
ARKitScenes Supplementary Materials

Gilad Baruch ∗ Zhuoyuan Chen Afshin Dehghan Tal Dimry Yuri Feigin Peter Fu

Thomas Gebauer Brandon Joffe Daniel Kurz Arik Schwartz Elad Shulman

Apple
arkitscenes@group.apple.com

In this document we provide additional information about our dataset and ground truth, along
with more details and analysis on the two downstream tasks of 3D object detection and color-
guided depth upsampling.

1 Dataset

We use a custom iPadOS app for data collection with the iPad Pro. The app provides live visual
feedback to the user showing a wireframe version of the on-device ARKit scene reconstruction
mesh superimposed on the live camera image while capturing an RGB-D sequence. Given that
the operators are not computer vision experts, the live feedback is essential for making sure the
data that is collected is usable. If there is severe tracking drift in the SLAM algorithm, e.g. due to
capturing an environment with lack of texture, it would be very evident in the UI. This is thanks to
the efficient, low power scene reconstruction API available through the ARKit SDK. We have shown
snapshots of our data collection app in Figure 1 (a) and (b). Figure 1 (c) demonstrates a sample
scan pattern in a scene along with the locations of the stationary laser scanner. The operator is
instructed to scan all surfaces of walls, doors, windows along with major furniture in the room.

(a) (b) (c)
Figure 1: (a) Illustration of the iPad Pro scanning set up. (b) ARKit scene reconstruction mesh

overlay to assist data collection with iPad Pro. (c) Example of one of the scan patterns captured
with the iPad Pro. The red crosses show the chosen locations of the stationary laser scanner in

that room.

In Figure 2 we provide detailed information about our data/label distribution along with com-
parison with ScanNet [1]. Our dataset covers various room types that can be seen in an indoor
home including: bedroom, bathroom, living room, kitchen, dining room, laundry room, home
office, and recreation room. Additionally the number of unique scenes per room type has increased
significantly compared to ScanNet[1]. Moreover, we visualize the unique number of instances per

∗Authors are listed in alphabetic order and contributed equally.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Bench-
marks.

objects in our dataset and compare it to ScanNet. It is evident from the graph that ARKitScenes
and its ground truth not only are the largest in number of unique scenes but have more than
four times the number of objects labeled compared to ScanNet, even when only considering the
categories that are common between the two datasets.

cabinet

chair

table

sofa

sink

shelf

stool

oven

toilet

refrigerator

washer

stairs

stove

bathtub

fireplace

dishwasher

tv/monitor

0 5000 10000 15000 20000

ScanNet ARKitScenes (ours)

bedroom

bathroom

living_room

kitchen

dining_room

laundry

office

recreation_room

other

0 350 700 1050 1400

Figure 2: Distribution of ground truth object and room type instances. We offer significantly more
scenes than ScanNet.

2 3D object detection

We use a customised tool to manually annotate 3D oriented bounding boxes. The labelers mark
the location and orientation of the bounding boxes on the ARKit reconstructed scene mesh. Addi-
tionally our tool provides the 2D projection of the annotated 3D box into the RGB video frames of
the iPad Pro. This not only increases the accuracy of labeling by providing additional information,
but also reduces the confusion whenever the category label is difficult to be recognized from the
mesh only. We have attached snapshots of our labeling tool.

Figure 3: Screenshot showing a labeler selecting an object category.

2

`1 RMSE
Nearest Neighbor Bilinear Nearest Neighbor Bilinear

MSG
Nearest Neighbor 0.617 0.984 2.279 3.537

Bilinear 1.076 0.490 4.177 2.018

MSPF
Nearest Neighbor 0.810 1.264 2.985 4.480

Bilinear 1.165 0.581 4.985 2.636
Table 1: `1 and RMSE for Depth Upsampling models trained over MPI-Sintel for an upsampling

factor of 8 using different interpolation methods.

Factor
`1 RMSE

MPI-Sintel ARKitScenes MPI-Sintel ARKitScenes

MSG
x2 1.582 1.068 2.650 2.205
x4 1.578 1.046 2.643 2.187
x8 1.598 1.084 2.709 2.246

MSPF
x2 1.582 0.962 2.671 2.161
x4 1.555 0.953 2.627 2.142
x8 1.559 0.953 2.708 2.139

Table 2: `1 and RMSE for Depth Upsampling trained over MPI-Sintel and ARKitScenes train set,
and evaluated over ARKitScenes validation set.

3 Color-guided depth upsampling

3.1 Comparison to existing datasets

In order to better quantify the contribution of ARKitScenes to the field of color-guided depth
upsampling, we designed two experiments: The first will prove that existing datasets are not
applicable to real-world scenarios by showing their dependency on the method used to generate
the low resolution (LR) training and validation images. The second experiment is showing the
performance of models trained on existing datasets and evaluated over ARKitScenes.

For those experiments we used the MSG [2] and MSPF [3] architectures, similar to what we used
in the main paper. MPI-Sintel [4] was selected as the dataset for comparison, as it is the most
common dataset for depth upsampling to date. Disparity in pixels is the native representation of
data in MPI-Sintel, so we converted ARKitScenes data to disparity to facilitate a fair comparison.

3.1.1 Existing datasets dependence on LR generation method

In this experiment we show that existing datasets in which the low resolution (LR) image is
generated by downscaling the high resolution (HR) image produce models which overfit to the
method used to generate the LR images.

We trained models for an upsampling factor of 8, once with the LR images in the trainin set
generated using Nearest Neighbor Interpolation, and once using Bilinear Interpolation. We then
evaluated those models on two versions of the validation set using the same two interpolation
methods. Results can be found in Table 1. It is clear that evaluating over images generated using
an interpolation method different from the one used to generate the training dataset degrades
the results significantly: both `1 and RMSE are reduced by 33% to 54%. These results lead to
the conclusion that models that were trained using artificial downscaling of HR images cannot
generalize well to the real world in which low cost sensors, such as Apple’s LiDAR scanner, produce
noisy LR images.

3.1.2 Training over existing datasets

To quantify the difference between ARKitScenes and existing datasets, we trained reference models
on ARKitScenes, while other models were trained using MPI-Sintel [4]. The results are shown in
Table 2. One can observe that models trained on MPI-Sintel perform poorly on ARKitScenes. On
the other hand when we use ARKitScenes for training, we can improve the results by 30% to 46%
in `1, and 16% to 26% in RMSE.

3

3.2 Adaptations of losses for ARKitScenes

The ground truth depth maps are re-projections of the measurements of a laser scanner taken
from different viewpoints, occlusions will cause lack of information in some regions. We use zeros
as the depth value in such regions. In this section we will detail the adaptations required to the
losses being used in the literature due to this effect.

3.2.1 `1 loss

The `1 loss is calculated per-pixel as the absolute difference between the prediction and the
ground truth: |ppr edi ct i on −pg r ound_tr uth |. In order to perform well on ARKitScenes, all that is
required is ignoring pixels at which the ground truth is 0 (denoting no-depth).

3.2.2 Structural Similarity Index Measure (SSIM) loss

SSIM is a metric for evaluating the perceived quality of an image by measuring the similarity of
the prediction to a reference image while taking into account perception phenomena such as
luminance and contrast masking.

SSIM requires the full ground truth image without masks for structure calculation, as masks will
inherently change structural information. As such, this loss cannot be used over ARKitScenes
ground truth depth maps which contains masked pixels due to occlusions.

3.2.3 Edge loss

A loss suggested by [3] to ensure the sharpness of edges is defined as:

Led g e (Θ) = 1

N
||sobel (F (DLR , I HR ;Θ))− sobel (D HR)||1 (1)

where DLR is the low resolution depth map, I HR is the guiding high resolution color image and
D HR is the high resolution ground truth depth map. sobel is the 5×5 filter that computes smooth
gradients of an image. As explained before, this operator cannot be applied on the ground truth
of ARKitScenes because of the occlusions that will cause hallucinated edges around regions
without information. In order to overcome this issue one might naïvely mask out regions with no
information from the gradients image. However, such an approach will yield poor results because
the operator is convolving information from around each pixel. To combat this the no-depth mask
should be dilated in order to prevent leakage of wrong values to the gradient. However, once using
sufficient dilation, the information around real edges is usually lost.

To help reduce the impact of this problem, we replaced the edge loss originally used in [3] with
the edge loss suggested by [5], defined as an `1 penalty on differences in log-depth gradients at
different scales between the predicted and ground truth depth map:

Led g e =
1

n

∑
k

∑
i

(|∇x Rk
i |+ |∇y Rk

i |) (2)

where Rk
i is the value of the log-depth difference map at position i and scale k. To adapt this loss to

our ground truth all that is needed is to discard positions at which there is no depth information.

3.3 Experiment settings

Depth upsampling methods are usually tested using upsampling factors which are a factor of 2 on
each axis. In our dataset the resolution of the LR image is 256×192 and the resolution of the HR
image is 1920×1440. When possible we preferred to keep the LR image as is and downscale the
ground truth. For the case of x2 and x4 upsampling we downscaled the HR images to 512×384 and
1024×768 respectively. For x8 upsampling we used the original HR image and downscaled the LR
image to 240×180. After resizing, we rotate the images to be in portrait instead of landscape (e.g.
192×256 instead of 256×192) when needed to reflect the capturing orientation. Due to the high
resolution of the images, fitting all the images in the batch in GPU memory is prohibitively large.
Hence, we randomly cropped the HR depth maps in the training set to patches of size 512×512 for
scale factors 4, 8 and 256×256 for scale factor 2.

4

For color image interpolation we used linear interpolation, while depth maps were interpolated
using nearest-neighbor interpolation to avoid smooth edges and artifacts.

In our implementation we followed the settings used in [3] to employ ADAM to optimize the
parameters of the network. We start with a learning rate of 10−4 with linear decay in the entire
training procedure. We train the proposed networks with a batch size of 16 for 100k iterations to
convergence. We augment each patch by randomly flipping the horizontal axis.

3.4 Depth upsampling examples

More examples for color-guided depth upsampling can be found in Figure 8. The edges produced
by the data-driven MSPF are sharper than other methods, except for the FGI case in which the
transition is sharp but the edge itself is jagged and in low resolution.

References

[1] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[2] Tak-Wai Hui, Chen Change Loy, , and Xiaoou Tang. Depth map super-resolution by deep multi-
scale guidance. In Proc. European Conference on Computer Vision (ECCV), pages 353–369,
2016.

[3] Chuhua Xian, Kun Qian, Zitian Zhang, and Charlie CL Wang. Multi-scale progressive fusion
learning for depth map super-resolution. arXiv preprint arXiv:2011.11865, 2020.

[4] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source
movie for optical flow evaluation. In Proc. European Conference on Computer Vision (ECCV),
pages 611–625. Springer, 2012.

[5] Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
photos. In Proc. Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

5

Figure 4: Our annotation platform displays the original video and the ARKit scene reconstruction
color mesh side by side to provide more context for the labelers, thus leading to more accurate

labeling.

Figure 5: Our labeling tool enables real-time 2D projection of 3D bounding boxes into video
frames to facilitate accurate annotation.

6

DTImage GT

Figure 6: Examples of RGB-D frames, predictions (DT) and ground truth bounding boxes (GT) for
Single-Frame settings.

7

DTMesh GT

Figure 7: Examples of ARKit scene reconstruction meshes, prediction (DT) and ground truth
bounding boxes (GT) for Whole-Scene settings.

8

Figure 8: Examples of upsampling results using different methods with an upsampling factor of 8.
Each example is depicted in two rows; first for the entire image followed by a row with a crop of an

interesting part of the image. The images denote: (a) HR color, (b) LR ARKit depth map,(c) HR
ground truth and the results of the different upsampling methods: (d) Bilinear, (e) JBU, (f) FGI, (g)

MSG and (h) MSPF.

9

	Dataset
	3D object detection
	Color-guided depth upsampling
	Comparison to existing datasets
	Existing datasets dependence on LR generation method
	Training over existing datasets

	Adaptations of losses for ARKitScenes
	1 loss
	Structural Similarity Index Measure (SSIM) loss
	Edge loss

	Experiment settings
	Depth upsampling examples

