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Abstract

Benchmarks offer a scientific way to compare algorithms using objective perfor-
mance metrics. Good benchmarks have two features: (a) they should be widely
useful for many research groups; (b) and they should produce reproducible findings.
In robotic manipulation research, there is a trade-off between reproducibility and
broad accessibility. If the benchmark is kept restrictive (fixed hardware, objects),
the numbers are reproducible but the setup becomes less general. On the other
hand, a benchmark could be a loose set of protocols (e.g. object set [9]) but the
underlying variation in setups make the results non-reproducible. In this paper, we
re-imagine benchmarking for robotic manipulation as state-of-the-art algorithmic
implementations, alongside the usual set of tasks and experimental protocols. The
added baseline implementations will provide a way to easily recreate SOTA num-
bers in a new local robotic setup, thus providing credible relative rankings between
existing approaches and new work. However, these “local rankings” could vary
between different setups. To resolve this issue, we build a mechanism for pooling
experimental data between labs, and thus we establish a single global ranking for
existing (and proposed) SOTA algorithms. Our benchmark, called Ranking-Based
Robotics Benchmark (RB2), is evaluated on tasks that are inspired from clinically
validated Southampton Hand Assessment Procedures [27]. Our benchmark was
run across two different labs and reveals several surprising findings. For example,
extremely simple baselines like open-loop behavior cloning, outperform more
complicated models (e.g. closed loop, RNN, Offline-RL, etc.) that are preferred by
the field. We hope our fellow researchers will use RB2 to improve their research’s
quality and rigor.

1 Introduction
Imagine a new roboticist tasked with building an ice cream scooping robot. Which existing algorithm
could best accomplish this task? Even seasoned roboticists would find it hard to answer this question,
because most published methods claim improved performance over baselines. Unfortunately, many
of these claims are mirages, constructed by incomparable setups, subjective task definitions, and/or
implementation mistakes [21]. This unscientific approach makes it hard for the field to discern Gold
from Pyrite. In practice, this introduces a rich gets richer bias – big and established labs can focus on
optimizing methods for their own setup while comparing against their own past work. In contrast,
new entrants find it needlessly hard to reproduce simple experiments, let alone push the state of the
art. It is clear that the status quo needs to change.
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Figure 1: We present RB2, a real-world robot learning benchmark consisting of four manipulation tasks needed
in daily human activity: pouring, scooping, zipping, and insertion. We provide experimentation, training and
evaluation procedures as well as implementations of several state-of-the-art robot learning methods. Code,
documentation and other details can be found at at: https://www.rb2.info .

The obvious solution to this problem is benchmarking. Benchmarks offer an easy way to compare al-
gorithms using scientific performance metrics. These objective performance scores allow researchers
to fairly evaluate new algorithms, and enable the field as a whole to judge which methods “actually
work.” Furthermore, benchmarks meaningfully reduce the barrier to entry, since newcomers can
focus on their algorithm and evaluating it on the benchmark – the experimental setup is fixed and
the baseline performance on benchmark is available as well. A good benchmark must appeal to a
wide audience (i.e. it should cover many groups’ use cases) while also being easily reproducible.
In many machine learning adjacent fields – like Natural Language Processing and Computer Vision –
these goals were more easily achieved. It is now standard practice to distribute data across the world,
and test metrics can be easily reproduced by evaluating models on the same held out test set.

However, in robotics, benchmarking comes with a fundamental trade-off between broad accessi-
bility and reproducibility. Performance on real robotic hardware cannot be accurately modelled
in simulation, especially in tasks requiring rich gripper-object contacts. This necessitates physical
experimental setups, that are difficult to exactly replicate in new lab settings. One option would be to
create a restrictive benchmark by pre-deciding all environmental variables (e.g. a single well defined
task, fixed hardware choices, specified experimental protocol) so that performance numbers are
comparable across papers. However, this directly results in a less general benchmark since different
labs might have different hardware/constraints. On the other end of spectrum, a benchmark could
just contain basic experimental setup descriptions. For example, YCB objects [9] only standardizes
object sets. However, this makes experiments impossible to reproduce, since changes in the setup
(e.g. different action rate) could advantage some methods over others.

In this paper, we rethink the concept of benchmarking in the context of real-world robotic manip-
ulation. Our key insight is that building precisely reproducible robotic setups is impossible and
therefore absolute performance numbers on a benchmark task are meaningless. For example, we
find that running the same pouring experiment in two different lab spaces, changes our performance
metrics by 20%. However, if the performance numbers for both the baselines and the new proposed
algorithm are re-computed at same physical location and under the same setup, they are likely to be
comparable and hence produce meaningful relative ranking. We note that a truly superior approach
would outperform all baselines for majority of different setups. Therefore, we propose to build
a manipulation benchmark that helps users establish local relative ranking between different
methods and uses local rankings from several researchers to develop global rankings across
different robotics setups. This is achieved by treating a robotic manipulation benchmark as a set of
experimental protocols, and a model zoo with state-of-the-art baselines. This will provide a way to
quickly recreate baseline numbers in a new robotic setup, and thus provide credible baselines and
comparisons to any researcher.

We introduce a new robotics benchmark RB2 (Ranking Based Robotics Benchmark). Our benchmark
tasks are inspired by the Southampton Hand Assessment Procedure (SHAP) [27], a standard test for
assessing dexterity in occupational therapy via daily-living manipulation tasks. RB2 consists of four
such tasks: pouring, scooping, zipping, and insertion. All of these tasks can be successfully performed
with a standard 2-Finger gripper and commodity robot hardware – like the Franka Pandas. For each
task, we list all the test and train objects, and carefully document objective performance metrics
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like the amount of material successfully poured. The key feature of our benchmark is the multi-task
setup. Our focus is on ranking general-purpose manipulation algorithms and not individual tasks
which can be engineered to produce high numbers. We plan to run multiple tracks of training/testing
frameworks including but not limited to: models trained on static offline datasets, pre-trained models
that are finetuned with active learning (e.g. Reinforcement Learning), and active models trained from
scratch. We will a maintain model zoo and protocols for each of these tracks. For the initial version,
we focus on the offline track and provide 5 relevant baseline algorithms. This allows other researchers
– even those interested in better hardware or fancier learning algorithms – to easily contextualize their
gains against strong initial baselines. We demonstrate the credibility of our benchmark philosophy
and framework by evaluating same set of algorithms across two different labs.

2 Related Work
Robotics Benchmarks There is a lot of inherent uncertainty when designing real world exper-
iments, and small variations in environmental factors can have disproportionate effects on the
performances of different methods [49]. There are many sources of variation in robotic experiments
ranging from different hardware, to lighting conditions, to the evaluation tasks themselves. One
common solution is to control for all of these other factors, by building fully replicate-able envi-
ronments [29; 47]. Many groups have attempted to address these problems via benchmarks. For
example, standardized object sets like YCB [9] seek to control for variance due to object selection,
as most algorithms are highly sensitive to the test object set. However, objects are only part of the
experimental procedure. Benchmarks in robotics exist for specific tasks such as picking and placing
[33], grasping [5; 6], bin picking [11; 30; 32], include less common applications such as aerial [42]
and cloth manipulation [20]. Some are tailored to specific hardware, such as robot hands [1; 13],
tri-finger manipulators [19], bi-manual manipulation [10], humanoids [25] or grasping gripper design
[16; 36]. However, these are often too rigid in their hardware and experimentation requirements. As
a result, such controlled setups tend to target smaller research communities. Insisting on such precise
control often excludes researchers who lack the necessary hardware, or are interested in more general
tasks. For example, a roboticist cannot easily re-tool a highly controlled pick-place environment
in order to perform household scooping experiments. Low-cost robotics platforms [35; 47] seek to
democratize access to these setups, but often have limited hardware/control capabilities and are thus
constrained to simple manipulation tasks.

Simulation Benchmarks Simulation often provides a lower-cost alternative to real-world experi-
ments. While benchmarking has struggled to gain traction in the real world, it is common place in
simulation. In particular, reinforcement learning algorithms are often tested in simulated robotic tasks
suites [43; 7; 48; 50; 23; 28]. Offline reinforcement learning benchmarks [18; 31] provide various
datasets obtained from agents deployed in simulation. Furthermore, benchmarks like SAPIEN [46]
and ManipulaThor [15] allow researchers to test algorithm’s ability to learn semantic concepts.
However, simulators have difficulty in reproducing the visual diversity of the real world thus only
allow for learning relatively simple semantic concepts. Moreover, these simulators often rely on
physics engines [45; 12] that cannot model the nuances of real world dynamics, complex object
interactions, or hand-object contacts. The simplifications made by these simulators often allow the
algorithm to “game” the task, and thus it is difficult to draw inferences about the effectiveness of the
particular method, especially in the wild.

3 Benchmarking with a Twist
A benchmark is typically defined as a set of tasks each with precisely defined evaluation functions.
Each evaluation function ρ numerically scores a given method φj on a target task τi using a pre-
defined protocol (parameterized by kj , θi,mi respectively). Thus, we can define each measure
as ρi(φj(kj), τi(θi),mi). For benchmarks to fairly and reproducibly evaluate methods, all other
variables (θi, mi) should be fixed in advance. As a result, each evaluation becomes a pure function
of the given method: ρ̂i(φj(kj)). The resulting benchmark B̂(φj(kj)) = {ρ̂i(φj(kj))}ni=0 enables
researchers to independently and robustly evaluate their proposed contributions.

However, robotics environment parameters θi depend on real-world factors and therefore can not be
tightly controlled. For example, robotic hardware, lab condition (e.g. lighting, work-space size, etc.),
and underlying physical parameters (e.g. friction) could all change from one lab to another. This
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makes it impossible to ship a single benchmark B̂ across labs. So, how can we overcome this barrier
and design a better benchmarking scheme for robotics?

Lets take a cue from how roboticists handle similar situation in a simulated setting. Consider an
ice-cream scooping task with evaluation function defined as ρi(φj , τi(θc),mi), where θc denotes
relevant system parameters (e.g. ice cream’s temperature and scoop’s friction). Let’s assume a
prior State-Of-The-Art (SOTA) baseline φA(kA) is publicly available and reports the following
performance on the task: ρA = ρi(φA(kA), τi(θc),mi). However, a researcher believes she has
developed a better algorithm - φB - for warm conditions where ice cream melts and makes the
handle slippery (i.e. θw). Thus, she creates a new evaluation – ρw(φ, τi(θw),mi), and evaluates both
methods. In other words, she runs experiments in order to calculate ρ(A)

w and ρ(B)
w . If ρ(B)

w > ρ
(A)
w ,

the researcher can safely conclude her new method is indeed better in the warmer setting! Note that
she does not directly compare against ρA since system parameters changed, but she did use it to find
relevant baselines to compare against. After all, her analysis would be less valuable if φA was a weak
baseline (instead of SOTA).

Our benchmark RB2 builds on this insight. We redefine robotics benchmarks as a joint set of tasks
(w/ evaluation function) and prior SOTA baselines. When a new researcher wants to test his/her
algorithm, they first create a new local evaluation function which uses same tasks (e.g., pouring)
but with different local environment parameters. The researcher then evaluates their proposed work
alongside the given baselines on the target tasks. While the raw results are valuable for analysis, they
will likely differ wildly between labs. Thus, we propose rigorously ranking baselines using a fixed
function R. The final benchmark creates a set of rankings that measure how the proposed work stacks
up against the baselines. These local rankings should be more reproducible across environments
given suitable choice of ranking function R. If a new algorithm significantly outperforms the current
SOTA, the code for this algorithm could be contributed as a new baseline.

But do these rankings remain consistent for different θt? That is, if different labs run same set of
methods will they report similar rankings? We argue that obtaining perfect rank orderings at a local
site (though individual results are still valid) might be impossible due to differences in environment
parameters. However, a truly better method would consistently perform other baseline methods for
majority of θis. Inspired by this observation, our benchmark proposes to develop global rankings
by using several local rankings at different labs. Note that individual users will not need to run
experiments in multiple labs, but will instead upload their results to a central repository. As a result,
the field will distribute the work required to compute a global ranking. We hope that this process of
aggregating data from multiple experiments in various labs over time, will allow us to infer stronger
claims about global rankings as a community.

4 Benchmark Details - Tasks and Experimental Protocols
Setup: Operationally, environments must provide access to observations ot, which typically consists
of robot sensors and cameras. They also need to accept actions at that control the agent (e.g. actuator
commands, target joint positions, etc.). Actions are applied for a fixed period of time δt before the
next observation is generated ot+1. A sequence of these observations and actions form a trajectory
T = {o0, a0, o1, a2, . . . , oH}, where H is a horizon (i.e. maximum length). We require that all robot
testing environments follow this “recipe”.

Tasks (τ ): First, we note that “task” is an overloaded term in robotics, and thus we must be careful
to avoid confusion. We define a task to be a broad category of behaviors (e.g. pouring), while an
instance is akin to a sample – e.g. “scoop almonds from the black box on the right.” Each task
must provide success measures that objectively determine how effectively a given trajectory solved a
particular instance.

Task/Environment Parameters (θ): Since users will separately build environments, system pa-
rameters will naturally vary between setups. We decompose task parameters θi into workspace
parameters θwi and system parameters θsi . Workspace parameters constitute task-specification pa-
rameters, such as initial / goal object positions etc, which must be tightly controlled by the user. In
contrast, system parameters are (often) outside of users control. These include robot hardware, precise
sensor characteristics, lighting conditions, etc. In our benchmarks, we provide concrete definitions
for the workspace parameters. On the other hand, system parameters are free to be determined by the
experimenter, except for three constraints: (1) Only one morphological embodiment can be utilized,
i.e. the robot cannot be changed manually between experiments (automatic tool changing is allowed).
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(a) Pouring

TRAIN OBJECTS TEST OBJECTS

(b) Scooping

TRAIN OBJECTS TEST OBJECTS

(c) Zipping

TRAIN OBJECTS TEST OBJECTS

(d) Insertion

Figure 2: We present four manipulation tasks: pouring, scooping, zipping and insertion as part of RB2. Each
task involves a set of train (green) and (red) test objects.

(2) No sensor or actuation augmentation within the workspace is allowed (all sensors and actuators
must be outside the task area at the start of the experiment). (3) A robot’s initial location should
be outside the workspace (the defined task area). Examples of properly constructed lab spaces are
available in Fig. 1.

Baselines (φ): Under our philosophy, SOTA baselines φi are now integral parts of the overall
benchmark. A baseline (i.e. policy) should produce actions given an observation (at ∼ π(at|ot)) that
result in an successful trajectory for a given task instance.

Local Ranking (R): Recall that relevant baseline performance ρi(φj(kj), τ(θwi , θ
s
i ),mi) must be

reevaluated in each lab environment, due to shifting environmental factors. Once evaluation (for
baselines and new method) is complete, the data is processed into local rankings – e.g. ordering of
methods by performance based on experiments. While prior evaluation benchmarks simply compare
mean task performance to form rankings, we adopt a more rigorous approach and test for statistical
significance. This is done to reduce noise in rankings. Specifically, we employ Tukey’s HSD test [34]
which performs pairwise t-tests between means (of task metrics ρ) µ1, ..., µM , using the Studentised
Range Distribution, which has statistic, q = (µmax − µmin) ∗

√
n

2S2 , where n is the pooled sample
size and S is the pooled standard deviation.

Global Ranking: Instead of purely relying on local rankings, which could be noisy, performance
data from multiple labs is aggregated in a central dataset. Global rankings are then calculated for
each baseline, using the Plackett-Luce [38] method for combining a set of rankings into a global
ranking. For a given set of local rankings {L1, L2, ..., LN}, which could either contain the full set of
baselines or a partial set, Plackett-Luce produces a distribution over the methods, using a score si
called the ”worth”. The method then uses Maximum Likelihood Estimation to solve for the global
ranking, according to the distribution of si.

For the sake of explanation, consider the following concrete example. Say that RB2 has 5 baseline
algorithms implementations (B1-B5). Currently the global rankings show: B3 > B2 > B5 >
B4 > B1. A new research group proposes a new algorithm A1 after our baselines are pushed. To
demonstrate their algorithm is better they download the code of the top-3 baselines (B3, B2 and B5)
and compare their proposed method (A1) to the baselines (a typical use-case). This comparison is
published using local rankings. In order to aggregate these results into the global ranking, the authors
submit their paper, results and code to our repository. To build a global ranking, we consider their
local ranking orderings (A1, B3, B2, etc). Note that this ranking can be partial (only have m out of
N possible methods) or have possible ties in the rankings. We employ the Plackett-Luce method to
aggregate these into a global ranking, using the procedure described previously. Once the code is
submitted the top-3 suggested baselines now include A1.

However, note that the global rankings still does not include A1, since the experiment was not
verified by an independent research group. If another group proposes method A2, they will have to
download code for A1, B3 and B2 (the top 3 current baselines) and compare against these. Similarly
to A1, they will run experiments, collect local rankings and results which they will submit to our
repository alongside their implementation. Once A2 uploads their local rankings, our global rankings
get updated to reflect A1 as the new leader, since their results have been confirmed by another lab.
Just like before, A2 will be a added as a suggested baseline, but will need further verifcation to be on
the global leaderboard.
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5 Benchmark Instantiation: RB2
On a high level RB2 consists of three stages repeated per task: (1) demonstration data is collected
by a human operating in training environments; (2) the dataset is used to fit a learned policy using a
baseline algorithm; (3) the policy’s control performance is evaluated in various test scenarios. We
now outline; the exact experimental procedures, the tasks considered, and the implemented baselines.

5.1 Collection and Evaluation Protocols (m):

Dataset Creation: In principle, one could randomly sample train instances by placing random
objects from the office in front of a robot. In practice, this would create potential blind-spots and
result in unrepeatable findings. To fix this failure mode, we resort to stratified sampling. Specifically,
each task uses Otr train objects and Ptr train positions randomly sampled from the work-space,
resulting in N = Otr × Ptr training instances. Expert demonstrators collect an optimal trajectory for
each train task instance, resulting in a final dataset of training trajectories D = {T1, . . . , TN}.

Testing Procedure: After training, each policy is evaluated on a distribution of test instances,
which consists of Pt test positions (not in train set) and a combination of Ot test objects and the
original Otr train objects. The evaluation proceeds by executing policies in each test instance, and
recording task-specific performance metrics (e.g. amount of material poured) based on the trajectories
they generate. Instead of letting a human operative subjectively determine success, it is calculated
by combining and thresholding in a consistent fashion (per task). This scheme allows us to perform
repeatable experiments, while minimizing systemic bias due to human inconsistency. Furthermore, it
enables rigorous testing of how policies adjust to unseen spatial configurations and novel objects.
Note that train positions are explicitly not contained in these test instances, to prevent rewarding
policies that are severely over-fit.

5.2 Tasks and Workspace Parameters (τ, θw)

This benchmarking protocol is now applied to each considered task. Specifically, RB2 consists of 4
household manipulation tasks that humans encounter on a daily basis; pouring, scooping, insertion,
and zipping. These tasks are loosely inspired by the SHAP tests [27] and were chosen to be represent
a broad range of human manipulation. Specific per-task design decisions are now presented in detail.
For object lists, please refer to the benchmark website.

Pouring: This task consists of taking 50 grams of material – in our case almonds – to a single cup
placed on the table, and pouring all the material without spilling. Note that this is a single stage task,
so the robot starts the trajectory with a cup containing the material in hand. Performance is measured
by the amount of material successfully poured into the target cup, and is normalized by the amount
of material originally in the cup (i.e. poured

total ). Otr = 9 train cups and Ot = 6 test cups are drawn
from a broad distribution of durable household cups. Ptr = 15 training positions and Pt = 8 testing
positions are randomly sampled from the work-space, resulting in N = 135 training instances and
T = 136 testing instances. Both object sets and a prototypical task are illustrated in Fig. 2a.

Scooping: The robot is initialized with a spoon in its gripper and presented with a bowl filled with
material. The robot must successfully control the spoon to scoop material from the bowl without
spilling. The operator measures the amount scooped and the maximum amount of material the spoon
could possibly hold. Performance is measured by amount scooped

max amount . Note in this case a training/testing
“object” consists of a bowl-material pair. We consider Otr = 21 training objects in this tasks (7
bowls, 3 materials), and Ot = 5 testing objects (5 bowls, 1 material). Training instances use Ptr = 6
positions, while testing instances have Pt = 5 positions. Objects and setup are visualized in Fig. 2b.

Zipping: The episode begins with a lunchbox placed in the workspace, with its zipper grasped
by the robot’s gripper. The robot must then successfully unzip the bag without loosing hold of the
zipper. Note that a heavy weight is placed in the bag to prevent it from frequently falling out of the
workspace. The operator measures the distance zipped by the robot as a fraction of the bag’s total zip
distance (i.e. dzip

dbag
). A trial is considered successful if the fraction zipped is ≥ 0.5. This task uses

Otr = 6 training lunchboxes, and Ot = 3 testing lunchboxes. Ptr = 10 train positions are generated
by randomly rotating and shifting the bag, while being careful to not remove the zipper from the
robot gripper. Pt = 5 test positions are generated using a similar procedure. The objects used and a
prototypical task instance are shown in Fig. 2c.
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Insertion: In this task, a common children’s insertion toy is placed in front of the robot, and a
block is placed in its gripper. The robot must successfully insert the block into the matching hole.
Success is reported using a binary metric: 1 if the block is inserted into the hole and 0 otherwise. We
use Otr = 9 training blocks (i.e. objects) corresponding to different holes on the toy, and Ot = 3 test
blocks from an unseen (during training) face on the toy. We sample Ptr = 7 different train positions
and Pt = 5 test positions by randomly rotating the block. This results in a total of N = 63 train
instances and T = 60 test instances. The objects and tasks are visualized in Fig. 2d.

5.3 Baselines

Baseline System Parameters: The requirements defined in Section 3 lead us to adopt a simple (and
common) joint position control stack for baseline algorithms that runs at 30 Hz. Actions are specified
as joint targets, which are translated into motor control signals using an underlying high-frequency
PD controller. Observations consist of RGB images and the robot’s proprioceptive signals (e.g. angles
from joint encoders). Pictures of our setup can be found in Fig. 2.

We will release the baseline system parameters and stacks for the Franka Panda so that other
researchers can use this stack for a rapid prototyping of baseline algorithms in their environment.
We also hope several researchers will release their algorithms and stacks so that followup work can
replicate the results in their environment.

5.4 Network Architecture and Representation Learning
Note that any visuo-motor policy must be able to accurately localize objects in the scene. To help
solve this problem we provide a vision stack for pre-training representations. Specifically, a simple
neural network (3 VGG convolutions followed by Spatial Softmax [17]) is trained to predict object
poses (p) in robot coordinate space from an image (i) of the object placed in front of the robot.
Given a dataset of 1200 (i, p) pairs collected per environment, a network F is trained to minimize
||F (i)− p||1. For stable performance, we ensure object positions sufficiently cover the workspace,
and that the robot hand position and gripper (e.g. place objects in fingers) are randomized. Once
trained, representations from the network R(i) are used to initialize the learned policies.

Note that other groups need not tie their methods to this specific vision pipeline. Indeed, we encourage
researchers to develop better robotic vision stacks, and believe that RB2 could offer a (so-far missing)
way to scientifically compare vision stacks for manipulation research. However, learning general 3D
object representations using weak supervision (e.g. demonstration trajectories) is far from a solved
problem. Thus, we provided this representation learning pipeline as a way for manipulation/control
focused researchers to sidestep this challenging vision problem.

5.5 Open-Loop Imitation
Open-loop behavior cloning is a simple yet effective method for learning robotic control strategies
from demonstration data-sets. Given an initial observation from a trajectory, the policy should
predict H actions taken by the expert at every time-step. Those predicted actions are then executed
on the robot without re-planning. More specifically, the expert actions are concatenated into a
single vector a = [a0, . . . , aH−1]

T , and the policy is optimized using the following supervised loss:
minπ ||π(o0) − a||1. Note that the policy – π(o0) = G(R(o0)) – is initialized with pre-trained
representations and then fine-tuned. During test time, π predicts an action trajectory given the initial
observation, which is then executed on the robot.

Smoother Control via NDPs: In addition to this traditional behavior cloning objective, RB2
provides an additional implementation of Neural Dynamic Policies (NDPs) [3; 4]. This baseline
works as a smoother version of open-loop behavior cloning, by embedding dynamical system structure
(described by DMPs [41; 39; 14]) inside the learned network. In practice, NDPs process an input
state (i.e. image of the scene) and outputs parameters for a dynamical system (DMP), which include
the goal and the weights for the forcing function for the system. The network integrates the dynamical
system and outputs a trajectory for the robot to follow. NDPs are able to reason in the space of
physically smooth trajectories and thus are able to output more meaningful behavior as compared to
open-loop behavior cloning.
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Figure 3: Results of five baselines on four tasks. By definition, metrics are normalized to [0,1], w/ 1
being best possible performance. As the results show Open-Loop BC often outperforms NDP, and
closed loop baselines. Note Offline RL is omitted since it never succeeds for any task.

5.6 Closed-Loop Imitation
A common failure mode in open-loop policy learning occurs when the policy makes a mistake:
since action trajectories are not re-planned at every time-step the learned controllers cannot adjust to
correct for errors made earlier. Closed loop behavior cloning fixes this failure mode, by querying
the policy for new actions at every time-step. Expert trajectories are broken into observation-action
tuples (ot, at), and the policy is trained to predict the next action given current observation. This
results in the following objective: minπ ||π(ot)− at||1. The closed loop policy is bootstrapped from
pre-trained representations, just like in the open-loop case. During testing, the current observation is
fed into the policy and the predicted action is executed on the robot.

Recurrent Networks: Prior work [40] demonstrated that Recurrent neural networks can im-
prove behavior cloning performance in situations where the expert strategy is not perfectly Marko-
vian (e.g. pauses before scooping, etc.). Thus, Our final baseline pairs closed loop behavior
cloning with a LSTM [22]. Specifically, we train LSTMs to mimic a length T trajectory “snippet”
{oi, ai, oi+1, . . . , oi+T , ai+T } via teacher forcing. The supervised loss, initialization scheme, and
robot deployment strategy remain unchanged from the prior closed-loop behavior cloning baseline.

5.7 Offline Reinforcement Learning
While reinforcement learning (RL) has shown promise in robot learning [37; 29; 2] training a policy
to perform manipulation tasks in the real world is challenging and time consuming. Offline RL,
addresses this problem by training policies on static datasets [26; 24; 18]. To this end, we provide
an implementation of MOReL [24]. MOReL firstly learn a dynamics model f(st, at) = st+1 over
the data. The dataset collection scheme provided by RB2 consists of optimal trajectories τ , noisy
trajectories τ + εi, where εi are different levels of Gaussian noise randomly sampled, as well as
random interaction data. The demonstrations are manually labeled and determines when task success
is achieved in the trajectory (say at timestep k). The reward r(at, st) is 0 for t < k and 1 for t ≥ k.

MOReL then builds a pessimistic MDP by dividing the task region into known and unknown, called
the Unknown State-Action Detector (USAD). This allows adding a large negative reward to unknown
regions of the task space, to avoid large distribution shifts. In particular, this is done via using an
ensemble of models f1, f2, .., fM and considering the ensemble discrepancy = maxi,j ||fi(at, st)−
fj(at, st)||. After the USAD is computed, MOReL uses an MPC [44] planner initialized with a
policy trained via behavior cloning.

6 Experiments
Recall that RB2 consists of 4 tasks, 5 baselines, and a central reporting repository. Our experiments
seek to verify each of the components. Specifically, each baseline is evaluated on every task in
multiple lab environments. Data produces from these experiments are analyzed to answer the
following questions: (1) are RB2’s baselines correctly implemented and if so what do they reveal
about current SOTA approaches? (2) Can statistically significant rankings be determined on a local
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Method BC-Open NDP BC-Closed BC-LSTM MOReL

Pouring:
Franka Lab 1 1 2 2 3 5
Franka Lab 2 1 2 3 3 5
Global 1 2 3 3 5

Scooping:
Franka Lab 1 1 2 3 3 5
Franka Lab 2 1 1 3 3 5
Global 1 1 4 3 5

Insertion:
Franka Lab 1 1 1 3 3 5
Franka Lab 2 1 2 3 3 5
Global 1 1 3 3 5

Zipping:
Franka Lab 1 1 3 2 4 5
Franka Lab 2 1 1 1 1 5
Global 1 1 4 1 5

Table 1: Rankings of five baseline approaches on four different tasks. We present local rankings in
each lab and also compile data across experiments to compute global rankings.

lab level, and how broadly do these conclusions generalize? (3) And finally, can findings from
multiple labs combine into a single useful global ranking?

6.1 Metric Level Analysis
RB2’s full baseline suite was evaluated on all 4 tasks in 2 distinct lab spaces – Franka Lab 1 and
Franka Lab 2. These spaces featured 2 robots with the same hardware (Franka Pandas) in a tabletop
setting. However, the robots were set in different lab spaces, used different camera setups, and were
built on different platforms (pedestal v.s. custom tabletop). This realistic environment diversity
was required to simulate lab spaces from different groups. The results are shown in Figure 3. The
task metrics were normalized to [0, 1] where a score of 1 signifies maximum possible performance.
Furthermore, performance metrics for train and test objects were reported separately in order to enable
further analysis. A cursory analysis reveals several comforting trends. For one, performance on test
objects is consistently lower than for training objects, which strongly aligns with our expectations for
neural network training. Furthermore, almost every baseline reports satisfactory performance on at
least 1 task (e.g. zipping).

It is notable that one baseline - MOReL (Offline RL) [24] - significantly under-performs in every task.
One possible explanation is that offline RL requires far more diverse “negative” data (i.e. low/zero
reward state transitions) to train in a stable manner. To verify this, we collect a noise augmented
dataset for the pouring task in Franka Lab 1. Specifically, the human expert demonstrations are played
back with added noise and appended to the dataset using a similar procedure as in [8]. Furthermore,
purely random trajectories are executed on the robot. Rewards from these trajectories are imputed
using human labelling with the same method as before. While testing offline RL in this setting results
in no boost in performance, qualitatively the trajectories seem more natural and tend the models tend
to output less unstable behavior. An exception to this was pouring, where MOReL with no random
noise would go close to the desired cup location but not pour. On the other hand, MOReL with
random noise would pour to a similar location every time. This suggests that offline RL methods
require significant amounts of data and have a long way to go before being competitive on RB2. We
leave this as a challenge for future work.

Findings: Even before computing rankings, the data from this study supports a number of conclu-
sions. For one, the zipping task is the easiest one in RB2 (though still not fully solved), while the
insertion task is the hardest. Pouring and scooping are “medium” difficulty. Surprisingly, the simplest
method, BC-Open, frequently outperforms more complicated methods like BC-LSTM, which has a
sequential model, and MOReL, which requires reward signals. This serves as an important reminder
that SOTA methods are not always complicated, and that many seemingly simple problems in robotics
(e.g. learning closed loop controllers from expert data) remain stubbornly unsolved.
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6.2 Method Rankings
While data contains several fascinating insights that holds across different labs, it is important to note
that raw performance numbers do not in fact generalize across labs. This is an expected flaw that we
seek to resolve using rankings. Specifically, we rank each method using a test success metric, for
each lab in what we call local rankings. Due to the nature of hardware experiments and the number
of test objects, we expect small deviations between these rankings. We combine the evaluations from
all labs into global rankings and provide tests for statistical significance of these comparisons. All of
our rankings are presented in Table 1.

Local Ranking: We begin by calculating rankings on a local level, by separately considering the
data available to each lab. These rankings do reveal inconsistencies between labs. For example, the
pouring evaluations from Franka Lab 1 suggests that NDP is significantly better than BC-Closed
and BC-LSTM. However, in Franka Lab 2 the NDP model is better than the other methods, but not
significantly so. Fortunately, certain trends do stably hold across all settings. For example, BC-Open
always ranks higher than all other tasks consistently and emerges as true SOTA on these tasks. This
trend suggests that local rankings are in general reliable and can be used for reporting results in future
publications. However, to handle noise and ensure emergence of true SOTA, we compute global
rankings as described below.

Global Ranking: Of course, there is always noise in local experiments that is impossible for small
academic research labs to resolve. RB2’s central proposition is to provide infrastructure for the
field as a whole to reach consensus. This proposal is far more powerful than focusing on local
research, since it democratizes access to knowledge in robotics and helps in emergence of SOTA via
crowdsourcing to multiple research labs. The current global rankings and a mechanism to provide
your own data for rankings is described on the website.

7 Conclusion
In this paper, we present a new robot benchmark RB2, alongside a new benchmarking philosophy.
We argue that performance rankings between proposed algorithms and existing SOTA baselines
are meaningful, so long as experiments were performed under the same setup. Therefore, RB2 is
composed set of four benchmark tasks (pouring, scooping, zipping and insertion), alongside five
SOTA baseline approaches (BC-Open, NDP, BC-Closed, BC-LSTM, MOReL). Furthermore, we
show that evaluation data from multiple labs can be combined to create a singular global ranking. This
allows users to both intelligently pick useful baselines using our freely available global rankings and
implementations, and then demonstrate statistically significant improvements in their local labs. RB2
will evolve over time, as local advancements are contributed back to the repository. Indeed, we are
already planning to replicate these experiments in more lab spaces, while using other robots. However,
RB2 already reveals several notable findings: e.g. closed-loop learning approaches often struggle
in the real world vs simple learned open-loop baselines; and simple behavior cloning outperforms
much more complicated methods (like Offline RL). We sincerely hope robotics community uses this
benchmark to democratize robotics and scale up the pace of research progress.
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