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Abstract

Aiming at facilitating a real-world, ever-evolving and scalable autonomous driving
system, we present a large-scale dataset for standardizing the evaluation of different
self-supervised and semi-supervised approaches by learning from raw data, which
is the first and largest dataset to date. Existing autonomous driving systems heavily
rely on ‘perfect’ visual perception models (i.e., detection) trained using extensive
annotated data to ensure safety. However, it is unrealistic to elaborately label
instances of all scenarios and circumstances (i.e., night, extreme weather, cities)
when deploying a robust autonomous driving system. Motivated by recent advances
of self-supervised and semi-supervised learning, a promising direction is to learn a
robust detection model by collaboratively exploiting large-scale unlabeled data and
few labeled data. Existing datasets (i.e., BDD100K, Waymo) either provide only
a small amount of data or covers limited domains with full annotation, hindering
the exploration of large-scale pre-trained models. Here, we release a Large-Scale
2D Self/semi-supervised Object Detection dataset for Autonomous driving, named
as SODA10M, containing 10 million unlabeled images and 20K images labeled
with 6 representative object categories. To improve diversity, the images are
collected within 27833 driving hours under different weather conditions, periods
and location scenes of 32 different cities. We provide extensive experiments and
deep analyses of existing popular self-supervised and semi-supervised approaches,
and give some interesting findings in autonomous driving scope. Experiments show
that SODA10M can serve as a promising pre-training dataset for different self-
supervised learning methods, which gives superior performance when fine-tuning
with different downstream tasks (i.e. detection, semantic/instance segmentation)
in autonomous driving domain. This dataset has been used to hold the ICCV2021
SSLAD challenge. More information can refer to https://soda-2d.github.io.

1 Introduction

Autonomous driving technology has been significantly accelerated in recent years because of its
great applicable potential in reducing accidents, saving human lives and improving efficiency. In
a real-world autonomous driving system, object detection plays an essential role in robust visual
perception in driving scenarios.

A major challenge of training a robust object detector for autonomous driving is how to effectively
handle the rapid accumulation of unlabeled images. For example, an autonomous vehicle equipped
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Figure 1: Examples of challenging environments in our SODA10M dataset, including 10 million
images covering different weather conditions, periods and locations. The first three columns of
images are from SODA10M labeled set, and the last column is from the unlabeled set.

with 5 camera sensors (same to [48]) can capture 288K images (2Hz) in 8 hours. However, exhaus-
tively labeling bounding boxes on those images generally takes about 136 days with 10 experienced
human annotators in the annotating pipeline. The speed gap between data acquisition and data
annotation leads to an intensive demand of leveraging large-scale unlabeled scenes to boost the
accuracy and robustness of detectors. To tackle this important problem, emerging approaches of
semi-supervised [43, 40, 61, 30] and self-supervised learning [4, 19, 21, 5] shows great potentials
and may become the next-generation industrial solution for training robust perception models.

To explore self/semi-supervised methods in the autonomous driving scenarios, researchers will meet
two main obstacles: 1) Lacking suitable data source. Popular datasets (i.e., ImageNet [7], YFCC [50])
contains mostly common images, and available autonomous driving datasets (i.e., nuScenes [1],
Waymo [48], BDD100K [60]) are not large enough in scale or diversity. 2) Lacking a benchmark
tailored for autonomous driving. Current methods [21, 5] are mostly tested on common images,
such as ImageNet [7]. A comprehensive evaluation of those methods in driving scenarios and
new observations are strongly required (i.e., which self-supervised method is more suitable when
pre-training on autonomous driving datasets, or what is the difference compared with ImageNet [7]?).

To this end, we develop the first and largest-Scale 2D Self/semi-supervised Object Detection dataset
for Autonomous driving (SODA10M) that contains 10 million road images. Aiming at self/semi-
supervised learning, our SODA10M dataset can be distinguished from existing autonomous Driving
datasets from three aspects, including scale, diversity and generalization.

Scale. As shown in Table 1, SODA10M is significantly larger than existing autonomous driving
datasets like BDD100K [60] and Waymo [48]. It contains 10 million images of road scenes, which
is ten times more than Waymo [48] even with a much longer collecting interval (ten seconds per
frame). Considering the purpose of evaluating different self-supervised and semi-supervised learning
methods, we use the number of images, instead of the labeled images, for comparison.

Diversity. SODA10M comprises images captured in 32 cities under different scenarios (i.e., urban,
rural) and circumstances (i.e., night, rain, snow), while most present self-driving datasets [63, 48]
are less diverse (i.e., Waymo [48] doesn’t contain snowy scene). Besides, the total driving time of
SODA10M dataset is 27833 hrs covering four seasons, which is 25x, 5000x and 4300x longer than
the existing BDD100K [60], nuScenes [1] and Waymo [48] dataset.

Generalization. The superior scale and diversity of the SODA10M dataset ensure great generalization
ability as a pre-training dataset over all existing autonomous-driving datasets. Observed from
evaluations of existing self-supervised algorithms, the representations learned from SODA10M
unlabeled set are superior to that learned from other driving datasets like Waymo [48], ranking top in
9 out of 10 downstream detection and segmentation tasks (see Sec. 4.3 for more details).
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Table 1: Comparison of dataset statistics with existing driving datasets. Night/Rain indicates whether the dataset
has domain information related to night/rainy scenes. Video represents whether the dataset provides video format
or detailed chronological information. Considering the purpose of evaluating different self/semi-supervised
learning methods, we use the number of images, instead of the labeled images, for comparison.

Dataset Images Cities Night/Rain Video Driving hours Resolution

Caltech Pedestrian [9] 249K 5 7/7 3 10 640×480
KITTI [14] 15K 1 7/7 7 6 1242×375
Citypersons [63] 5K 27 7/7 7 - 2048×1024
BDD100K [60] 100K 4 3/3 3 1111 1280×720
nuScenes [1] 1.4M 2 3/3 3 5.5 1600×900
Waymo Open [48] 1M 3 3/3 3 6.4 1920×1280

SODA10M (Ours) 10M 32 3/3 3 27833 1920×1080

We also provide experiments and in-depth analysis of prevailing self-supervised and semi-supervised
approaches and some observations under autonomous driving scope. For example, dense contrastive
method (i.e., DenseCL [54]) performs better than global contrastive methods (i.e., MoCo-v1 [21])
when pre-training on ImageNet [7] (39.9% vs. 39.0%, fine-tuning with object detection task on
SODA10M labeled set). However, Dense contrastive method preforms worse when pre-training on
autonomous driving dataset (38.1% vs. 38.9%) due to the reason that pixel-wise contrastive loss may
not suitable for complex driving scenarios (refer to Sec. 4.3.2). More findings can be found in Sec. 4.

SODA10M dataset has been released and used to hold the ICCV2021 SSLAD challenge1, which aims
to investigate current ways of building next-generation industry-level autonomous driving systems by
resorting to self/semi-supervised learning. Until now, the challenge already attracts more than 130
teams participating in and receive 500+ submissions.

To conclude, our main contributions are: 1) We introduce SODA10M dataset, which is the largest
and most diverse 2D autonomous driving dataset up to now. 2) We introduce a benchmark of
self/semi-supervised learning in autonomous driving scenarios and provide some interesting findings.

2 Related Work

Driving datasets have gained enormous attention due to the popularity of autonomous self-driving.
Several datasets focus on detecting specific objects such as pedestrians [9, 63]. Cityscapes [6] provides
instance segmentation on sampled frames, while BDD100K [60] is a diverse dataset under various
weather conditions, time and scene types for multitask learning. For 3D tasks, KITTI Dataset [15, 14]
was collected with multiple sensors, enabling 3D tasks such as 3D object detection and tracking.
Waymo Open Dataset [48] provides large-scale annotated data with 2D and 3D bounding boxes, and
nuScenes Dataset [1] provides rasterized maps of relevant areas.

Supervised learning methods for object detection can be roughly divided into single-stage and
two-stage models. One-stage methods [35, 11, 37] directly outputs probabilities and bounding box
coordinates for each coordinate in feature maps. On the other hand, two-stage methods [22, 44, 34]
use a Region Proposal Network (RPN) to generate regions of interest, then each proposal is sent to
obtain classification score and bounding-box regression offsets. By adding a sequence of heads trained
with increasing IoU thresholds, Cascade RCNN [2] significantly improves detection performance.
With the popularity of the vision transformer, more and more transformer-based object detectors
[53, 39] have been proposed to learn more semantic visual concepts with larger receptive fields.

Self-supervised learning approaches can be mainly divided into pretext tasks [8, 62, 42, 41] and
contrastive learning [21, 5, 4, 19]. Pretext tasks often adopt reconstruction-based loss functions [8, 42,
17] to learn visual representation, while contrastive learning is supposed to pull apart negative pairs
and minimize distances between positive pairs, achieved by training objectives such as InfoNCE [51].
MoCo [21, 5] constructs a queue with a large number of negative samples and a moving-averaged
encoder, while SimCLR [4] explores the composition of augmentations and the effectiveness of
non-linear MLP heads. SwAV [3] introduces cluster assignment and swapped prediction to be more
robust about false negatives, and BYOL [19] demonstrates that negative samples are not prerequisite

1https://competitions.codalab.org/competitions/33288
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to learn meaningful visual representation. For video representation learning, early methods are
based on input reconstruction [24, 25, 31, 32], while others define different pretext tasks to perform
self-supervision, such as frame order prediction [33], future prediction [47, 52] and spatial-temporal
jigsaw [29]. More recently, contrastive learning is integrated to learn temporal changes [18, 59].

Semi-supervised learning methods mainly consist of self training [58, 57] and consistency reg-
ularization [45, 61, 20]. Consistency regularization tries to guide models to generate consistent
predictions between original and augmented inputs. In the field of object detection, previous works fo-
cus on training detectors with a combination of labeled, weaky-labeled or unlabeled data [26, 49, 13],
while recent works [27, 46] train detectors with a small set of labeled data and a larger amount of
unlabeled images. STAC [46] pre-trains the object detector with labeled data and generate pseudo
labels on unlabeled data, which are used to fine-tune the pre-trained model. Unbiased Teacher [38]
further improves the process of generating pseudo labels via teacher-student mutual learning.

3 SODA10M

We collect and release a large-scale 2D dataset SODA10M to promote the development of self-
supervised and semi-supervised learning approaches for lifting autonomous driving system into more
real-world scenarios. Our SODA10M contains 10M unlabeled images and 20K labeled images, which
is split into training(5K), validation(5K) and testing(10K) sets.

3.1 Data Collection

Collection. The image collection task is distributed to the tens of thousands of taxi drivers in different
cities by crowdsourcing. They need to use a mobile phone or driving recorder (with high resolution
1080P+) to obtain images. To achieve better diversity, the images are collected every 10 seconds per
frame and obtained in diverse weather conditions, periods, locations and cities.

Sensor Specifications. The height of the camera should be in the range of 1.4m-1.5m from the
ground, depending on the different crowdsourced vehicles. Vehicles used to collect images are mostly
passenger cars, e.g., sedan or van. The camera should be mounted on the rear mirror in the car, facing
straight ahead. Besides, horizon needs to be kept at the center of the image, and the occlusion inside
the car should not exceed 15% of the whole picture. Detailed camera settings, including distortion,
exposure, white balance and video resolution, are given through the participants’ instructions to each
taxi driver in crowdsourcing system. Full instructions are shown in Appendix A.

Quality Control. We conduct the pre-collection and post-collection quality control to guarantee
the high quality of the SODA10M dataset. The pre-collection quality control includes checking
the camera position and imaging quality on each taxi. The post-collection quality control includes
manual verification and those images of low quality (unclear imaging, strong reflection and incorrect
camera position) will be returned for rectification.

Data Distribution. The images are collected mostly based on the pre-defined distribution of different
cities and periods, while the other characteristics (e.g., weather, location) follows nature distribution.
The total number of original collected images is 100M, and then 10M images with relatively uniform
distribution are sampled out of these 100M images to get constructed into SODA10M dataset.

Data Protection. The driving scenes are collected in permitted areas. We comply with the local
regulations and avoid releasing any localization information, including GPS and cartographic in-
formation. For privacy protection, we actively detect any object on each image that may contain
personal information, such as human faces and license plates, with a high recall rate. Then, we blur
those detected objects to ensure that no personal information is disclosed. Detailed licenses, terms of
use and privacy are listed in Appendix A.

3.2 Data Annotation

Image tags (i.e., weather conditions, location scenes, periods) for all images and 2D bounding boxes
for labeled parts should be annotated for SODA10M. To ensure high quality and efficiency, the
whole annotation process is divided into three steps: pre-annotation, annotation and examination.
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Pre-annotation: In order to ensure efficiency, a multi-task detection model, which is based on Faster
RCNN [44] and searched backbone [28], is trained on millions of Human-Vehicle images with
bounding-box annotation and generate coarse labels for each image first. Annotation: Based on
pre-annotated labels, annotators keep the accurate ones and correct the inaccurate labels. Each image
is distributed to different annotators, and the images with the same annotation will be passed to the
following process; otherwise, they would be distributed again. All annotators must participate in
several courses and pass the examination for standard labeling. Examination: Senior annotators
with rich annotation experience will review the image annotations in the second step, and the missing
or incorrectly labeled images will be sent back for re-labeling. We exhaustively annotated car, truck,
pedestrian, tram, cyclist and tricycle with tightly-fitting 2D bounding boxes in 20K images. The
bounding box label is encoded as (x, y, w, h), where x and y represent the top-left pixel of the box,
and w and h represent the width and length of the box.

3.3 Data Statistics

Labeled Set. The labeled set contains 20K images with complete annotation. We carefully select 5K
training set, 5K validation set, 10K testing set with disjoint sequence id (same sequence id denotes
the corresponding images are taken by same car on same day). In order to study the influence of
different self/semi-supervised methods on domain adaptation problem, the training set only contains
images obtained in city streets of Shanghai with clear weather in the daytime, while the validation
and testing sets have three weather conditions, locations, cities and two different periods of the day.
The detailed analysis of SODA10M labeled set is shown in Appendix D.

Unlabeled Set. The unlabeled set contains 10M images with diverse attributes. As shown in Fig. 2(a),
the unlabeled images are collected among 32 cities, covering a large part of eastern China. Compared
with the labeled set, the unlabeled set contains not only more cities but also additional location
(residential), weather (snowy) and period (dawn/dusk), according to the gray part in Fig. 2(b), Fig.
2(c) and Fig. 2(d). The rich diversity in SODA10M unlabeled set ensures the generalization ability to
transfer to other downstream autonomous driving tasks as a pre-training or self-training dataset.

China
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4.89%
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Countryroad
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(c) Weather
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Figure 2: Statistics of the unlabeled set. (a) Geographical distribution of our data sources. SODA10M
is collected from 32 cities, and darker color indicates greater quantity. (b) Number of images in each
location. (c) Number of images in each weather condition. (d) Number of images in each period.

Clarification. SODA10M contains a small number of labeled images compared with unlabeled
images. However, we argue that the amount of labeled images is sufficient for two reasons: Firstly,
SODA10M focuses on benchmarking self-supervised and semi-supervised 2D object detection
methods, which requires SODA10M contain massive unlabeled images and a small number of labeled
images for evaluation. Note that the purpose of SODA10M is not building a supervised benchmark
that contains more annotations than the current datasets. Secondly, the scale of SODA10M labeled set
is about the same as PASCAL VOC [12], which is considered as a popular-used self/semi-supervised
downstream object detection dataset. Thus we believe that SODA10M provides sufficient labeled
samples to evaluate different self/semi-supervised learning methods.
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3.4 Comparison with Existing Datasets

We compare the SODA10M with other large-scale autonomous driving datasets (including
BDD100K [60], nuScenes [1] and Waymo [48]) in the field of scale, driving time, collecting cities,
driving conditions and fine-tuning results when regarded as upstream pre-training dataset.

Firstly, observed from Table 1, the number of images, driving time and collecting cities of SODA10M
is 10M, 27833 hrs and 32 respectively, which is much larger than the current datasets BDD100K [60]
(0.1M, 1111 hrs, 4 cities), nuScenes [1] (1.4M, 5.5 hrs, 2 cities) and Waymo [48] (1M, 6.4 hrs,
3 cities). Secondly, as shown in the driving conditions comparison results in Appendix D, our
SODA10M is more diverse in driving conditions compared with nuSceness [1] and Waymo [48], and
achieves competitive results with BDD100K [60]. Finally, with above characteristics, SODA10M
achieves better generalization ability and obtains best performance compared with the other three
datasets in almost all (9/10) downstream detection and segmentation tasks when regarded as the
upstream pre-training dataset (refer to Sec. 4.3).

4 Benchmark

As SODA10M is regarded as a new autonomous driving dataset, we provide the fully supervised
baseline results based on several representative one-stage and two-stage detectors. With the massive
amount of unlabeled data, we carefully select most representative self-supervised and semi-supervised
methods (Fig. 3) and study the generalization ability of those methods on SODA10M, and further
provide some interesting findings under autonomous driving scope. To make the experiments easily
reproducible, the code of all used methods has been open-sourced, and detailed experiment settings
and training time comparisons are provided in Appendix B.
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Figure 3: Overview of different methods used for building SODA10M benchmark. Xl and Xu denote
for labeled and unlabeled set. q, k represent for different data augmentations. For semi-supervised
learning, the labeled set is also involved in training progress with supervised loss.

4.1 Basic Settings

We utilize Detectron2 [55] as our codebase for the following experiments. Following the default
settings in Detectron2, we train detectors with 8 Tesla V100 with a batch size 16. For the 1x schedule,
the learning rate is set to 0.02, decreased by a factor of 10 at 8th, 11th epoch of total 12 epochs,
while 2x indicates 24 epochs. Multi-scale training and SyncBN are adopted in the training process
and precise-BN is used during the testing process. The image size in the testing process is set to
1920× 1080. Unless specified, the algorithms are tested on the validation set of SODA10M. COCO
API [36] is adopted to evaluate the detection performance for all categories.

4.2 Preliminary Supervised Results

As shown in Table 2, the detection results of three popular object detectors (RetinaNet [35], Faster
RCNN [44], Cascade RCNN [2] ) are compared. We observe that in the 1x schedule, Faster
RCNN [44] exceeds RetinaNet [35] in mAP by 5.3% with a larger number of parameters, which is
consistent with the traditional difference of single-stage and two-stage detectors. Equipped with a
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stronger ROI-head, Cascaded RCNN [2] can further surpass Faster RCNN [44] by a large margin
(3.9%). Training with a longer schedule can further improve the performance.

Table 2: Detection results(%) of baseline fully-supervised models on SODA10M labeled set.

Model Split mAP Pedestrian Cyclist Car Truck Tram Tricycle Params

RetinaNet [35] 1x Val 32.7 23.9 37.3 55.7 40.0 36.6 3.0 36.4M
RetinaNet [35] 2x Val 35.0 26.6 39.4 57.2 41.8 38.2 6.5 36.4M
RetinaNet [35] 2x Test 34.0 24.9 36.9 57.5 44.7 32.1 7.8 36.4M

Faster RCNN [44] 1x Val 37.9 31.0 43.2 58.3 43.2 41.3 10.5 41.4M
Faster RCNN [44] 2x Val 38.7 32.5 43.6 58.9 43.7 40.8 12.6 41.4M
Faster RCNN [44] 2x Test 36.7 29.5 40.1 59.7 47.2 32.3 11.7 41.4M

Cascade RCNN [2] 1x Val 41.9 34.6 46.7 61.9 47.2 45.1 16.0 69.2M
Cascade RCNN [2] 1x Test 39.4 31.9 43.4 62.6 50.0 36.8 11.9 69.2M

4.3 Self-Supervised Learning Benchmark

Self-supervised learning, especially contrastive learning methods, has raised attraction recently as it
learns effective transferable representations via pretext tasks without semantic annotations. Traditional
self-supervised algorithms [10, 41, 16] are usually pre-trained on ImageNet [7], while there is no
available self-supervised benchmark tailored for autonomous driving. Therefore, we evaluate the
performance of existing mainstream self-supervised methods when pre-trained on autonomous driving
datasets, including SODA10M, BDD100K [60], nuScenes [1] and Waymo [48], and provide some
interesting observations. Due to the limit of hardware resources, we only use a 5-million unlabeled
subset in each experiment by default.

4.3.1 Datasets Comparison

We utilize different self-supervised methods to pre-train on four different datasets (SODA10M,
BDD100K [60], nuScenes [1] and Waymo [48]), and then report the fine-tuning performance on
different downstream tasks (object detection task on BDD100K [60] and SODA10M, semantic
segmentation task on Cityscapes [6] and BDD100K [60], instance segmentation task on Cityscape).

Table 3: Comparison of downsteam tasks’ performance with different upstream pre-training datasets. IS, SS,
OD stand for instance segmentation, semantic segmentation and object detection task respectively.

Pre-trained
Dataset

Method Cityscape
(IS)

BDD100K
(SS)

Cityscape
(SS)

BDD100K
(OD)

SODA10M
(OD)

nuScenes [1] MoCo-v1 [21] 31.4 57.0 73.6 31.1 36.2
MoCo-v2 [5] 31.5 56.8 73.8 30.9 36.8

Waymo [48] MoCo-v1 [21] 31.4 57.0 73.8 31.2 37.1
MoCo-v2 [5] 31.8 56.6 73.5 31.1 37.1

BDD100K [60] MoCo-v1 [21] 31.8 57.9 74.5 31.4 37.1
MoCo-v2 [5] 32.0 57.5 74.4 31.3 37.8

SODA10M MoCo-v1 [21] 33.9 59.3 75.2 31.5 38.9
MoCo-v2 [5] 33.7 58.2 74.2 31.4 38.7

As shown in Table 3, SODA10M outperforms other autonomous driving datasets in 9 out of
10 downstream tasks, which verifies that the superior scale and diversity of SODA10M can
bring better generalization ability. Besides, we found that diversity matters more than scale
for the upstream pre-training dataset. For example, even with the scale 10 times smaller than
nuScenes [1] and Waymo [48], BDD100K [60] achieves the better fine-tuning performance compared
with nuScenes [1] and Waymo [48] due to its relatively larger diversity (i.e., BDD100K [60] covers
more scenes like snowy and longer driving time of 1111 hrs). To conclude, collected from 32
cities, with driving time 25x, 5000x, 4300x longer and dataset scale 100x, 10x and 10x larger than
the BDD100K [60], nuScenes [1] and Waymo [48], SODA10M can better serve as a promising
pre-training dataset for different self-supervised learning methods.
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On the other hand, experiments result in Table 4 show that the model pre-trained on SODA10M
performs equivalent or slightly worse than the one on ImageNet [7]. Global contrastive learning
methods (i.e., MoCo-v1 [21], MoCo-v2 [5]), which take each image as a class, may not be suitable
for SODA10M with multiple instances in one image. Besides, dense pixel-wise contrastive learning
method (i.e., DenseCL [54]) also fails to deal with the images of complex driving scene. We think
new contrastive loss, which is specially designed for the images with multiple instances and
complex driving scenes, should be proposed to boost the self-supervised performance when
pre-training on these autonomous driving datasets. Then we can truly take advantage of pre-
training on the images in autonomous driving domain and achieve the best performance of fine-tuning
different tasks in the same domain. We leave the design of multi-instance-based contrastive loss for
future work since it is out of the scope of this paper.

4.3.2 Methods Comparison

As shown in Table 4, part of the global contrastive methods (including MoCo-v1 [21], MoCo-
v2 [5]) and dense contrastive method (DenseCL [54]) can achieve better results when pre-
training on SODA10M, while the other methods perform worse than ImageNet fully super-
vised pre-training. We also observe that dense contrastive method (DenseCL [54]) shows excellent
result when pre-training on ImageNet [7] (39.9% compared with 39.0% of MoCo-v1 [21]), but
relatively poor on SODA10M unlabeled set (38.1% compared with 38.9% of MoCo-v1 [21]) due to
the reason that pixel-wise contrastive loss may not suitable for complex driving scenarios. Besides,
by comparing the result of method with † with the original method, we found that more pre-training
iterations can bring better performance (i.e., SimCLR [4]† exceed SimCLR [4] by an average margin
of 1.2% over four downstream tasks). Comparisons on 2x schedule are illustrated in Appendix C.

Table 4: Fine-tuning results(%) of self-supervised models evaluated on SODA10M labeled set (SODA),
Cityscapes [6] and BDD100K [60]. mIOU(CS), mIOU(BDD) denote for semantic segmentation performance on
Cityscapes and BDD100K respectively. † represents for training with additional 5-million data. FCN-16s is a
modified FCN with stride 16 used in MoCo [21]. 1x and 90k denote fine-tuning 12 epochs and 90k iterations.

Faster-RCNN 1x (SODA) RetinaNet 1x (SODA) FCN-16s 90k

Pre-trained
Dataset

Method mAP AP50 AP75 mAP AP50 AP75 mIOU
(CS)

mIOU
(BDD)

random init 23.0 40.0 23.9 11.8 20.8 12.0 65.3 50.7
super. IN 37.9 61.6 40.4 32.7 53.9 33.9 74.6 58.8

ImageNet [7]

MoCo-v1 [21] 39.0 62.0 41.6 33.8 54.9 35.2 75.3 59.7
MoCo-v2 [5] 39.5 62.7 42.4 35.2 56.4 36.8 75.7 60.0
SimCLR [4] 37.0 60.0 39.4 29.0 49.0 29.3 75.0 59.2
SwAV [3] 35.7 59.9 36.9 26.4 45.7 26.3 73.0 57.1
DetCo [56] 38.7 61.8 41.3 33.3 54.7 34.3 76.5 61.6
DenseCL [54] 39.9 63.2 42.6 35.7 57.3 37.2 75.6 59.3

SODA10M

MoCo-v1 [21] 38.9 62.1 41.2 33.4 54.4 34.6 75.2 59.3
MoCo-v1† [21] 39.0 62.6 41.9 33.8 55.2 35.2 75.5 59.5
MoCo-v2 [5] 38.7 61.5 41.4 33.3 54.1 34.7 74.2 58.2
MoCo-v2† [5] 38.6 61.3 41.4 33.2 54.6 34.6 74.5 58.9
SimCLR [4] 35.9 59.5 37.4 28.7 48.7 29.1 73.3 57.3
SimCLR† [4] 37.1 60.9 39.8 30.5 51.3 31.2 73.5 58.8
SwAV [3] 33.4 57.1 34.5 24.5 43.2 24.6 68.6 54.2
DetCo [56] 37.7 60.6 40.1 32.4 54.1 33.4 74.1 59.3
DenseCL [54] 38.1 60.8 40.5 33.6 54.8 35.0 75.2 57.4

4.3.3 Video-based Self-supervised Methods

SODA10M can also serve for evaluating different video-based self-supervised methods due to
the reason that it contains detailed timing information. To generate videos, we transform the
unlabeled set into video frames with an interval of 10 seconds. Based on these 90k generated videos,
traditional video-based self-supervised methods consider frames in same video as positive samples,
frames in other videos as negative samples and perform similar contrastive loss.

Experiment results of different video-based self-supervised methods are summarized in Table 5.
Equipped with MLP projection head and more data augmentations, MoCo-v2 [5] (28.9%, 74.4%
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on SODA10M and Cityscape) achieves better performance on most downstream tasks than MoCo-
v1 [21] (27.9%, 73.6%) and VINCE [18] (27.6%, 72.6%). With the stronger data augmentation
method jigsaw, VINCE [18] performs better and achieves similar performance to MoCo-v2 [5] (with
an average difference of 0.05% over 4 different downstream tasks).

Table 5: Fine-tuning results(%) of video-based self-supervised models on SODA10M labeled set (SODA),
Cityscapes [6] and BDD100K [60]. mIOU(CS), mIOU(BDD) denote for semantic segmentation performance on
Cityscapes and BDD100K respectively. All models are pre-trained on SODA10M unlabeled set.

Faster-RCNN 1x (SODA) RetinaNet 1x (SODA) FCN-16s 90k

Method mAP AP50 AP75 mAP AP50 AP75 mIOU
(CS)

mIOU
(BDD)

Video MoCo-v1 [21] 34.9 57.8 36.6 27.9 47.3 28.2 73.6 57.3
Video MoCo-v2 [5] 34.8 57.0 36.5 28.9 48.6 29.5 74.4 56.8
Video VINCE [18] 34.9 57.7 36.9 27.6 47.1 28.0 72.6 57.4
Video VINCE+Jigsaw [18] 35.5 58.1 37.0 28.2 48.1 28.6 74.1 56.9

4.4 Semi-Supervised Learning Benchmark

Semi-supervised learning has also attracted much attention because of its effectiveness in utiliz-
ing unlabeled data. We compare the naive pseudo labeling method with present state-of-the-art
consistency-based methods for object detection (i.e., STAC [46] and Unbiased Teacher [38]) on
1-million unlabeled images considering the time limit. For pseudo labeling, we first train a supervised
Faster-RCNN [44] model on the training set with the ResNet-50 [23] backbone for 12 epochs. Then
we predict bounding box results on the images of unlabeled set, bounding boxes with predicted score
larger than 0.5 are selected as the ground-truth label to further train a new object detector.

We report the experiment results of different semi-supervised methods in Table 6 and observe that all
semi-supervised methods exceed the results of using only labeled data. As for pseudo labeling, adding
an appropriate amount of unlabeled data (50K to 100K) brings a greater improvement, but continuing
to add unlabeled data (100K to 500K) results in a 1.4% decrease due to the larger noise. On the other
hand, consistency-based methods combined with pseudo labeling outperform pseudo labeling
by a large margin. STAC [46] exceeds pseudo labeling by 2.9%, and Unbiased Teacher [38]
continues to improve by 3.4% due to the combination of exponential moving average (EMA) and
focal loss [35].

Table 6: Detection results(%) of semi-supervised models on SODA10M dataset. Pseudo labeling (50K), Pseudo
labeling (100K) and pseudo labeling (500K) mean using 50K, 100K and 500K unlabeled images, respectively.

Model mAP AP50 AP75 Pedestrian Cyclist Car Truck Tram Tricycle

Supervised 37.9 61.6 40.4 31.0 43.2 58.3 43.2 41.3 10.5

Pseudo Labeling (50K) 39.3+1.4 61.9 42.4 32.6 44.3 60.4 43.8 42.4 12.1
Pseudo Labeling (100K) 39.9+2.0 62.7 42.6 33.1 45.2 60.7 44.8 43.3 12.1
Pseudo Labeling (500K) 38.5+0.6 61.0 41.3 32.1 43.4 59.6 42.6 42.2 11.0
STAC [46] 42.8+4.9 64.8 46.0 35.7 46.4 63.4 47.5 44.4 19.6
Unbiased Teacher [38] 46.2+8.3 70.1 50.2 33.8 50.2 67.9 53.9 55.2 16.4

4.5 Discussion

We directly compare the performance of state-of-the-art self/semi-supervised methods on SODA10M
with supervised Faster-RCNN [44] in Table 7. In this table, we illustrate the overall performance
(mAP) for daytime/night domain and car detection results of 18 fine-grained domains (considering
different periods, locations and weather conditions).

4.5.1 Domain Adaptation Results

From Table 7, we observe that there exists a considerable gap between the domain of daytime and
night. Since the supervised method is only trained on the data during the daytime, the gap between
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Table 7: Domain adaptation results(%) of self/semi-supervised methods in different domains on SODA10M
dataset. ‘-’ means no validation image in this domain.

Model Overall mAP City street (Car) Highway (Car) Country road (Car)

Clear Overcast Rainy Clear Overcast Rainy Clear Overcast

Daytime

Supervised 43.1 70.0 64.9 56.6 68.3 65.9 65.9 69.4 63.5

MoCo-v1 [21] ImageNet 44.2+1.1 71.5 65.8 56.9 69.0 66.8 67.3 72.0 66.0
MoCo-v1 [21] SODA10M 43.8+0.7 71.3 66.0 55.8 69.4 67.4 68.0 72.8 65.5

STAC [46] 45.3+2.2 74.2 69.6 58.0 71.7 70.3 70.7 75.2 69.8
Unbiased Teacher [38] 47.7+4.6 73.0 68.1 55.3 69.1 62.0 71.3 72.6 70.0

Night

Supervised 21.1 36.3 37.7 - 37.5 37.3 79.5 38.9 72.8

MoCo-v1 [21] ImageNet 22.0+0.9 39.5 43.4 - 41.7 41.5 80.6 42.5 73.2
MoCo-v1 [21] SODA10M 22.7+1.6 41.6 46.2 - 42.1 41.8 79.8 45.4 74.1

STAC [46] 28.2+7.1 45.5 46.8 - 46.2 45.6 83.7 47.2 75.4
Unbiased Teacher [38] 39.7+18.6 65.3 66.2 - 66.2 67.2 83.6 67.5 75.2

day (43.1%) and night (21.1%) is particularly obvious. By adding diverse unlabeled data into training,
the semi-supervised methods show a more significant improvement in the night domain than
the self-supervised methods (+18.6% of Unbiased Teacher [38] vs. +1.6% of MoCo-v1 [21]).

For self-supervised learning, pre-training on ImageNet brings almost equal improvement in both day
and night domain (+1.1% vs. +0.9%), and we assume that is because ImageNet [7] contains common
images which achieve no special helps to the performance of night domain. On the other hand,
pre-training on SDOA10M, which contains massive images collected at night, brings double
improvement in night domain (+1.6%) compared to day domain (+0.7%).

4.5.2 Performance and Training Efficiency Comparison

Although trained with a smaller set of unlabeled data (1-million vs. 5-million), consistency-based
semi-supervised methods work much better than all self-supervised methods under same labeled
data either from the aspect of overall performance (46.2% vs. 38.9% for Unbiased teacher [38] and
MoCo-v1 [21] respectively, as shown in Table 6 and Table 4) or the total training time (2.8×8 GPU
days vs. 8.4×8 GPU days, as shown in Appendix B). Better performance will be achieved when
combining self-supervised and semi-supervised methods.

5 Conclusion

Focusing on self-supervised and semi-supervised learning, we present SODA10M, a large-scale
2D autonomous driving dataset that provides a large amount of unlabeled data and a small set of
high-quality labeled data collected from various cities under diverse weather conditions, periods
and location scenes. Compared with the existing self-driving datasets, SODA10M is the largest in
scale and obtained in much more diversity. Furthermore, we build a benchmark for self-supervised
and semi-supervised learning in autonomous driving scenarios and show that SODA10M can serve
as a promising dataset for training and evaluating different self/semi-supervised learning methods.
Inspired by the experiment results, we summarize some guidance for dealing with SODA10M dataset.
For self-supervised learning, method which focuses on dealing with multi-instance consistency
should be proposed for driving scenarios. For semi-supervised learning, domain adaptation can
be one of the most important topics. For both self and semi-supervised learning, efficient training
with high-resolution and large-scale images will be promising for future research. We hope that
SODA10M can promote the exploration and standardized evaluation of advanced techniques for
robust and real-world autonomous driving systems.
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