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Abstract

Simulating physical systems is a core component of scientific computing, encom-
passing a wide range of physical domains and applications. Recently, there has been
a surge in data-driven methods to complement traditional numerical simulation
methods, motivated by the opportunity to reduce computational costs and/or learn
new physical models leveraging access to large collections of data. However, the
diversity of problem settings and applications has led to a plethora of approaches,
each one evaluated on a different setup and with different evaluation metrics. We
introduce a set of benchmark problems to take a step towards unified benchmarks
and evaluation protocols. We propose four representative physical systems, as well
as a collection of both widely used classical time integrators and representative
data-driven methods (kernel-based, MLP, CNN, nearest neighbors). Our frame-
work allows evaluating objectively and systematically the stability, accuracy, and
computational efficiency of data-driven methods. Additionally, it is configurable to
permit adjustments for accommodating other learning tasks and for establishing a
foundation for future developments in machine learning for scientific computing.

1 Introduction

Computational modeling of physical systems is a core task of scientific computing. Standard methods
rely on discretizations of explicit models typically given in the form of partial differential equations
(PDEs). Machine learning techniques can extend these techniques in a number of ways. In some
cases, a closed system of analytic equations relating all variables may not be available (e.g., a
constitutive relation for a material may not be known). In other cases, while a full analytic description
of a system is available, a traditional solution may be too costly (e.g., turbulence) or can be sped
up substantially using data-driven reduced-order models. However, despite promising results, a
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successful adoption of these data-driven approaches into scientific computing pipelines requires
a solid and exhaustive assessment of their performance—a challenging task given the diversity
of physical systems, corresponding data-driven approaches, and the lack of standardized sets of
problems, comparison protocols, and metrics.

We focus on the setting where the physical model is unavailable during training, mimicking situations
in computational science and engineering with ample data and a lack of models. One can generally
distinguish two different flavors of physical simulation with different associated computational
cost: those that map a high-dimensional state space into another high-dimensional space (as in
temporal integration schemes, mapping the state of the system at one time step to the next), or from a
high-dimensional input space to a lower-dimensional output (as in surrogate models, mapping the
initial conditions to a functional of the solution). While this distinction also applies to data-driven
approaches, another critical aspect emerges from the choice of input data distribution. We identify
two extremes: the narrow data regime, where initial conditions are sampled from a low-dimensional
manifold (even within a high-dimensional state space), and the wide regime, where initial conditions
span a truly high-dimensional space. As could be expected, narrow data regimes define an easier
prediction task where data-driven methods can potentially ‘bypass the physics,’ whereas wide regimes
require models with enough encoded physical priors in order to beat the curse of dimensionality.
Therefore, such choice of data distribution is a critical component of any data-driven physical
simulation benchmark.

In this work, we introduce an extensible benchmark suite, including: (1) an extensible set of simple,
yet representative, physical models with a range of training and evaluation (test) setups, as well
as reference, high-accuracy numerical solutions to benchmark data-driven methods, (2) reference
implementations of traditional time integration schemes, which are used as baselines for evaluation,
and (3) implementations of widely used data-driven methods, including physics-agnostic multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs), kernel machines and non-parametric
nearest neighbors. Our benchmark suite is modular, permitting extensions with limited code changes,
and captures both ‘narrow’ and ‘wide’ regimes by appropriately parametrizing the set of initial
conditions.

Our analysis reveals two important conclusions. First, even in the simplest physical models, current
data-driven pipelines, while providing qualitatively acceptable solutions, are quantitatively far from
directly numerically integrating physical models, and this performance gap appears unfeasible to
close by merely scaling up the models and/or the dataset size. In other words, the cost of ignoring
the physics is high, even for the simplest physics, and cannot in general be compensated by data,
matching insights that have been obtained in other scientific computing settings [5, 55]. Next,
and more importantly, our simple L2-based nearest neighbor regressor is used to calibrate how
‘narrow’ the learning task is. Our finding is that even for seemingly complex systems, such as
the incompressible Navier-Stokes systems, such a naive predictor outperforms most deep-learning-
based models in the narrow regime—thus providing a simple calibration of the true difficulty of the
simulation task, that we advocate should be present in every future evaluation.

2 Related work

Machine learning is used in physical simulation in a number of interrelated ways. Some important uses
include reduced-order/surrogate modeling, learning constitutive models or more generally compact
analytic representations from data. A unifying theme of these applications of machine learning is
automatic construction of parametric models capable of reproducing the behavior of physical systems
for a sufficiently broad range of initial data, boundary conditions and other system parameters.
The purpose of these representations varies from acceleration (e.g., surrogate machine learning
models are used to accelerate optimization), to automatic construction of multiscale models (learning
macroscopic constitutive laws from microscopic simulation), to inferring compact descriptions of
unknown representations from experimental data.

The purpose of our proposed benchmarks is to enable comparisons of different learning-based
methods in terms of their accuracy and efficiency. We briefly review two streams of learning
methods for physical systems. (1) One line of work aims to understand how neural networks can
be structured and trained to reproduce known physical system behavior, with the goal of designing
general methods applicable in a variety of settings [8, 42, 4, 41, 37, 38, 26, 10, 50, 51]. Our
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benchmark cases fit primarily into this category. (2) Another line of research aims to develop
a variety of techniques to accelerate solving PDEs. Typically, these methods are developed for
specific PDEs and a specific restricted range of problems: for example, fluid dynamics problems
[39, 16, 56], with particular applications to cardiovascular modeling [25, 19] and aerodynamics
[53]; or solid mechanics simulation tasks, including stresses [29, 24, 27, 15, 22, 23]. In cases where
the governing equations are not given, the learning task becomes approximating them from data
[30, 7, 1, 9, 2, 28, 3, 43, 44, 46, 45, 52, 35].

3 Background and problem setup

PDEs, dynamical systems, and time integration Consider a PDE of the form ∂tu = L(u), where
u is the unknown function and L is a possibly nonlinear operator that includes spatial derivatives of
u. By discretizing in space, one obtains a dynamical system

ẋ(t) = f(x(t)) (1)

with an N -dimensional state x(t) ∈ RN at time t ∈ [0, T ]. The function f is assumed to be Lipschitz
to ensure solution uniqueness and the initial condition is denoted as x0 ∈ RN . A PDE of a higher
order in time can be reduced to the first-order form in the standard way, e.g., if we have a second-
order system q̈(t) = f(q(t)), then we consider its formulation via position q and momentum p as
a first-order system with x = [q; p]: [q̇(t); ṗ(t)] = [p(t); f(q(t))]. To numerically integrate (1), we
choose time steps 0 = t0 < t1 < · · · < tK = T . Then, a time integration scheme (e.g., [49, 12, 11])
gives an approximation xk ≈ x(tk) of the state x(tk) at each time step k = 1, . . . ,K. A list of the
schemes we use along with details is given in Appendix A.

Problem setup and learning problems Given M initial conditions x(1)0 , . . . , x
(M)
0 ∈ RN and the

corresponding M trajectories X(i) = [x
(i)
0 , . . . , x

(i)
K ] ∈ RN×(K+1), i = 1, . . . ,M obtained with a

time integration scheme from dynamical system (1), we consider the following two learning problems,
both of which aim to learn the physical model of the problem, viewed as unknown, from trajectory
samples: (1) Learning an approximation f̃ of the right-hand side function f in Eq. (1). This gives
an approximate ˙̃x(t) = f̃(x̃(t)) that is then numerically integrated to produce a trajectory X̃ for an
initial condition x̃0. The aim is that X̃ approximates well the true trajectory X obtained with f from
(1) for the same initial condition. (2) Directly learning the next steps in the trajectory from the current
one, i.e. predict x(i)k given x(i)k−1.

To assess the learned models, we evaluate them on their ability to produce good approximate
trajectories from randomly sampled initial conditions, by either integration or direct step prediction.
During evaluation, we use initial conditions drawn independently from those used to produce training
data, both from the same distribution as the training samples, as well as from a distribution with
support outside the training range. We train networks on data sets of various sizes. For details, see
Appendix B.

4 Benchmark systems

We consider four physical systems, illustrated in Figure 1: a single oscillating spring, a one-
dimensional linear wave equation, a Navier-Stokes flow problem, and a mesh of damped springs.
These systems represent a progression of complexity: the spring system is a linear system with
a low-dimensional space of initial conditions and low-dimensional state; the wave equation is a
low-dimensional linear system with a (relatively) high-dimensional state space after discretization;
the Navier-Stokes equations are nonlinear and we consider a setup with low-dimensional initial con-
ditions and a high-dimensional state space; finally, the spring mesh system has both high-dimensional
initial conditions as well as high-dimensional states. Additionally, the proposed spring system and
Navier-Stokes problems represent diffusion-dominated and advection-dominated (for sufficiently
low viscosity) PDE behaviors, as well as variability in initial conditions with fixed domain (spring
system) and variable domain (Navier-Stokes). These varying complexities provide an opportunity to
test methods on simpler systems and the ability to examine changing performance as system size
increases, both in terms of the state dimension, and the initial condition distribution. The ground truth
models for the spring, wave, and spring mesh systems with classical time integrators are implemented
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Figure 1: Representative visualizations of the four systems, depicting the results and ranges of initial
condition sampling. Each has two state components: for the Navier-Stokes system, a flow velocity
and a pressure field, and for the other three a position q and momentum p.

using NumPy [13], SciPy [54], and accelerated, where possible, with Numba [21]. The Navier-Stokes
snapshots are generated using PolyFEM [47], a finite element library.

These systems were chosen in an effort to reflect the variety of systems used for testing in this
area, while unifying choices of particular formulations. Past works have chosen systems of the
types featured here: simple oscillators (both spring and pendulum [8]), particle systems with various
interaction laws (gravity, spring forces, charges, cloth simulations, etc. [6, 18, 42, 4, 34]), and fluid-
flow systems (with various sorts of obstacles, airfoils or cylinders [51, 34]). We make particular
selections here in an effort to unify systems of interest and facilitate comparisons across experiments
by providing a shared set of tasks which can be used for development and testing of machine learning
methods.

Some examples of initial condition selection for each system are illustrated in Figure 1. The ground
truth for the spring, wave, and spring mesh systems consists of the state variables (q, p) for position
and momentum, and their associated derivatives (q̇, ṗ). For the Navier-Stokes system the state consists
of flow velocities, and a pressure field, along with approximated time derivatives for each.

Table 1 lists the parameters used to generate trajectories for training and evaluation. Training sets
of three sizes are generated, each containing the specified number of trajectories. The systems are
integrated at the listed time step sizes, but the ground truth data is subsampled further by the factor
shown after ÷ in the table: the integration schemes are run at a smaller time step and intermediate
computations are discarded. Each larger training set is a strict superset of its predecessor to ensure
that previous training samples are never removed.

4.1 Spring

We simulate a simple one-dimensional oscillating spring. In this system, the spring has zero rest
length, and both the oscillating mass and spring constant are set to 1. The spring then exerts a force
inversely proportional to the position of the mass q: ṗ(t) = −q and q̇(t) = p.

The energy of the system is proportional to r = q2+p2 which is the radius of the circle in phase space.
To sample initial conditions, we first sample a radius uniformly, then choose an angle theta uniformly.
This produces a uniform distribution over spring system energy levels and starts at an arbitrary point in
the cycle. The spring system has a closed-form solution: (q(t), p(t)) = (r sin(t+ θ0), r cos(t+ θ0))
where r is the radius of the circle traced in phase space (the energy of the spring) and θ0 is the
phase space angle at which the oscillation will start. While this closed form solution is useful,
for consistency with our other systems, we generate snapshots of the spring system by numerical
integration. Simulations of the spring system always run through one period. For “in-distribution”
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training values, the radius is selected in the range (0.2, 1) and “out-of-distribution” radii are chosen
from (1, 1.2).

4.2 Wave

This benchmark system is similar to the one used in Peng and Mohseni [33]. Consider the wave
equation with speed c = 0.1

∂ttu = c2∂xxu , (2)

on a one-dimensional spatial domain [0, 1) with periodic boundary conditions. We represent this
second-order system as a first-order system and discretize in space to obtain[

q̇(t)
ṗ(t)

]
=

[
0 I

c2Dxx 0

] [
q(t)
p(t)

]
, (3)

where Dxx ∈ Rn×n corresponds to the three-point central difference approximation of the spatial
derivative ∂xx and the matrices I and 0 are the identity and zero matrix, respectively, of appropriate
size. We discretize in space with n = 125 evenly spaced grid points and evolve the system following
the dynamics described above.

Initial conditions are sampled with an initial pulse in the q component centered at 0.5. All initial
conditions have zero momentum. The initial pulse is produced by a spline kernel as described in [33]:

s(x) =
10

pw
· |x− 0.5| , h(s) = ph ·


1− 3

2s
2 + 3

4s
3 if 0 ≤ s ≤ 1

1
4 (2− s)3 if 1 < s ≤ 2

0 else

where the width and height of the pulse are scaled by parameters pw and ph, respectively. The spline
kernel pulse is then h(s(x)) for x ∈ [0, 1), evaluated at the discretized grid points.

For “in-distribution” samples, parameters pw, ph are both chosen uniformly in the range (0.75, 1.25)
and “out-of-distribution” runs sample uniformly from (0.5, 0.75) ∪ (1.25, 1.5). All trajectories are
integrated until t = 5 when the wave has traveled through half a period.

4.3 Spring mesh

This system manipulates a square grid of particles connected by springs, in a two dimensional space,
and can be considered a simplified version of deformable surface and volume systems (cf. [34]). The
particles all have mass 1, and are arranged into a unit grid. Springs are added along the axis-aligned
edges and diagonally across each grid square, with rest lengths selected so that the regularly-spaced
particles are in a rest position.

In this work we use a 10× 10 grid where the top row of particles is fixed in place. Initial conditions
are sampled by choosing a perturbation for the position of each non-fixed spring. These perturbations
are chosen as uniform vectors inside a circle with radius 0.35. Out-of-distribution perturbations
are chosen uniformly in a ring with inner radius 0.35 and outer radius 0.45. The sampled initial
conditions all have zero momentum.

In this system, a spring between particles a and b exerts a force:

Fab = −k ·
(
‖qa − qb‖2 − `ab

) qa − qb
‖qa − qb‖2

− γq̇a (4)

where `ab is the rest length of the spring, γ = 0.1 is a parameter controlling the magnitude of an
underdamped velocity-based decay, and k = 1 is the spring constant.

4.4 Navier-Stokes

We consider the standard Navier-Stokes equation over a domain Ω (cf. [34, 51])

ρ
∂u

∂t
+ ρ(u · ∇)u− ν∆u+∇p = b

∇ · u = 0
u(0) = u0

 on Ω× (0, T ) ,
u = d
ν ∂u∂n + pn = g

}
on ∂ΩD × (0, T ) ,
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Table 1: Dataset sizes and simulation parameters
System # Train Trajectories # Eval Trajectories Time Step Size # Steps

Spring 10, 500, 1000 30 0.00781 ÷128 805
Wave 10, 25, 50 6 0.00049 ÷8 10204
Spring Mesh 25, 50, 100 15 0.00781 ÷128 805
Navier-Stokes 25, 50, 100 5 0.08 ÷1 65

where u : Ω × (0, T ) → R2 is the velocity at time t ∈ (0, T ) of a fluid with kinematic viscosity
ν and density ρ, p : Ω × (0, T ) → R is the pressure and ∂ΩD and ∂ΩN are the Dirichlet and
Neumann boundary conditions, respectively. In our setup we use the finite element method (FEM)
to solve the PDE using mixed discretization: quadratic polynomial for the velocity and linear for
pressure. In our experiment the domain Ω is a rectangle 0.22 × 0.41 with a randomly generated
set of circular obstacles. We start with u0 = 0 and specify a velocity on the left boundary of
u(0, y) = (6(1− e−5t)(0.41− y)y/0.1681, 0), zero on the top and bottom, and zero Neumann on
the right side (g = 0). We solve the system using PolyFEM [47] using dt = 0.08 and backward
differentiation formula (BDF) of order 3 for the time integration.

We sample obstacles into two configurations: a single obstacle, or a set of four. In each case, we
sample the obstacles leaving a margin of 0.05 between each circle, and a margin of 0.25 from the
left and right sides, and 0.05 between the top and bottom. Otherwise, each obstacle is determined
by first sampling a radius, then sampling a center from the valid space, respecting the margins. If
the sampled obstacle is too close to an existing circle, it is discarded and a new sample is drawn.
In-distribution obstacles have radii in the range (0.05, 0.1) and out-of-distribution radii are drawn
from (0.025, 0.05).

5 Numerical experiments

Experimental setup We apply several basic learning methods to the datasets developed in this
work: k-nearest neighbor regressors, a neural network kernel method, several sizes of feed-forward
MLPs, and a variety of CNNs. Details of the architectures and the training protocol are provided in
supplementary material, Appendix B. Each of the neural networks we consider is implemented using
PyTorch [31].

The learning methods considered in this work are each trained on one of the two target task formula-
tions described in Section 3. For derivative-based prediction, the training is conducted supervised
on ground truth snapshots gathered from the underlying models. For each system we randomly
sample initial conditions and each of these is then numerically integrated to produce a trajectory.
Each trajectory includes state samples x as well as target derivatives ẋ used for training. For direct
prediction, we no longer require numerical integration; instead we directly predict the trajectory in a
sequential fashion. In this setting, we approximate f̃θ(x(t)) ≈ x(t+ δt) for a discrete time step size
δt. For the derivative prediction task we report results using the leapfrog integrator. Full results using
other numerical integration schemes are available in the supplementary materials.

We pick the same set of learning methods and apply it to both tasks independently to judge perfor-
mance in each. For many systems the state is divided into position and momentum components:
x ≡ (q, p). For the Navier-Stokes problem, the state x is made up of the flow velocity field, and
the scalar field for pressure. After training, we produce rolled-out trajectories from held-out initial
conditions, either by combining with a numerical integrator in the case of derivative prediction, or
in a directly recurrent fashion in the case of step prediction. Each neural network is instantiated in
three independent copies, each of which is trained and evaluated across all sampled trajectories. We
compute a per-step MSE against a ground truth value, average these per-step MSEs to produce a
per-trajectory error, and record these errors for analysis. Our experiments are designed to test several
aspects of physical simulation. We highlight the most salient ones next, and report more extensive
results in Appendix C.

Training set size In general ML problems, one would expect additional training samples to sys-
tematically improve (in-distribution) evaluation performance. However, Figure 2 illustrates a clear

6



10 500 1000
Training set size

10 8

10 6

10 4

10 2

100

M
ed

ia
n 

M
SE

Spring

10 25 50
Training set size

10 3

10 1

101

103

105

107
Wave

25 50 100
Training set size

10 1

103

107

1011

1015

1019 Spring Mesh

25 50 100
Training set size

10 2

10 1

100

101

102

Navier Stokes 1 Obst.

25 50 100
Training set size

10 1

100

101

102

103

Navier Stokes 4 Obst.

knn nn-kernel mlp cnn unet derivative step

mlp-2-2048 mlp-3-200 mlp-4-4096 mlp-5-2048 cnn-9-32 cnn-9-64 cnn-5-32
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axes were approximately 1013 for the spring mesh and in the range 102–103 for Navier-Stokes.

saturation of performance on the simplest systems when using neural networks as function approxima-
tors, in contrast with non-parametric KNNs and the kernel method. We attribute this saturation to an
inherent gap between the training and evaluation objectives. While data-driven methods are optimized
to minimize next-step predictions, the final evaluation requires built-in stability to prediction errors.
Including regularisation strategies to incorporate stability, such as noise injection [34], is shown to
help, but not fully resolve this issue.

Out-of-distribution evaluation For simplicity, we only examine the out-of-distribution error for
networks trained on the largest training set size. The added challenge of out-of-distribution samples
varies with the construction of each system. It is possible to get some idea of the difficulty increase
by examining the accuracy penalty for the KNNs, and comparing it to how well the more advanced
models are able to generalize.

Benefits of neural networks for generalization over KNN are visible across several systems in Figure 3,
particularly in the spring system for small MLPs for derivative prediction and nn-kernel in both
cases. The KNN suffers a significant increase in error while these methods produce only somewhat
worse predictions. Benefits are still present, though less pronounced, for the wave system derivative
prediction where neural networks increase in error, but the kernel method and small MLP maintain a
lower absolute error than the KNN. On the Navier-Stokes systems none of the methods suffers an
increase in error for out-of-distribution evaluation. The change in radius distribution for the obstacles
did not pose an additional challenge sufficient to produce a measurable change in error distribution.
We attribute this to low dimension of the initial condition space.

Step and derivative prediction The step and derivative prediction instances of each learning
problem lead to different accuracy from the learning methods we test. While most physical systems
are naturally described in terms of their derivatives through corresponding ODEs/PDEs, data-driven
simulations also offer the alternative of bypassing this differential formulation and predict the next
state directly. Such ‘cavalier’ approach avoids the compounding error amplification effects across
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Figure 4: Median MSEs for derivative vs. step prediction on the same evaluation set. Results are
displayed for each of our system configurations. The dotted line is the identity line.

integration steps, at the expense of sample efficiency. Figure 4 illustrates these tradeoffs across our
systems.

An important example of this effect is the performance of CNNs on the spring mesh system (Figure 8
in the Appendix). When working through a numerical integrator and performing derivative prediction
they produce the lowest error of all methods tested, but following the same training protocol for step
prediction these architectures produce high errors, or are unstable. This case is likely an interaction
of the architecture with the specific learning task. For the spring mesh, step prediction requires
outputting the position of the particle which requires manipulating its global coordinates, while
derivative predictions allow the network to more easily act locally and compute only a relative motion
for the particle. The derivative prediction task better takes advantage of the spatial invariance of the
CNNs. This difference in performance reflects the importance of tailoring architectures to the specific
task, and some potential for neural network architectures to benefit from incorporating knowledge of
a system’s behavior.

System and dataset complexity Several trends we observe correlate with the difficulty of learning
to simulate a system, and the variation in its behavior across the training and evaluation samples. This
is generally a combination of the system’s state dimension, and variation in its behavior, approximated
by the dimension of the distribution from which initial conditions are sampled.

This is particularly visible in Figure 5 in the performance of the KNN methods, and, in many cases,
the performance of simpler methods such as the small MLPs. On the simpler systems, such as the
spring and wave, the KNNs generally perform well because even though the wave system has a
relatively large state dimension of 125, like the spring its initial condition is sampled from only two
parameters and its behavior can be readily predicted from these. The Navier-Stokes system with
a single obstacle is another instance of this sort of behavior: the KNN is readily able to reproduce
flows it has not seen because a sampling of 100 obstacle positions is such that an evaluation sample is
close to a trajectory seen at training time. Therefore, small MLPs and the kernel method produce
similar performance. When the difficulty is increased by sampling four obstacles, the KNN and MLP
performances suffer, and larger networks such as the u-net are needed to maintain approximately the
same performance.

Choice of numerical integrator For our derivative prediction tasks we combine our trained meth-
ods with three explicit integrators with orders 1, 2, and 4. In most of our systems these produce
at most a small increase in accuracy, holding all other training and evaluation parameters equal.
However on the Navier-Stokes system the higher order integrators produce somewhat higher errors,
particularly for the u-net and the MLPs. This appears related to the approximated derivatives used for
training this system. The learned derivatives produce some small deviations which are compounded
when combining multiple derivative samples.

Computational overheads Another important aspect to consider when applying learning methods
to physical simulation problems is the time required to compute each step, and the computational
overheads introduced by the lack of knowledge of the true system physics. With standard numerical
integration methods, it is generally possible to improve the quality of generated trajectories by
decreasing the size of the time step used during integration. We take advantage of this in order to
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Table 2: Time comparison for derivative prediction against baseline numerical integrators

System Architecture Euler Leapfrog RK4

Time Ratio Scaling Time Ratio Scaling Time Ratio Scaling

Spring

knn 367.0 1× 405.8 16× 311.3 64×
nn kernel 180.7 1× 198.6 1× 173.3 1×
mlp-2-2048 185.8 1× 191.6 16× 177.7 64×
mlp-3-200 237.6 1× 237.5 16× 227.2 64×
mlp-5-2048 473.8 4× 369.6 64× 360.9 128×

Wave

knn 24,102.7 8× 16,945.1 256× 16,132.0 256×
nn kernel 35.3 8× 22.3 256× 19.9 256×
mlp-2-2048 25.4 8× 16.5 256× 14.2 256×
mlp-3-200 31.0 16× 19.7 256× 17.8 256×
mlp-5-2048 60.5 16× 38.0 256× 34.6 256×

Spring Mesh

knn 708.6 8× 626.1 128× 690.4 256×
nn kernel 5.3 8× 4.4 128× 4.8 256×
mlp-2-2048 3.0 8× 2.6 128× 2.8 256×
mlp-3-200 3.4 8× 3.2 128× 3.4 256×
mlp-4-4096 7.8 16× 7.1 128× 7.7 256×
mlp-5-2048 7.1 8× 6.2 128× 5.3 256×
cnn-9-32 11.0 2× 10.5 32× 11.3 64×
cnn-5-32 7.4 1× 9.2 32× 7.3 64×

estimate the time overheads of our learning methods relative to our baseline numerical integrators at
approximately corresponding error levels.

We numerically integrate each system at time step sizes scaled by powers of two. For each trajectory in
the derivative prediction setting, we find the smallest scaling factor at which the numerical integrator
exceeds the learning method’s error at their final shared time step, approximating the factor by which
numerical integration can be made faster until it begins to underperform the learned method.

Table 2 reports the results of these experiments. For each numerical integrator, the “scaling” column
reports the most common scaling factor found for each trajectory. The “time ratio” column represents
the learned method’s evaluation overhead (median times, counting only per-step network evaluation
costs, not numerical integration or data transfers). Note that the numerical integrator makes fewer
steps than the learned method so the overall trajectory time must be further adjusted by the scaling
factor.

In general, the neural networks are slower per-step by one or two orders of magnitude. KNNs are
slower by significantly larger factors, particularly for the wave system. This is likely partially due
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to the default scikit-learn KNN implementation used, and due to the large size of the wave system
training sets (large state dimension and large number of training snapshots). Scaling factors increase
with the order of the integrator as higher-order integrators are more tolerant of large step sizes and
maintain low error.

It is likely that these overheads could be reduced with more optimized implementations of both the
numerical integrators and learned methods. The derivative prediction task is also constrained by its
need to interact with the numerical integrator. In this setting the learned methods cannot be expected
to outperform the quality of the solutions generated by the true system derivatives. This reflects a
penalty resulting from a lack of knowledge of the true underlying system, and a penalty for learning
from observations in this case. Step prediction without involving the numerical integrator potentially
avoids some of these constraints, if learning is successful.

6 Conclusions and limitations

The results in this work illustrate the performance achievable by applying common machine learning
methods to the simulation problems in our proposed benchmark task. We envision three ways
in which the results of this work might be used: (1) the datasets developed here can be used for
training and evaluating new machine learning techniques in this area, (2) the simulation software
can be used to generate new datasets from these systems of different sizes, different initial condition
dimensionality and distribution; and the training software could be used to assist in conducting further
experiments, and (3) some of the trends seen in our results may help inform the design of future
machine learning tasks for simulation.

For the first and second groups of downstream users, we have made available the pre-generated
datasets used in this work, as well as the software used to produce them and carry out our experiments.
These components allow carrying out the measurements we have made here, and permit further
adjustments to be made. Documentation on using the datasets and the software is included in
Appendix D.

For the third group, we highlighted a few trends that suggest useful steps to take in developing new
problems and datasets in this area. First, we advise including several simple baseline methods when
designing new tasks. In particular the inclusion of standard numerical integrators (for derivative-type
problems) and KNNs are useful to evaluate the difficulty of the proposed task. Specifically, KNNs
are useful for examining the performance achievable by memorizing the training set, and are thus
witnessing an appropriate design of data distribution that captures the true high-dimensionality of
the prediction task. As an example, in the Navier-Stokes examples some task formulations may
inadvertently be simple to memorize, even if the complexity of the system itself may not immediately
suggest it. The numerical integrators are likewise useful as baselines both to ensure that the derivative
learning is feasible even when achieving no error in predictions, and also to evaluate the penalty
in accuracy which is incurred by operating without access to the true physics. We believe that in
light of these observed trends, including baseline methods such as standard numerical integration
schemes and simple learning methods such as the KNN is important in understanding tasks in this
area. Including these assists in experiment design by helping to calibrate the difficulty of a target task.

Limitations While our benchmark provides actionable conclusions on a wide array of simulation
domains, it is currently focused on temporal integration, and as such it does not cover important
settings in scientific computing. For instance, we do not currently include an instance of a surrogate
model, which could provide different tradeoffs benefiting ML models. Additionally, we have
focused on two setups for data-driven simulation (differential snapshot prediction and direct snapshot
prediction), but other alternatives exist that might mitigate some of the shortcomings we observed; for
instance by considering larger temporal contexts (as in [4]), as well as enforcing certain conservation
laws into the model [8, 4]. Finally, while we report some measurements of timings and relative
computational overheads, there are other dimensions to the time-accuracy tradeoff which remain to
be explored and further software optimizations are most likely possible.
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