 98.28 97.04 96.62 100.00 96.11
Fleiss Kappa ↑ 0.26 0.27 0.38 0.27 0.24 0.25 0.29 - 0.30
Curated Fleiss Kappa ↑ 0.32 0.46 0.62 0.48 0.40 0.10 0.47 - 0.51
Human Accuracy ↑ 0.84 0.98 0.97 0.89 0.78 0.89 1.00 - 0.89

2. Human Filtering Phase verifies the quality of the generated adversarial examples and only
maintains high-quality ones to construct the benchmark dataset. Specifically, annotators are
required to work on a batch of 10 adversarial examples generated from the same attack method.
Every adversarial example will be validated by 5 different annotators. Examples are selected
following two criteria: (i) high consensus: each example must have at least 4-vote consensus; (ii)
utility preserving: the majority-voted label must be the same as the original one to make sure the
attacks are valid (i.e., cannot fool human) and preserve the semantic content.

The data curation results including inter-annotator agreement rate (Fleiss Kappa) and human accuracy
on the curated dataset are shown in Table 3. We will provide more analysis in the next section. Note
that even after the data curation step, some grammatical errors and typos can still remain, as some
adversarial attacks intentionally inject typos (e.g., TextBugger) or manipulate syntactic trees (e.g.,
SCPN) which are very stealthy. We will retain these samples as their labels receive high consensus
from annotators, which means the typos do not substantially impact humans’ understanding.

3.4 Benchmark of Adversarial Attack Algorithms

Our data curation phase also serves as a comprehensive benchmark over existing adversarial attack
methods, as it provides a fair standard for all adversarial attacks and systematic human annotations to
evaluate the quality of the generated samples.
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Table 4: Model performance on AdvGLUE test set. BERT (Large) and RoBERTa (Large) are fine-tuned
using different random seeds and thus different from the surrogate models used for adversarial text generation.
For MNLI, we report the test accuracy on the matched and mismatched test sets; for QQP, we report accuracy
and F1; and for other tasks, we report the accuracy. All values are reported by percentage (%). We also report
the macro-average (Avg) of per-task scores for different models. (Complete results are listed in our leaderboard.)

Model SST-2 MNLI RTE QNLI QQP Avg Avg Avg
AdvGLUE AdvGLUE AdvGLUE AdvGLUE AdvGLUE AdvGLUE GLUE ∆ ↓

State-of-the-art Pre-trained Language Models

BERT (Large) 33.03 28.72/27.05 40.46 39.77 37.91/16.56 33.68 85.76 52.08
ELECTRA (Large) 58.59 14.62/20.22 23.03 57.54 61.37/42.40 41.69 93.16 51.47
RoBERTa (Large) 58.52 50.78/39.62 45.39 52.48 57.11/41.80 50.21 91.44 41.23
T5 (Large) 60.56 48.43/38.98 62.83 57.64 63.03/55.68 56.82 90.39 33.57
ALBERT (XXLarge) 66.83 51.83/44.17 73.03 63.84 56.40/32.35 59.22 91.87 32.65
DeBERTa (Large) 57.89 58.36/52.46 78.95 57.85 60.43/47.98 60.86 92.67 31.81

Robust Training Methods for Pre-trained Language Models

SMART (BERT) 25.21 26.89/23.32 38.16 34.61 36.49/20.24 30.29 85.70 55.41
SMART (RoBERTa) 50.92 45.56/36.07 70.39 52.17 64.22/44.28 53.71 92.62 38.91
FreeLB (RoBERTa) 61.69 31.59/27.60 62.17 62.29 42.18/31.07 50.47 92.28 41.81
InfoBERT (RoBERTa) 47.61 50.39/41.26 39.47 54.86 49.29/35.54 46.04 89.06 43.02

Evaluation Metrics. Specifically, we evaluate these attacks along two fronts: effectiveness and
validity. For effectiveness, we consider two evaluation metrics: Attack Success Rate (ASR) and Cu-
rated Attack Success Rate (Curated ASR). Formally, given a benign datasetD = {(x(i), y(i))}Ni=1

consisting of N pairs of sample x(i) and ground truth y(i), for an adversarial attack method A that
generates an adversarial example A(x) given an input x to attack a surrogate model f , ASR is
calculated as

ASR =
∑

(x,y)∈D

1[f(A(x)) 6= y]

1[f(x) = y]
, (1)

where 1 is the indicator function. After the data curation phase, we collect a curated adversarial
dataset Dc. Thus, Curated ASR is calculated as

Curated ASR =
∑

(x,y)∈D

1[f(A(x)) 6= y] · 1[A(x) ∈ Dc]

1[f(x) = y]
. (2)

For validity, we consider three evaluation metrics: Filter Rate, Fleiss Kappa, and Human Accuracy.
Specifically, Filter Rate is calculated by 1−Curated ASR

ASR to measure how many examples are rejected
in the data curation procedures and can reflect the noisiness of the generated adversarial examples. We
report the average ASR, Curated ASR, and Filter Rate over the three surrogate models we consider in
Table 3. Fleiss Kappa is a widely used metric in existing datasets (e.g., SNLI, ANLI, and FEVER
[3, 38, 46]) to measure the inter-annotator agreement rate on the collected dataset. Fleiss Kappa
between 0.4 and 0.6 is considered as moderate agreement and between 0.6 and 0.8 as substantial
agreement. The inter-annotator agreement rates of most high-quality datasets fall into these two
intervals. In this paper, we follow the standard protocol and report Fleiss Kappa and Curated Fleiss
Kappa to analyze the inter-annotator agreement rate on the collected adversarial dataset before
and after curation to reflect the ambiguity of generated examples. We also estimate the human
performance on our curated datasets. Specifically, given a sample with 5 annotations, we take one
random annotator’s annotation as the prediction and the majority voted label as the ground truth and
calculate the human accuracy as shown in Table 3.

Analysis. As shown in Table 3, in terms of attack effectiveness, while most attacks show high
ASR, the Curated ASR is always less than 11%, which indicates that most existing adversarial attack
algorithms are not effective enough to generate high-quality adversarial examples. In terms of validity,
the filter rates for most adversarial attack methods are more than 85%, which suggests that existing
strong adversarial attacks are prone to generating invalid adversarial examples that either change the
original semantic meanings or generate ambiguous perturbations that hinder the annotators’ unanimity.
We provide detailed filter rates for automatic filtering and human evaluation in Appendix Table 12,
and the conclusion is that around 60− 80% of examples are filtered due to the low transferability
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Table 5: Diagnostic report of state-of-the-art language models and robust training methods. For each at-
tack method, we evaluate models against generated adversarial data for different tasks to obtain per-task accuracy
scores, and report the macro-average of those scores. (C1=Embedding-similarity, C2=Typos, C3=Context-
aware, C4=Knowledge-guided, C5=Compositions, C6=Syntactic-based Perturbations, C7=Distraction-based
Perturbations, C8=CheckList, C9=StressTest, C10=ANLI and C11=AdvSQuAD).

Models Word-Level Perturbations Sent.-Level Human-Crafted Examples
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

BERT (Large) 42.02 31.96 45.18 45.86 33.85 44.86 24.16 16.33 23.20 13.47 10.53
ELECTRA (Large) 43.07 45.12 47.95 46.33 47.33 43.47 33.30 32.20 26.29 26.94 52.63
RoBERTa (Large) 56.54 57.19 60.47 49.81 55.92 50.49 41.89 37.78 28.35 16.58 35.09
T5 (Large) 60.04 67.94 64.60 59.84 58.50 50.54 42.20 69.02 23.20 17.10 52.63
ALBERT (XXLarge) 66.71 67.61 73.49 70.36 59.52 63.76 49.14 45.55 39.69 26.94 43.86
DeBERTa (Large) 65.07 74.87 68.02 65.30 62.54 57.41 47.22 45.08 52.06 22.80 54.39

SMART (BERT) 45.17 31.04 42.89 45.23 30.76 40.74 16.62 8.20 18.56 10.36 1.75
SMART (RoBERTa) 62.93 58.03 65.09 62.65 61.37 55.31 40.13 39.27 28.35 15.54 31.58
FreeLB (RoBERTa) 51.95 53.23 52.92 51.15 52.18 50.75 37.72 66.87 23.71 29.02 64.91
InfoBERT (RoBERTa) 55.47 55.78 59.02 51.33 55.48 44.56 31.49 34.31 42.27 14.51 43.86

and high word modification rate. Among the remaining samples, around 30 − 40% examples are
filtered due to the low human agreement rates (Human Consensus Filtering), and around 20− 30%
are filtered due to the semantic changes which lead to the label changes (Utility Preserving Filtering).
We also note that the data curation procedures are indispensable for the adversarial evaluation, as the
Fleiss Kappa before curation is very low, suggesting that a lot of adversarial sentences have unreliable
labels and thus tend to underestimate the model robustness against the textual adversarial attacks.
After the data curation, our AdvGLUE shows a Curated Fleiss Kappa of near 0.6, comparable with
existing high-quality dataset such as SNLI and ANLI. Among all the existing attack methods, we
observe that TextBugger is the most effective and valid attack method, as it demonstrates the highest
Curated ASR and Curated Fleiss Kappa across different tasks.

3.5 Finalizing the Dataset

The full pipeline of constructing AdvGLUE is summarized in Figure 1.

Merging. We note that distraction-based adversarial examples and human-crafted adversarial exam-
ples are guaranteed to be valid by definition or crowd-sourcing annotations, and thus data curation
is not needed on these attacks. When merging them with our curated set, we calculate the average
number of samples per attack from our curated set, and sample the same amount of adversarial
examples from these attacks following the same label distribution. This way, each attack contributes
to similar amount of adversarial data, so that AdvGLUE can evaluate models against different types
of attacks with similar weights and provide a comprehensive and unbiased diagnostic report.

Dev-Test Split. After collecting the adversarial examples from the considered attacks, we split the
final dataset into a dev set and a test set. In particular, we first randomly split the benign data into
9 : 1, and the adversarial examples generated based on 90% of the benign data serve as the hidden
test set, while the others are published as the dev set. For human-crafted adversarial examples, since
they are not generated based on the benign GLUE data, we randomly select 90% of the data as the
test set, and the remaining 10% as the dev set. The dev set is publicly released to help participants to
understand the tasks and the data format. To protect the integrity of our test data, the test set will not
be released to the public. Instead, participants are required to upload the model to CodaLab, which
automates the evaluation process on the hidden test set and provides a diagnostic report.

4 Diagnostic Report for Language Models

Benchmark Results. We follow the official implementations and training scripts of pre-trained
language models to reproduce results on GLUE and test these models on AdvGLUE. The training
details can be found in Appendix A.6. Results are summarized in Table 4. We observe that although
state-of-the-art language models have achieved high performance on GLUE, they are vulnerable to
various adversarial attacks. For instance, the performance gap can be as large as 55% on the SMART
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(BERT) model in terms of the average score. DeBERTa (Large) and ALBERT (XXLarge) achieve
the highest average AdvGLUE scores among all the tested language models. This result is also
aligned with the ANLI leaderboard4, which shows that ALBERT (XXLarge) is the most robust to
human-crafted adversarial NLI dataset [38].

We note that although our adversarial examples are generated from surrogate models based on BERT
and RoBERTa, these examples have high transferability between models after our data curation.
Specifically, the average score of ELECTRA (Large) on AdvGLUE is even lower than RoBERTa
(Large), which demonstrates that AdvGLUE can effectively transfer across models of different
architectures and unveil the vulnerabilities shared across multiple models. Moreover, we find some
models even perform worse than random guess. For example, the performance of BERT on AdvGLUE
for all tasks is lower than random-guess accuracy.

We also benchmark advanced robust training methods to evaluate whether these methods can indeed
provide robustness improvement on AdvGLUE and to what extent. We observe that SMART
and FreeLB are particularly helpful to improve robustness for RoBERTa. Specifically, SMART
(RoBERTa) improves RoBERTa (Large) over 3.71% on average, and it even improves the benign
accuracy as well. Since InfoBERT is not evaluated on GLUE, we run InfoBERT with different
hyper-parameters and report the best accuracy on benign GLUE dev set and AdvGLUE test set.
However, we find that the benign accuracy of InfoBERT (RoBERTa) is still lower than RoBERTa
(Large), and similarly for the robust accuracy. These results suggest that existing robust training
methods only have incremental robustness improvement, and there is still a long way to go to develop
robust models to achieve satisfactory performance on AdvGLUE.

Diagnostic Report of Model Vulnerabilities. To have a systematic understanding of which adver-
sarial attacks language models are vulnerable to, we provide a detailed diagnostic report in Table 5.
We observe that models are most vulnerable to human-crafted examples, where complex linguistic
phenomena (e.g., numerical reasoning, negation and coreference resolution) can be found. For
sentence-level perturbations, models are more vulnerable to distraction-based perturbations than
directly manipulating syntactic structures. In terms of word-level perturbations, models are similarly
vulnerable to different word replacement strategies, among which typo-based perturbations and
knowledge-guided perturbations are the most effective attacks.

We hope the above findings can help researchers systematically examine their models against different
adversarial attacks, thus also devising new methods to defend against them. Comprehensive analysis
of the model robustness report is provided in our website and Appendix A.9.

5 Conclusion

We introduce AdvGLUE, a multi-task benchmark to evaluate and analyze the robustness of state-
of-the-art language models and robust training methods. We systematically conduct 14 adversarial
attacks on GLUE tasks and adopt crowd-sourcing to guarantee the quality and validity of generated
adversarial examples. Modern language models perform poorly on AdvGLUE, suggesting that
model vulnerabilities to adversarial attacks still remain unsolved. We hope AdvGLUE can serve as a
comprehensive and reliable diagnostic benchmark for researchers to further develop robust models.
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