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Abstract

Therapeutics machine learning is an emerging field with incredible opportunities for
innovation and impact. However, advancement in this field requires formulation of
meaningful tasks and careful curation of datasets. Here, we introduce Therapeutics
Data Commons (TDC), the first unifying platform to systematically access and
evaluate machine learning across the entire range of therapeutics. To date, TDC
includes 66 AI-ready datasets spread across 22 learning tasks and spanning the
discovery and development of safe and effective medicines. TDC also provides
an ecosystem of tools and community resources, including 33 data functions
and diverse types of data splits, 23 strategies for systematic model evaluation,
17 molecule generation oracles, and 29 public leaderboards. All resources are
integrated and accessible via an open Python library. We carry out extensive
experiments on selected datasets, demonstrating that even the strongest algorithms
fall short of solving key therapeutics challenges, including distributional shifts,
multi-scale and multi-modal learning, and robust generalization to novel data
points. We envision that TDC can facilitate algorithmic advances and considerably
accelerate machine-learning model development, validation and transition into
biomedical and clinical implementation. TDC is available at https://tdcommons.ai.

1 Introduction

The overarching goal of scientific research is to find ways to cure, prevent, and manage all diseases.
With the proliferation of high-throughput biotechnological techniques [65] and advances in the
digitization of health information [2], machine learning provides a promising approach to expedite the
discovery and development of safe and effective treatments. Getting a drug to market currently takes
13-15 years and between US$2 billion and $3 billion on average, and the costs are going up [113].
Further, the number of drugs approved every year per dollar spent on development has remained flat
or decreased for most of the past decade [113, 104]. Faced with skyrocketing costs for developing
new drugs and long, expensive processes with a high risk of failure, researchers are looking at ways
to accelerate all aspects of drug development. Machine learning has already proved useful in the
search of antibiotics [136], polypharmacy [176], drug repurposing for emerging diseases [47], protein
folding and design [64, 41], and biomolecular interactions [177, 3, 55, 39].

Despite the initial success, the attention of the machine learning scientists to therapeutics remains
relatively limited, compared to areas such as natural language processing and computer vision, even
though therapeutics offer many hard algorithmic problems and applications of immense impact. We
posit that is due to the following key challenges: (1) The lack of AI-ready datasets and standardized
knowledge representations prevent scientists from formulating relevant therapeutic questions as
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Figure 1: Overview of Therapeutics Data Commons (TDC). TDC is a platform with AI-ready datasets and tasks for therapeutics, spanning
the discovery and development of medicines. TDC provides an ecosystem of tools and data functions, including strategies for systematic
model evaluation, meaningful data splits, data processors, and molecule generation oracles. All resources are integrated and accessible via a
Python package. TDC also provides community resources with extensive documentation and tutorials, and leaderboards for systematic model
comparison and evaluation.

solvable machine-learning tasks—the challenge is how to computationally operationalize these data
to make them amenable to learning; (2) Datasets are of many different types, including experimen-
tal readouts, curated annotations and metadata, and are scattered around the biorepositories—the
challenge for non-domain experts is how to identify, process, and curate datasets relevant to a task
of interest; and (3) Despite promising performance of models, their use in practice, such as for rare
diseases and novel drugs in development, is hindered—the challenge is how to assess algorithmic
advances in a manner that allows for robust and fair model comparison and represents what one
would expect in a real-world deployment or clinical implementation.

Present work. To address the above challenges, we introduce Therapeutics Data Commons (TDC),
the first platform to systematically access and evaluate machine learning across the entire range
of therapeutics (Figure 1). TDC provides AI-ready datasets and learning tasks, together with an
ecosystem of tools, libraries, leaderboards, and community resources. To date, TDC contains 66
datasets (Table 1) spread across 22 learning tasks, 23 strategies for systematic model evaluation
and comparison, 17 molecule generation oracles, and 33 data processors, including 5 types of data
splits. Datasets in TDC are diverse and cover a range of therapeutic products (e.g., small molecule,
biologics, and gene editing) across the entire range of drug development (i.e., target identification, hit
discovery, lead optimization, and manufacturing). We develop a Python package that implements all
functionality and can efficiently retrieve any TDC dataset. Finally, TDC has 29 leaderboards, each
with carefully designed train, validation, and test splits to provide a systematic model comparison and
evaluation framework and test the extent to which model performance reflects real-world settings.

Datasets and tasks in TDC are challenging. To this end, we rigorously evaluate 21 domain-specific
and state-of-the-art methods across 24 TDC benchmarks (Section 4): (1) a group of 22 ADMET
benchmarks are designed to predict properties of small molecules—it is a graph representation
learning problem; (2) the DTI-DG benchmark is designed to predict drug-target binding affinity using
a patent temporal split—it is a domain generalization problem; (3) the docking benchmark is designed
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to generate novel molecules with high docking scores in limited resources—it is a low-resource
generative modeling problem. We find that theoretic domain-specific methods often have better or
comparable performance with state-of-the-art models, indicating urgent need for rigorous model
evaluation and an ample opportunity for algorithmic innovation.

Finally, datasets and benchmarks in TDC lend themselves to the study of the following open questions
in machine learning and can serve as a testbed for new algorithms, including:

• Few-shot learning and extrapolation: Prevailing methods require abundant label informa-
tion. However, labeled examples are scarce in drug development and discovery, considerably
limiting the methods’ use for problems that require reasoning about new phenomena, such as
novel drugs in development, emerging pathogens, and therapies for rare diseases.

• Multi-modal and knowledge graph reasoning: Data points in TDC have diverse represen-
tations and are given in various modalities, including graphs, tensors/grids, sequences, and
spatio-temporal entities.

• Distribution shifts: Candidate drugs and target proteins can quickly change their behavior
depending on biological context, such as cellular, tissue, and disease states, meaning that
models need to accommodate the underlying distribution shifts and have robust generalizable
performance on previously unseen data points.

• Causal inference: TDC contains datasets that quantify drug response, the response of
molecules and cells to different kinds of perturbations, such as treatment, CRISPR gene
over-expression, and knockdown perturbations. Observing how and when a cellular, molecular
or patient response is altered can provide clues into underlying mechanisms of the perturbation
and, ultimately, disease. Thus, these datasets represent a natural testbed for causal inference.

2 Related Work

TDC is the first unifying platform of datasets and learning tasks for drug discovery and development.
We briefly review how TDC relates to data collections, benchmarks, and toolboxes in other areas.

Relation to biomedical and chemical data repositories. There is a myriad of databases with
therapeutically relevant information. For example, BindingDB [89] curates binding affinity data,
ChEMBL [98] curates bioassay data, THPdb [148] and TTD [156] record information on therapeutic
targets, and BioSNAP Datasets [178] contains biological networks. DrugBank [160] provides rich
information around drug products. While these biorepositories are important for data deposition and
re-use, they do not contain AI-ready datasets (e.g., well-annotated metadata, requisite sample size,
and granularity, provenance, multimodal data dynamics, and curation needs), meaning that extensive
domain expertise is needed to process the them and construct datasets that can be used for machine
learning. In addition, while each of the above database focus on a single-modality resource, TDC
has a wider coverage in extending to emerging therapeutic types such as CRISPR and therapeutics
pipelines such as manufacturing.

Relation to ML benchmarks. Benchmarks have a critical role in facilitating progress in machine
learning (e.g., ImageNet [33], Open Graph Benchmark [52], SuperGLUE [153]). More related to us,
MoleculeNet [161] provides datasets for molecular modeling and TAPE [117] provides five tasks
for protein transfer learning. In contrast, TDC broadly covers modalities relevant to therapeutics,
including compounds, proteins, biomolecular interactions, genomic sequences, disease taxonomies,
regulatory and clinical datasets. Further, while MoleculeNet and TAPE aim to advance representation
learning for compounds and proteins, TDC has a focus on drug discovery and development.

Relation to therapeutics ML tools. Many open-science tools exist for biomedical machine learning.
Notably, DeepChem [116] implements models for molecular machine learning; DeepPurpose [54] is
a framework for compound and protein modeling; OpenChem [72] and ChemML [48] also provide
models for drug discovery tasks. In contrast, TDC is not a model-driven framework; instead, it
provides datasets and formulates learning tasks. Further, TDC provides an extensive ecosystem of
tools and resources (Section E) for model development and evaluation.
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3 Overview of Therapeutics Data Commons

TDC has three major components: a collection of datasets and formulations of meaningful learning
tasks; a comprehensive ecosystem of tools and community resources to support data processing, model
development and validation; and a collection of leaderboards to support fair model comparison and
benchmarking. The programmatic access is provided through the TDC Python package2 (Figure 3).
We proceed with a brief overview of each TDC’s component.

1) AI-ready datasets and learning tasks. TDC has an unique three-tiered hierarchical structure,
which to our knowledge, is the first attempt at systematically organizing ML for therapeutics. We
organize TDC into three distinct problems. For each problem, we provide a collection learning tasks,
and for each task, we provide a collection of datasets.

In the first tier, after observing a large set of therapeutics tasks, we identify three major problems:

• Single-instance prediction single_pred: Predictions about individual biomedical entities.
• Multi-instance prediction multi_pred: Predictions about multiple biomedical entities.
• Generation generation: Generation of biomedical entities with desirable properties.

In the second tier, TDC is organized into tasks. TDC currently includes 22 tasks, covering a range of
development pipelines and therapeutic modalities. These range from small molecules to biologics,
including antibodies, peptides, microRNAs, and gene therapy. Further, TDC tasks map to the
following development pipelines:

• Target discovery: Tasks to identify candidate drug targets.
• Activity modeling: Tasks to screen and generate individual or combinatorial candidates with

high binding activity towards targets.
• Efficacy and safety: Tasks to optimize therapeutic signatures indicative of safety and efficacy.
• Manufacturing: Tasks to synthesize safe and effective drug.

In the third tier, TDC provides multiple datasets for each task. To date, TDC includes 66 datasets
(Table 1). For each dataset, we provide several dataset splits into training, validation, and test sets.
TDC datasets vary in size between 200 and 2 million data points. All datasets are harmonized and
contain metadata, provenance information, and curated annotations (Appendix B-D).

Notably, all datasets included in TDC are carefully processed from the primary data resources.
The raw data come in various file formats, including machine non-readable formats, and is often
inaccessible to the users. For each dataset, the raw data can be of different types, including experi-
mental readouts, curated annotations, and metadata, and are scattered around the biorepositories and
paper supplementary documents, thus requiring extensive curation to transform/link it to a format
that is amenable to ML analyses. Further, many transformations and quality control steps require
domain-specific expertise and familiarity with many bioinformatics and cheminformatics tools.

2) Ecosystem of tools and community resources. TDC includes numerous data functions that can
be readily used with any TDC dataset. TDC divides its programmatic ecosystem into four broad
categories (Figure 1) that we describe in detail in Appendix E:

• 23 strategies for model evaluation: TDC implements a series of metrics and performance
functions to debug models, evaluate model performance for any task in TDC, and assess
whether model predictions generalize to out-of-distribution datasets.

• 5 types of dataset splits: TDC implements data splits that reflect real-world settings, including
random split, scaffold split, cold-start split, temporal split, and combination split.

• 17 molecule generation oracles: Molecular design tasks require oracle functions to measure
the quality of generated entities. TDC implements 17 molecule generation oracles, represent-
ing the most comprehensive collection of oracles, each tailored to measure a distinct quality
of generated molecules.

• 11 data processing functions: Datasets cover a range of modalities, each requiring distinct
data processing and quality checks. TDC provides functions for data format conversion,

2Documentation of TDC Python package can be found at http://tdc.readthedocs.io.
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Figure 2: Tiered design of Therapeutics Data Commons. We
organize TDC into three distinct problems. For each problem,
we give a collection of learning tasks. Finally, for each task,
we provide a collection of datasets (Section 3). For example,
TDC.Caco2_Wang is a dataset under the ADME learning task,
which, in turn, is under the single-instance prediction problem.
This unique three-tiered hierarchical structure is, to the best of
our knowledge, the first attempt at systematically organizing
therapeutics ML.

Figure 3: TDC Python package (PyTDC). All resources in TDC, in-
cluding data loaders, data split functions, molecule generation oracles,
data processing helpers, and model evaluators (Figure 1) can be easily
accessed via our Python package. The installation of the TDC pack-
age is hassle-free (e.g., using PyPI package management system) with
minimum dependency on external packages. In this example, we first
create a DataLoader object and use it to obtain a random split of the
TDC.DILI dataset. The second and third code blocks illustrate how to
access TDC data functions, i.e., an MSE model evaluator and a JNK3
molecule generation oracle. Lastly, a BenchmarkGroup object pro-
vides support for TDC leaderboards. See also Appendix F, and doc-
umentation and tutorials on Github and TDC website.

visualization, binarization, data balancing, unit conversion, database querying, molecule
filtering, and more.

3) Leaderboards. TDC provides leaderboards for systematic model evaluation and comparison. For
a model to be useful for a particular therapeutic question, it need to perform well consistently across
multiple related datasets and tasks. For this reason, we group individual benchmarks in TDC into
meaningful groups, which we refer to as benchmark groups. Datasets and tasks within a benchmark
group are carefully selected and centered around a particular therapeutic question. Further, dataset
splits and evaluation metrics are carefully selected to reflect the real-world requirement. The current
release of TDC has 29 leaderboards (29 = 22 + 5 + 1 + 1; see Figure 1). Section 4 describes 24 of
them and reports extensive empirical results for them. We follow the mechanisms based on previous
successes [52, 70], where the test set label is public and users are required to explicitly provide
consent to an honor code and open-source their models with fully reproducible codes.

4 Experiments on Selected Datasets

TDC benchmarks and leaderboards enable systematic model development and evaluation. We
illustrate them through three examples. Datasets, code, and evaluation strategies for these experiments
are available at https://github.com/mims-harvard/TDC/tree/master/examples.

4.1 Twenty-Two Datasets in the ADMET Benchmark Group

Motivation. Although millions of active compounds have been identified, the number of approved
new drugs has not drastically increased in recent years [104]. Besides the non-technical issues, the
efficacy and safety deficiencies are main factors of stagnation which is related largely to absorption,
distribution, metabolism and excretion (ADME) properties and various toxicities (T). ADME covers
the pharmacokinetic issues determining whether a drug molecule gets to the target protein in the
body, and how long it stays in the bloodstream. Parallel evaluation of efficiency and pharmacological
properties of drug candidates has been standardized, and studies of ADMET processes are nowadays
routinely carried out at early stage of drug discovery to reduce the attrition rate.

Experimental setup. We use 22 ADMET datasets in the TDC—the largest public benchmark for
ADMET profiling to date. Endpoints in these datasets include metabolism with diverse types of CYP
enzymes, half-life, clearance, and off-target effects. Real-world discovery studies drug candidates
with diverse structures, and the ADMET benchmark datasets represent distribution shifts faced in
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Table 1: List of 66 datasets in Therapeutics Data Commons. Size is the number of data points; Feature is the type of data features; Task
is the type of prediction task; Metric is the recommended performance metric; Split is the recommended dataset split. For units, ’—’ is
used to denote the that dataset defines either a classification task or a regression task for which numeric label units are not meaningful. For
generation.MolGen, generic metrics are no applicable as performance is defined based on the task of interest.

Dataset Learning Task Size Unit Feature Task Rec. Metric Rec. Split

TDC.Caco2_Wang single_pred.ADME 906 cm/s Seq/Graph Regression MAE Scaffold
TDC.HIA_Hou single_pred.ADME 578 — Seq/Graph Binary AUROC Scaffold
TDC.Pgp_Broccatelli single_pred.ADME 1,212 — Seq/Graph Binary AUROC Scaffold
TDC.Bioavailability_Ma single_pred.ADME 640 — Seq/Graph Binary AUROC Scaffold
TDC.Lipophilicity_AstraZeneca single_pred.ADME 4,200 log-ratio Seq/Graph Regression MAE Scaffold
TDC.Solubility_AqSolDB single_pred.ADME 9,982 log-mol/L Seq/Graph Regression MAE Scaffold
TDC.BBB_Martins single_pred.ADME 1,975 — Seq/Graph Binary AUROC Scaffold
TDC.PPBR_AZ single_pred.ADME 1,797 % Seq/Graph Regression MAE Scaffold
TDC.VDss_Lombardo single_pred.ADME 1,130 L/kg Seq/Graph Regression Spearman Scaffold
TDC.CYP2C19_Veith single_pred.ADME 12,092 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2D6_Veith single_pred.ADME 13,130 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP3A4_Veith single_pred.ADME 12,328 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP1A2_Veith single_pred.ADME 12,579 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2C9_Veith single_pred.ADME 12,092 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2C9_Substrate single_pred.ADME 666 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP2D6_Substrate single_pred.ADME 664 — Seq/Graph Binary AUPRC Scaffold
TDC.CYP3A4_Substrate single_pred.ADME 667 — Seq/Graph Binary AUROC Scaffold
TDC.Half_Life_Obach single_pred.ADME 667 hr Seq/Graph Regression Spearman Scaffold
TDC.Clearance_Hepatocyte_AZ single_pred.ADME 1,020 uL.min�1.(106cells)�1 Seq/Graph Regression Spearman Scaffold
TDC.Clearance_Microsome_AZ single_pred.ADME 1,102 mL.min�1.g�1 Seq/Graph Regression Spearman Scaffold
TDC.LD50_Zhu single_pred.Tox 7,385 log(1/(mol/kg)) Seq/Graph Regression MAE Scaffold
TDC.hERG single_pred.Tox 648 — Seq/Graph Binary AUROC Scaffold
TDC.AMES single_pred.Tox 7,255 — Seq/Graph Binary AUROC Scaffold
TDC.DILI single_pred.Tox 475 — Seq/Graph Binary AUROC Scaffold
TDC.Skin_Reaction single_pred.Tox 404 — Seq/Graph Binary AUROC Scaffold
TDC.Carcinogens_Lagunin single_pred.Tox 278 — Seq/Graph Binary AUROC Scaffold
TDC.Tox21 single_pred.Tox 7,831 — Seq/Graph Binary AUROC Scaffold
TDC.ClinTox single_pred.Tox 1,484 — Seq/Graph Binary AUROC Scaffold
TDC.SARSCoV2_Vitro_Touret single_pred.HTS 1,480 — Seq/Graph Binary AUPRC Scaffold
TDC.SARSCoV2_3CLPro_Diamond single_pred.HTS 879 — Seq/Graph Binary AUPRC Scaffold
TDC.HIV single_pred.HTS 41,127 — Seq/Graph Binary AUPRC Scaffold
TDC.QM7b single_pred.QM 7,211 eV/3 Coulomb Regression MAE Random
TDC.QM8 single_pred.QM 21,786 eV Coulomb Regression MAE Random
TDC.QM9 single_pred.QM 133,885 GHz/D/20/30 Coulomb Regression MAE Random
TDC.USPTO_Yields single_pred.Yields 853,638 % Seq/Graph Regression MAE Random
TDC.Buchwald-Hartwig single_pred.Yields 55,370 % Seq/Graph Regression MAE Random
TDC.SAbDab_Liberis single_pred.Paratope 1,023 — Seq Token-Binary Avg-AUROC Random
TDC.IEDB_Jespersen single_pred.Epitope 3,159 — Seq Token-Binary Avg-AUROC Random
TDC.PDB_Jespersen single_pred.Epitope 447 — Seq Token-Binary Avg-AUROC Random
TDC.TAP single_pred.Develop 242 — Seq Regression MAE Random
TDC.SAbDab_Chen single_pred.Develop 2,409 — Seq Regression MAE Random
TDC.Leenay single_pred.CRISPROutcome 1,521 #/%/bits Seq Regression MAE Random
TDC.BindingDB_Kd multi_pred.DTI 52,284 nM Seq/Graph Regression MAE Cold-start
TDC.BindingDB_IC50 multi_pred.DTI 991,486 nM Seq/Graph Regression MAE Cold-start
TDC.BindingDB_Ki multi_pred.DTI 375,032 nM Seq/Graph Regression MAE Cold-start
TDC.DAVIS multi_pred.DTI 27,621 nM Seq/Graph Regression MAE Cold-start
TDC.KIBA multi_pred.DTI 118,036 — Seq/Graph Regression MAE Cold-start
TDC.DrugBank_DDI multi_pred.DDI 191,808 — Seq/Graph Multi-class Macro-F1 Random
TDC.TWOSIDES multi_pred.DDI 4,649,441 — Seq/Graph Multi-label Avg-AUROC Random
TDC.HuRI multi_pred.PPI 51,813 — Seq Binary AUROC Random
TDC.DisGeNET multi_pred.GDA 52,476 — Numeric/Text Regression MAE Random
TDC.GDSC1 multi_pred.DrugRes 177,310 µM Seq/Graph/Numeric Regression MAE Random
TDC.GDSC2 multi_pred.DrugRes 92,703 µM Seq/Graph/Numeric Regression MAE Random
TDC.DrugComb multi_pred.DrugSyn 297,098 — Seq/Graph/Numeric Regression MAE Combination
TDC.OncoPolyPharmacology multi_pred.DrugSyn 23,052 — Seq/Graph/Numeric Regression MAE Combination
TDC.MHC1_IEDB-IMGT_Nielsen multi_pred.PeptideMHC 185,985 log-ratio Seq/Numeric Regression MAE Random
TDC.MHC2_IEDB_Jensen multi_pred.PeptideMHC 134,281 log-ratio Seq/Numeric Regression MAE Random
TDC.Protein_SAbDab multi_pred.AntibodyAff 493 KD(M) Seq/Numeric Regression MAE Random
TDC.miRTarBase multi_pred.MTI 400,082 — Seq/Numeric Regression MAE Random
TDC.USPTO_Catalyst multi_pred.Catalyst 721,799 — Seq/Graph Multi-class Macro-F1 Random
TDC.MOSES generation.MolGen 1,936,962 — Seq/Graph Generation — —
TDC.ZINC generation.MolGen 249,455 — Seq/Graph Generation — —
TDC.ChEMBL generation.MolGen 1,961,462 — Seq/Graph Generation — —
TDC.USPTO-50K generation.RetroSyn 50,036 — Seq/Graph Generation Top-K Acc Random
TDC.USPTO_RetroSyn generation.RetroSyn 1,939,253 — Seq/Graph Generation Top-K Acc Random
TDC.USPTO_Reaction generation.Reaction 1,939,253 — Seq/Graph Generation Top-K Acc Random

the wild. ADMET prediction requires models to generalize to domains unseen during training, i.e.,
molecules with a new scaffold structure that are structurally different from drugs used for training.
To this end, we adopt scaffold split to simulate this distant effect. Each dataset is split into 7:1:2
training:validation:testing ratio where the training and validation sets are shuffled to create five
random runs. For binary classification, the AUROC is used for balanced datasets and AUPRC for
scenarios with fewer positive examples than negatives. For regression, we use the MAE. We use
Spearman’s rank correlation coefficient when rank-ordering of predictions is more important than the
absolute error.

Baselines. The focus is on representation learning of molecular graphs. We include (1) multi-
layer perceptron (MLP) with expert-curated fingerprints (Morgan fingerprint [120] with 1,024 bits)
or descriptors (RDKit2D [79], 200-dim); (2) convolutional neural network (CNN) on SMILES
strings, which applies 1D convolution over a string representation of the molecule [54]; (3) state-
of-the-art (SOTA) models use graph neural networks on molecular 2D graphs, including neural
fingerprint (NeuralFP) [37], graph convolutional network (GCN) [67], and attentive fingerprints
(AttentiveFP) [163]. Further, [53] developed a pre-training strategy for molecular graphs, and we
include two strategies, attribute masking (AttMasking) and context prediction (ContextPred), in our
experiments. We select hyperparameters following recommendations in reference publications.
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Table 2: Results for the ADMET Benchmark Group. Shown is average performance and standard deviation across five independent runs.
Arrows (", #) indicate the direction of better performance. The best method is bolded and the second best is underlined.

Raw Feature Type Expert-Curated Methods SMILES Molecular Graph-Based Methods

Dataset Metric Morgan [120] RDKit2D [79] CNN [54] NeuralFP [37] GCN [67] AttentiveFP [163] AttrMasking [53] ContextPred [53]

# Params. 1477K 633K 227K 480K 192K 301K 2067K 2067K

TDC.Caco2 (#) MAE 0.908±0.060 0.393±0.024 0.446±0.036 0.530±0.102 0.599±0.104 0.401±0.032 0.546±0.052 0.502±0.036
TDC.HIA (") AUROC 0.807±0.072 0.972±0.008 0.869±0.026 0.943±0.014 0.936±0.024 0.974±0.007 0.978±0.006 0.975±0.004
TDC.Pgp (") AUROC 0.880±0.006 0.918±0.007 0.908±0.012 0.902±0.020 0.895±0.021 0.892±0.012 0.929±0.006 0.923±0.005
TDC.Bioav (") AUROC 0.581±0.086 0.672±0.021 0.613±0.013 0.632±0.036 0.566±0.115 0.632±0.039 0.577±0.087 0.671±0.026
TDC.Lipo (#) MAE 0.701±0.009 0.574±0.017 0.743±0.020 0.563±0.023 0.541±0.011 0.572±0.007 0.547±0.024 0.535±0.012
TDC.AqSol (#) MAE 1.203±0.019 0.827±0.047 1.023±0.023 0.947±0.016 0.907±0.020 0.776±0.008 1.026±0.020 1.040±0.045

TDC.BBB (") AUROC 0.823±0.015 0.889±0.016 0.781±0.030 0.836±0.009 0.842±0.016 0.855±0.011 0.892±0.012 0.897±0.004
TDC.PPBR (#) MAE 12.848±0.362 9.994±0.319 11.106±0.358 9.292±0.384 10.194±0.373 9.373±0.335 10.075±0.202 9.445±0.224
TDC.VD (") Spearman 0.493±0.011 0.561±0.025 0.226±0.114 0.258±0.162 0.457±0.050 0.241±0.145 0.559±0.019 0.485±0.092

TDC.CYP2D6-I (") AUPRC 0.587±0.011 0.616±0.007 0.544±0.053 0.627±0.009 0.616±0.020 0.646±0.014 0.721±0.009 0.739±0.005
TDC.CYP3A4-I (") AUPRC 0.827±0.009 0.829±0.007 0.821±0.003 0.849±0.004 0.840±0.010 0.851±0.006 0.902±0.002 0.904±0.002
TDC.CYP2C9-I (") AUPRC 0.715±0.004 0.742±0.006 0.713±0.006 0.739±0.010 0.735±0.004 0.749±0.004 0.829±0.003 0.839±0.003
TDC.CYP2D6-S (") AUPRC 0.671±0.066 0.677±0.047 0.485±0.037 0.572±0.062 0.617±0.039 0.574±0.030 0.704±0.028 0.736±0.024
TDC.CYP3A4-S (") AUROC 0.633±0.013 0.639±0.012 0.662±0.031 0.578±0.020 0.590±0.023 0.576±0.025 0.582±0.021 0.609±0.025
TDC.CYP2C9-S (") AUPRC 0.380±0.015 0.360±0.040 0.367±0.059 0.359±0.059 0.344±0.051 0.375±0.032 0.381±0.045 0.392±0.026

TDC.Half_Life (") Spearman 0.329±0.083 0.184±0.111 0.038±0.138 0.177±0.165 0.239±0.100 0.085±0.068 0.151±0.068 0.129±0.114
TDC.CL-Micro (") Spearman 0.492±0.020 0.586±0.014 0.252±0.116 0.529±0.015 0.532±0.033 0.365±0.055 0.585±0.034 0.578±0.007
TDC.CL-Hepa (") Spearman 0.272±0.068 0.382±0.007 0.235±0.021 0.401±0.037 0.366±0.063 0.289±0.022 0.413±0.028 0.439±0.026

TDC.hERG (") AUROC 0.736±0.023 0.841±0.020 0.754±0.037 0.722±0.034 0.738±0.038 0.825±0.007 0.778±0.046 0.756±0.023
TDC.AMES (") AUROC 0.794±0.008 0.823±0.011 0.776±0.015 0.823±0.006 0.818±0.010 0.814±0.008 0.842±0.008 0.837±0.009
TDC.DILI (") AUROC 0.832±0.021 0.875±0.019 0.792±0.016 0.851±0.026 0.859±0.033 0.886±0.015 0.919±0.008 0.861±0.018
TDC.LD50 (#) MAE 0.649±0.019 0.678±0.003 0.675±0.011 0.667±0.020 0.649±0.026 0.678±0.012 0.685±0.025 0.669±0.030

Results. Results are shown in Table 2. Overall, we find that pre-training GIN (Graph Isomorphism
Network) [165] with context prediction has the best performances across 8 endpoints, attribute
masking performs best in 5 endpoints, with 13 combined for pre-training strategies and outstanding
performance in the CYP enzyme predictions. Expert-curated molecular descriptors (RDKit2D)
achieve the best results in five endpoints, while the SMILES-based CNN yields a best-performing
predictor for one endpoint. Our benchmarking led to three key findings. First, the ML SOTA models
do not work well consistently for these novel realistic endpoints. In some cases, methods based on
learned features are worse than the efficient domain features. This gap highlights the necessity for
realistic benchmarking. Second, performances vary across feature types given different endpoints.
For example, on TDC.CYP3A4-S dataset, SMILES-based CNN model outperforms graph-based
methods by 8.7%-14.9%. This result can be explained by heterogeneous information captured by
different molecular representations; GNN models focus on local substructures of molecular graphs,
whereas descriptors attend to global biochemical features. Thus, future integration of these diverse
signals can further improve model performance. Third, best-performing methods use pre-training,
highlighting a potentially fruitful future direction for self-supervised learning.

4.2 The Challenge of Domain Generalization in the Drug-Target Interaction Benchmark

Motivation. Drug-target interactions (DTI) characterize the binding affinity of compounds to target
molecules. Despite promising prediction accuracies of supervised computational models for DTI
prediction [54], their use in practice, such as for novel drugs in development, is hindered by the
assumption that there are already known and similar drugs for a given target of interest. In particular,
those models adopt random dataset splits—while the testing set contains compound-target pairs
unseen during training, both the compound and the target molecule are represented in the training
set, albeit in different molecular combinations. This pitfall of existing evaluation strategies becomes
apparent when the models are used in, for example, compound screening campaigns searching for
novel target candidates or a novel class of compounds for known targets. Further, the models need
to have the ability to generalize to new targets and compounds as their structural and biochemical
characteristics shift over years of development, meaning that the models need to be robust to subtle
domain shifts over time in order to be practically useful.

Experimental setup. We use DTIs in TDC.BindingDB and collate them with patent information
on target discovery. In particular, we define data domains such data each domain consists of DTIs
patented in a specific year. We evaluate domain generalization models to predict out-of-distribution
DTIs between 2019-2021 after training the models on DTI data from 2013-2018, simulating real-world
discovery. Because time information for specific targets and compounds can often be confidential, we
use the patent year of the DTI as a reasonable proxy. We consider a popular DeepDTA model [107]
as the backbone of domain generalization algorithms. The evaluation metric is Pearson’s correlation
coefficient (PCC). Selection of the validation set is crucial for a fair comparison of domain general-
ization methods. We follow the strategy of “Training-domain validation set” from [46] and proceed
as follows. Using DTI information from 2013-2018, we randomly select 20% DTIs as a validation
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In-Distribution Out-of-Distribution

Figure 4: Heatmap visualization of domain generalization performance across do-
mains in the DTI-DG benchmark using TDC.BindingDB. We observe a significant
gap between in-distribution and out-of-distribution performance, indicating the limited
ability of existing models to extrapolate to more complicated patterns.

Table 3: Results on the DTI-DG benchmark
using TDC.BindingDB. “In-Dist.” combines
the in-split validation set and has similar data
distribution as the training set (2013-2018).
“Out-Dist.” aggregates testing domains (2019-
2021). The goal is to maximize performance
on the testing domains. Shown are aver-
age and standard deviation values of Pear-
son’s Correlation Coefficient across five ran-
dom runs. The best method is bolded and the
second best is underlined.

Method In-Dist. Out-Dist.

ERM 0.703±0.005 0.427±0.012

MMD 0.700±0.002 0.433±0.010
CORAL 0.704±0.003 0.432±0.010
IRM 0.420±0.008 0.284±0.021
GroupDRO 0.681±0.010 0.384±0.006
MTL 0.685±0.009 0.425±0.010
ANDMask 0.436±0.014 0.288±0.019

set and use them for in-distribution performance calculation because they represent a distribution
over data similar to the training set. We use DTI information from 2018-2021 only during testing and
refer to it as “out-of-distribution performance.”

Baselines. ERM (Empirical Risk Minimization) [150] is a standard training strategy simultaneously
minimizing errors across all data domains. We include the following domain generalization algo-
rithms: MMD (Maximum Mean Discrepancy) [83] optimizes the similarities of maximum mean
discrepancy across domains, CORAL (Correlation Alignment) [137] matches the mean and the
covariance of features across domains; IRM (Invariant Risk Minimization) [5] generates features
using a linear classifier across domains; GroupDRO (distributionally robust neural networks for group
shifts) [123] optimizes ERM and adjusts weights of domains with larger errors; MTL (Marginal
Transfer Learning) [19] concatenates the original features with augmented vectors representing
marginal distributions of feature vectors; ANDMask [108] masks gradients with inconsistent signs in
corresponding weights across domains. Most of these methods are developed for classification; we
adapt them for regression and keep the rest of the model architecture the same. We use the default
hyperparameters described in reference publications.

Results. Results are shown in Table 3 and Figure 4. We find that in-distribution performance
reaches 0.7 PCC and is stable across years, suggesting robust predictive power of existing models in
widely adopted yet unrealistic evaluation scenarios. However, the out-of-distribution performance
significantly degrades from 33.9% to 43.6% across methods, suggesting that domain shifts break
prevailing training strategies. Second, while the best-performed methods are MMD and CORAL,
standard training strategy achieves similar performances as state-of-the-art domain generalization
methods, which is in agreement with a systematic study conducted by [46], highlighting the need for
robust domain generalization methods.

4.3 The Challenge of Molecule Generation in the DRD3 Docking Benchmark

Motivation. AI-assisted drug design aims to generate molecular structures with desired biological
properties. Despite recent advances in generative modeling, existing methods in this area optimize
ad-hoc heuristic oracles, such as QED (quantitative estimate of drug-likeness) and LogP (Octanol-
water partition coefficient) [63, 169, 174]. Further, laboratory experiments, such as bioassays and
high-fidelity simulations like molecular docking, are resource-intensive, thus creating a need for
data-efficient generative models. The low-resource constraints suggest that the number of oracle
calls available to a generative model should be limited; however, this aspect is ignored by existing
models, which typically rely on millions of oracle calls to generate a molecule with desired biological
properties [174, 169].

Motivated by this open and difficult challenge, we consider molecular docking [28, 134] as an
example of a high-quality oracle that is also resource-intensive. In particular, it takes only a few
milliseconds for an oracle such as QED to provide an answer to the generative model; however, it can
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take up to 5 seconds for docking (using vina on a CPU). Docking evaluates the affinity between a
ligand (such as a small molecule drug) and a candidate target (such as a protein or enzyme) and is
widely used in real-world drug discovery [93] and considerably more informative than simple oracles
like the QED. Further, generative models can generate molecules with structure outside of pre-defined
chemical space, meaning that the generated molecule might have a valid chemical structure but could
not be practically synthesized in a laboratory [40]. For this reason, we here consider pre-defined
domain filters and the synthetic accessibility score to evaluate the quality of generated molecules in
addition to the above-mentioned frequency of the oracle access. We proceed with the description of
the generation benchmark in TDC.

Experimental setup. We use TDC.ZINC dataset as the molecule library and TDC.Docking oracle
function as the docking score evaluator against the target protein DRD3, which is a target for
neurology diseases such as tremor and schizophrenia. To imitate low-data scenarios, we limit the
number of oracle calls available to each model to either 100, 500, 1000, or 5000 calls. In addition to
oracle scores, we investigate the following metrics to evaluate the quality of generated molecules: (1)
Top100/Top10/Top1 is the average docking score of top-100/10/1 molecules generated for a given
target; (2) Diversity is the average pairwise Tanimoto distance of Morgan fingerprints for top-100
generated molecules; (3) Novelty is the fraction of generated molecules that are not present in the
training set; (4) m1 is the synthesizability score of molecules obtained via molecule.one retrosynthesis
model [122]; (5) %pass is the fraction of generated molecules that successfully pass through a set of
pre-defined filters; (6)Top1 %pass is the lowest docking score for molecules that pass the filter. Every
model is run three times with different random seeds.

Baselines. We consider the following domain SOTA methods: Screening (simulated as random
sampling) [93], Graph-GA (graph-based genetic algorithm) [58], and the following ML SOTA
methods: string-based LSTM [129], GCPN (Graph Convolutional Policy Network) [169], MolDQN
(Deep Q-Network) [174], and MARS (Markov molecular Sampling) [162]. As a reference, we
include best-in-data strategy, which chooses 100 molecules with the highest docking score from the
ZINC 250K database. We select hyperparameters as described in reference publications. We train
models with different random seeds and report average performance and standard deviation across
three independent runs.

Results. Results are shown in Table 4. Overall, we find that no existing model performs well in
challenging oracle scenarios. In particular, most methods do not surpass the best-in-data docking
scores in scenarios with 100, 500, or 1,000 allowable oracle calls except for Graph-GA (-14.811) and
LSTM (-13.017) models that outperform the best-in-data reference but can do so only in the scenario
with 5,000 oracle calls. Considering optimization ability, Graph-GA dominates the leaderboard
with zero trainable parameters, while a simple SMILES LSTM model ranks behind. Thus, while
SOTA ML models achieve strong performances in unlimited oracle scenarios, they cannot beat virtual
screening when they are allowed to perform at most 5,000 oracle calls. This finding raises concerns
regarding the utility of SOTA ML methods and calls for a shift of focus in molecular generation
research to consider real-world constraints in model evaluation.

As for synthesizability, as the number of allowable oracle calls grows, the more significant fraction
of generated molecules have undesired structures despite increasing affinity scores. We observe
a monotonous increase in the m1 score for the best-performing Graph GA model when allowing
more oracle calls. In the scenario with 5,000 oracle calls, only 2.3% - 52.7% of generated molecules
successfully pass through quality filters. The best docking score significantly drops when considering
only the set of molecules that pass through the filters. In contrast, the LSTM model generates
molecules with relatively good quality across all categories, indicating that generative models can
better capture the distribution of molecules in a training set to produce molecules that can likely be
synthesized in a laboratory. To address this problem, synthesizable constrained generation approaches
[71, 44, 21] represent a promising future strategy.

5 Conclusion

The attention of the machine learning community to therapeutics remains relatively limited, compared
to areas such as natural language processing and computer vision, even though therapeutics offer
many challenging algorithmic problems and applications of immense impact. To this end, our
Therapeutics Data Commons (TDC) is a platform of AI-ready datasets and learning tasks for drug
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Table 4: Results on the DRD3 docking benchmark using TDC.ZINC and TDC.Docking datasets. Shown are average and standard
deviation values across three independent runs. Arrows (", #) indicate the direction of better performance. The best method is bolded and the
second best is underlined.

Method Category Domain-Specific Methods State-of-the-art ML Methods

Metric Best-in-data # Calls Screening [93] Graph-GA [58] LSTM [129] GCPN [169] MolDQN [174] MARS [162]

# Params. - - 0 0 3149K 18K 2694K 153K

Top100 (#) -12.080

100

-7.554±0.065 -7.222±0.013 -7.594±0.182 3.860±0.102 -5.178±0.341 -5.928±0.298
Top10 (#) -12.590 -9.727±0.276 -10.177±0.158 -10.033±0.186 -5.617±0.413 -6.438±0.176 -8.133±0.328
Top1 (#) -12.800 -10.367±0.464 -11.767±1.087 -11.133±0.634 -11.633±2.217 -7.020±0.194 -9.100±0.712
Diversity (") 0.864 0.881±0.002 0.885±0.001 0.884±0.002 0.909±0.001 0.907±0.001 0.873±0.010
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.717±0.005 0.693±0.037 0.763±0.019 0.093±0.009 0.017±0.012 0.807±0.033
Top1 Pass (#) -11.700 -2.467±2.229 0.000±0.000 -1.100±1.417 7.667±0.262 -3.630±2.588 -3.633±0.946
m1 (#) 5.100 4.845±0.235 5.223±0.256 5.219±0.247 10.000±0.000 10.000±0.000 4.470±1.047

Top100 (#) -12.080

500

-9.341±0.039 -10.036±0.221 -9.419±0.173 -8.119±0.104 -6.357±0.084 -7.278±0.198
Top10 (#) -12.590 -10.517±0.135 -11.527±0.533 -10.687±0.335 -10.230±0.354 -7.173±0.166 -9.067±0.377
Top1 (#) -12.800 -11.167±0.309 -12.500±0.748 -11.367±0.579 -11.967±0.680 -7.620±0.185 -9.833±0.309
Diversity (") 0.864 0.870±0.003 0.857±0.005 0.875±0.005 0.914±0.001 0.903±0.002 0.866±0.005
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.770±0.029 0.710±0.080 0.727±0.012 0.127±0.005 0.030±0.016 0.660±0.050
Top1 Pass (#) -11.700 -8.767±0.047 -9.300±0.163 -8.767±0.170 -7.200±0.141 -6.030±0.073 -6.100±0.141
m1 (#) 5.100 5.672±1.211 6.493±0.341 5.787±0.934 10.000±0.000 10.000±0.000 5.827±0.937

Top100 (#) -12.080

1000

-9.693±0.019 -11.224±0.484 -9.971±0.115 -9.053±0.080 -6.738±0.042 -8.224±0.196
Top10 (#) -12.590 -10.777±0.189 -12.400±0.782 -11.163±0.141 -11.027±0.273 -7.506±0.085 -9.843±0.068
Top1 (#) -12.800 -11.500±0.432 -13.233±0.713 -11.967±0.205 -12.033±0.618 -7.800±0.042 -11.100±0.141
Diversity (") 0.864 0.873±0.003 0.815±0.046 0.871±0.004 0.913±0.001 0.904±0.001 0.871±0.004
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.757±0.026 0.777±0.096 0.777±0.026 0.170±0.022 0.033±0.005 0.563±0.052
Top1 Pass (#) -11.700 -9.167±0.047 -10.600±0.374 -9.367±0.094 -8.167±0.047 -6.450±0.085 -7.367±0.205
m1 (#) 5.100 5.527±0.780 7.695±0.909 4.818±0.541 10.000±0.000 10.000±0.000 6.037±0.137

Top100 (#) -12.080

5000

-10.542±0.035 -14.811±0.413 -13.017±0.385 -10.045±0.226 -8.236±0.089 -9.509±0.035
Top10 (#) -12.590 -11.483±0.056 -15.930±0.336 -14.030±0.421 -11.483±0.581 -9.348±0.188 -10.693±0.172
Top1 (#) -12.800 -12.100±0.356 -16.533±0.309 -14.533±0.525 -12.300±0.993 -9.990±0.194 -11.433±0.450
Diversity (") 0.864 0.872±0.003 0.626±0.092 0.740±0.056 0.922±0.002 0.893±0.005 0.873±0.002
Novelty (") - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
%Pass (") 0.780 0.683±0.073 0.393±0.308 0.257±0.103 0.167±0.045 0.023±0.012 0.527±0.087
Top1 Pass (#) -11.700 -10.100±0.000 -14.267±0.450 -12.533±0.403 -9.367±0.170 -7.980±0.112 -9.000±0.082
m1 (#) 5.100 5.610±0.805 9.669±0.468 5.826±1.908 10.000±0.000 10.000±0.000 7.073±0.798

discovery and development. Curated datasets, strategies for systematic model development and
evaluation, and an ecosystem of tools, leaderboards, and community resources in TDC serve as a
meeting point for domain and machine learning scientists. We envision that TDC can considerably
accelerate machine-learning model development, validation, and transition into implementation.

To facilitate algorithmic and scientific innovation in therapeutics, we will support the continued
development of TDC to provide a software ecosystem with AI-ready datasets and enhance outreach
to build an inclusive research community.
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