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Abstract

Explainable Natural Language Processing (EXNLP) has increasingly focused on
collecting human-annotated textual explanations. These explanations are used
downstream in three ways: as data augmentation to improve performance on a
predictive task, as supervision to train models to produce explanations for their
predictions, and as a ground-truth to evaluate model-generated explanations. In
this review, we identify 65 datasets with three predominant classes of textual expla-
nations (highlights, free-text, and structured), organize the literature on annotating
each type, identify strengths and shortcomings of existing collection methodologies,
and give recommendations for collecting EXNLP datasets in the future.

1 Introduction

Interpreting supervised machine learning (ML) models is crucial for ensuring their reliability and
trustworthiness in high-stakes scenarios. Models that produce justifications for their individual
predictions (sometimes referred to as local explanations) can be inspected for the purposes of
debugging, quantifying bias and fairness, understanding model behavior, and ascertaining robustness
and privacy [83]. These benefits have led to the development of datasets that contain human
justifications for the true label (overviewed in Tables 3–5). In particular, human justifications are used
for three goals: (i) to aid models with additional training supervision [142], (ii) to train interpretable
models that explain their own predictions [20], and (iii) to evaluate plausibility of model-generated
explanations by measuring their agreement with human explanations [29].

Dataset collection is the most under-scrutinized component of the ML pipeline [93]—it is estimated
that 92% of ML practitioners encounter data cascades, or downstream problems resulting from poor
data quality [109]. It is important to constantly evaluate data collection practices critically and
standardize them [13, 39, 95]. We expect that such examinations are particularly valuable when many
related datasets are released contemporaneously and independently in a short period of time, as is the
case with EXNLP datasets.

This survey aims to review and summarize the literature on collecting textual explanations, high-
light what has been learned to date, and give recommendations for future dataset construction. It
complements other explainable AI (XAI) surveys and critical retrospectives that focus on definitions,
methods, and/or evaluation [33, 15, 77, 1, 103, 51, 42, 133, 26, 44, 82, 121, 12, 86, 54, 19], but
not on datasets. We call such datasets EXNLP datasets, because modeling them for the three goals
mentioned above requires NLP techniques. Datasets and methods for explaining fact checking [65]
and reading comprehension [117] have been reviewed; we are the first to review all datasets with
textual explanations regardless of task, comprehensively categorize them into three distinct classes,
and provide critical retrospectives and best-practice recommendations.

⇤ Equal contributions.
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Instance Explanation
Premise: A white race dog wearing the number eight runs on the
track.
Hypothesis: A white race dog runs around his yard.
Label: contradiction

(highlight) Premise: A white race dog wearing the number eight
runs on the track . Hypothesis: A white race dog runs around his
yard .

(free-text) A race track is not usually in someone’s yard.

Question: Who sang the theme song from Russia With Love?
Paragraph: . . . The theme song was composed by Li-
onel Bart of Oliver! fame and sung by Matt Monro. . .
Answer: Matt Monro

(structured) Sentence selection: (not shown)
Referential equality: “the theme song from russia with
love” (from question) = “The theme song” (from paragraph)
Entailment: X was composed by Lionel Bart of Oliver! fame and
sung by ANSWER. ` ANSWER sung X

Table 1: Examples of explanation types discussed in §2. The first two rows show a highlight and free-
text explanation for an E-SNLI instance [20]. The last row shows a (partial) structured explanation
from QED for a NATURALQUESTIONS instance [70].

Instance with Highlight Highlight Type Clarification

Review: this film is extraordinarily horrendous and I’m not go-
ing to waste any more words on it. Label: negative

(¬comprehensive) Review: this film is extraordinari horrend
and I’m not going to waste any more words on it.

Review: this film is extraordinarily horrendous and I’m not go-

ing to waste any more words on it . Label: negative

(comprehensive) Review: this film is extraordinari horrend
and I’m not going to waste any more words on i .

Premise: A shirtless man wearing white shorts. Hypothesis: A
man in white shorts is running on the sidewalk. Label: neutral

(¬sufficient) Premise: A shirtless man wearing xxxxx Hy-

pothesis: A man in white shorts running on the sidewalk.

Table 2: Examples of highlights differing in comprehensiveness and sufficiency (discussed in §2, §4).

We first define relevant EXNLP terminology (§2) and overview 65 existing datasets (§3), ac-
companied with a live version of the tables as a website accepting community contributions:
https://exnlpdatasets.github.io. We next analyze what can be learned from existing data
collection methodologies. In §4 and §5, we highlight two points that we expect to be particularly
important to the current ExNLP research. Specifically, §4 discusses the traditional process of col-
lecting explanations by asking annotators to highlight parts of the input, and its discrepancies with
evaluating model-generated highlight explanations. We also draw attention to how assumptions
made for collecting free-text explanations (introduced in §2) influence their modeling, and call for
better documentation of explanation collection. In §5, we illustrate that not all template-like free-text
explanations are incorrect, and call for embracing the structure of an explanation when appropriate.
Unlike discussions in §4–5 that are motivated by EXNLP modeling and evaluation choices, the rest
of this paper reflects on relevant points from a broader NLP research. In §6, we present a proposal
for controlling quality in explanation collection, and in §7, gather recommendations from related
subfields to further reduce data artifacts by increasing diversity of collected explanations.

2 Explainability Lexicon

An explanation can be described as a “three-place predicate: someone explains something to someone”
[50]. The something being explained in machine learning systems are task labels: explanations are
implicitly or explicitly designed to answer the question “why is [input] assigned [label]?”. However,
collected explanations can vary in format. We identify three types in the EXNLP literature: highlights,
free-text, and structured explanations. An example of each type is given in Table 1. Since a consensus
on terminology has not yet been reached, we describe each type below.

Highlights are subsets of the input elements (words, phrases, or sentences) that explain a prediction.
Lei et al. [73] coin them extractive rationales, or subsets of the input tokens of a textual task that
satisfy two properties: (i) compactness, they are short and coherent, and (ii) sufficiency, they suffice
for prediction as a substitute of the original text. Yu et al. [141] introduce a third criterion, (iii)
comprehensiveness, that all the evidence that supports the prediction is selected, not just a sufficient
set. Since the term “rationale” implies human-like intent, Jacovi and Goldberg [55] argue to call
this type of explanation highlights to avoid inaccurately attributing human-like social behavior to AI
systems. They are also called evidence in fact-checking and multi-document question answering (QA)
[65]—a part of the source that refutes/supports the claim. To reiterate, highlights should be sufficient
to explain a prediction and compact; if they are also comprehensive, we call them comprehensive

2

https://exnlpdatasets.github.io


Dataset Task Granularity Collection # Instances
MOVIEREVIEWS [142] sentiment classification none author 1,800
MOVIEREVIEWSc [29] sentiment classification none crowd 200‡}
SST [113] sentiment classification none crowd 11,855}
WIKIQA [136] open-domain QA sentence crowd + authors 1,473
WIKIATTACK [22] detecting personal attacks none students 1089}
E-SNLI† [20] natural language inference none crowd ⇠569K (1 or 3)
MULTIRC [60] reading comprehension QA sentences crowd 5,825
FEVER [118] verifying claims from text sentences crowd ⇠136K‡

HOTPOTQA [137] reading comprehension QA sentences crowd 112,779
Hanselowski et al. [47] verifying claims from text sentences crowd 6,422 (varies)
NATURALQUESTIONS [68] reading comprehension QA 1 paragraph crowd n/a‡ (1 or 5)
COQA [104] conversational QA none crowd ⇠127K (1 or 3)
COS-E V1.0† [100] commonsense QA none crowd 8,560
COS-E V1.11† [100] commonsense QA none crowd 10,962
BOOLQc [29] reading comprehension QA none crowd 199‡}

EVIDENCEINFERENCE V1.0 [71] evidence inference none experts 10,137
EVIDENCEINFERENCE V1.0c [29] evidence inference none experts 125‡
EVIDENCEINFERENCE V2.0 [30] evidence inference none experts 2,503
SCIFACT [123] verifying claims from text 1-3 sentences experts 995‡ (1-3)
Kutlu et al. [67] webpage relevance ranking 2-3 sentences crowd 700 (15)
SCAT [139] document-level machine translation none experts ⇠14K
ECTHR [24] alleged legal violation prediction paragraphs auto + expert ⇠11K
HUMMINGBIRD [48] style classification words crowd 500
HATEXPLAIN [79] hate-speech classification phrases crowd 20,148 (3)

Table 3: Overview of datasets with textual highlights. Values in parentheses indicate number of
explanations collected per instance (if > 1). DeYoung et al. [29] collected or recollected annotations
for prior datasets (marked with the subscript c). } Collected > 1 explanation per instance but only
release 1. † Also contains free-text explanations. ‡ A subset of the original dataset that is annotated.
It is not reported what subset of NATURALQUESTIONS has both a long and short answer.

highlights. Although the community has settled on criteria (i)–(iii) for highlights, the extent to
which collected datasets (Table 3) reflect them varies greatly, as we will discuss in §4. Table 2 gives
examples of sufficient vs. non-sufficient and comprehensive vs. non-comprehensive highlights.

Free-text explanations are free-form textual justifications that are not constrained to the words or
modality of the input instance. They are thus more expressive and generally more readable than
highlights. This makes them useful for explaining reasoning tasks where explanations must contain
information outside the given input sentence or document [20, 128]. They are also called textual [62]
or natural language explanations [20], terms that have been overloaded [98]. Synonyms, free-form
[20] or abstractive explanations [87] do not emphasize that the explanation is textual.

Finally, structured explanations are explanations that are not entirely free-form although they are
still written in natural language. For example, there may be constraints placed on the explanation-
writing process, such as the required use of specific inference rules. We discuss the recent emergence
of structured explanations in §5. Structured explanations do not have one common definition; we
elaborate on dataset-specific designs in §3. An example is given in the bottom row of Table 1.

3 Overview of Existing Datasets

We overview currently available EXNLP datasets by explanation type: highlights (Table 3), free-text
explanations (Table 4), and structured explanations (Table 5). Besides SCAT [139], to the best of
our knowledge, all existing datasets are in English. The authors of ⇠66% papers cited in Tables 3–5
report the dataset license in the paper or a repository, and 45.61% use common permissive licenses;
for more information see Appendix B. See Appendix C for collection details.

For each dataset, we report the number of instances (input-label pairs) and the number of explanations
per instance (if > 1). The annotation procedure used to collect each dataset is reported as: crowd-
annotated (“crowd”); automatically annotated through a web-scrape, database crawl, or merge of
existing datasets (“auto”); or annotated by others (“experts”, “students”, or “authors”). Some authors
perform semantic parsing on collected explanations (denoted with ⇤); we classify them by the dataset
type before parsing and list the collection type as “crow + authors”. Tables 3-5 elucidate that the
dominant collection paradigm (�90%) is via human (crowd, student, author, or expert) annotation.
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Dataset Task Collection # Instances
Jansen et al. [56] science exam QA authors 363
Ling et al. [76] solving algebraic word problems auto + crowd ⇠101K
Srivastava et al. [115]⇤ detecting phishing emails crowd + authors 7 (30-35)
BABBLELABBLE [46]⇤ relation extraction students + authors 200‡‡

E-SNLI [20] natural language inference crowd ⇠569K (1 or 3)
LIAR-PLUS [4] verifying claims from text auto 12,836
COS-E V1.0 [100] commonsense QA crowd 8,560
COS-E V1.11 [100] commonsense QA crowd 10,962
ECQA [2] commonsense QA crowd 10,962
SEN-MAKING [124] commonsense validation students + authors 2,021
CHANGEMYVIEW [10] argument persuasiveness crowd 37,718
WINOWHY [144] pronoun coreference resolution crowd 273 (5)
SBIC [111] social bias inference crowd 48,923 (1-3)
PUBHEALTH [64] verifying claims from text auto 11,832
Wang et al. [125]⇤ relation extraction crowd + authors 373
Wang et al. [125]⇤ sentiment classification crowd + authors 85
E-�-NLI [18] defeasible natural language inference auto 92,298 (⇠8)

BDD-X†† [62] vehicle control for self-driving cars crowd ⇠26K
VQA-E†† [75] visual QA auto ⇠270K
VQA-X†† [94] visual QA crowd 28,180 (1 or 3)
ACT-X†† [94] activity recognition crowd 18,030 (3)
Ehsan et al. [34]†† playing arcade games crowd 2000
VCR†† [143] visual commonsense reasoning crowd ⇠290K
E-SNLI-VE†† [32] visual-textual entailment crowd 11,335 (3)‡
ESPRIT†† [101] reasoning about qualitative physics crowd 2441 (2)
VLEP†† [72] future event prediction auto + crowd 28,726
EMU†† [27] reasoning about manipulated images crowd 48K

Table 4: Overview of EXNLP datasets with free-text explanations for textual and visual-textual tasks
(marked with †† and placed in the lower part). Values in parentheses indicate number of explanations
collected per instance (if > 1). ‡ A subset of the original dataset that is annotated. ‡‡ Subset publicly
available. ⇤ Authors semantically parse the collected explanations.

Highlights (Table 3) The granularity of highlights depends on the task they are collected for. The
majority of authors do not place a restriction on granularity, allowing words, phrases, or sentences
of the original input document to be selected. The coarsest granularity in Table 3 is one or more
paragraphs in a longer document [68, 24]. We exclude datasets that include an associated document
as evidence without specifying the location of the explanation within the document (namely document
retrieval datasets). We exclude BEERADVOCATE [80] because it has been retracted.

Some highlights are re-purposed from annotations for a different task. For example, MULTIRC [60]
contains sentence-level highlights that indicate justifications of answers to questions. However,
they were originally collected for the authors to assess that each question in the dataset requires
multi-sentence reasoning to answer. Another example is STANFORD SENTIMENT TREEBANK [SST; 113]
which contains crowdsourced sentiment annotations for word phrases extracted from movie reviews
[90]. Word phrases that have the same sentiment label as the review can be heuristically merged to
get phrase-level highlights [23]. Other highlights in Table 3 are collected by instructing annotators.
Instead of giving these instructions verbatim, their authors typically describe them concisely, e.g.,
they say annotators are asked to highlight words justifying, constituting, indicating, supporting, or
determining the label, or words that are essential, useful, or relevant for the label. The difference in
wording of these instructions affects how people annotate explanations. In §4, we discuss how one
difference in annotation instructions (requiring comprehensiveness or not) can be important.

Free-Text Explanations (Table 4) This is a popular explanation type for both textual and visual-
textual tasks, shown in the first and second half of the table, respectively. Most free-text explanations
are generally no more than a few sentences per instance. One exception is LIAR-PLUS [5], which
contains the conclusion paragraphs of web-scraped human-written fact-checking summaries.

Structured Explanations (Table 5) Structured explanations take on dataset-specific forms. One
common approach is to construct a chain of facts that detail the reasoning steps to reach an answer
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Dataset Task Explanation Type Collection # Instances
WORLDTREE V1 [57] science exam QA explanation graphs authors 1,680
OPENBOOKQA [81] open-book science QA 1 fact from WORLDTREE crowd 5,957
Yang et al. [135]†† action recognition lists of relations + attributes crowd 853
WORLDTREE V2 [132] science exam QA explanation graphs experts 5,100
QED [70] reading comp. QA inference rules authors 8,991
QASC [61] science exam QA 2-fact chain authors + crowd 9,980
EQASC [58] science exam QA 2-fact chain auto + crowd 9,980 (⇠10)
+ PERTURBED science exam QA 2-fact chain auto + crowd n/a‡
EOBQA [58] open-book science QA 2-fact chain auto + crowd n/a‡
Ye et al. [138]⇤ SQUAD QA semi-structured text crowd + authors 164
Ye et al. [138]⇤ NATURALQUESTIONS QA semi-structured text crowd + authors 109
R4C [53] reading comp. QA chains of facts crowd 4,588 (3)
STRATEGYQA [41] implicit reasoning QA reasoning steps w/ highlights crowd 2,780 (3)
TRIGGERNER named entity recognition groups of highlighted tokens crowd ⇠7K (2)

Table 5: Overview of EXNLP datasets with structured explanations (§5). Values in parentheses
indicate number of explanations collected per instance (if > 1). †† Visual-textual dataset. ⇤ Authors
semantically parse the collected explanations. ‡ Subset of instances annotated with explanations is
not reported. Total # of explanations is 855 for EQASC PERTURBED and 998 for EOBQA.

(“chains of facts”). Another is to place constraints on the textual explanations that annotators can
write, such as requiring the use of certain variables in the input (“semi-structured text”).

The WORLDTREE datasets [57, 132] propose explaining elementary-school science questions with
a combination of chains of facts and semi-structured text, termed “explanation graphs”. The facts
are individual sentences written by the authors that are centered around a set of shared relations and
properties. Given the chain of facts for an instance (6.3 facts on average), the authors can construct
an explanation graph by linking shared words in the question, answer, and explanation.

OPENBOOKQA [OBQA; 81] uses single WORLDTREE facts to prime annotators to write QA pairs.
Similarly, each question in QASC [61] contains two associated science facts from a corpus selected
by human annotators who wrote the question. Jhamtani and Clark [58] extend OBQA and QASC with
two-fact chain explanation annotations, which are automatically extracted from a fact corpus and
validated with crowdsourcing. The resulting datasets, EQASC and EOBQA, contain multiple valid and
invalid explanations per instance, as well as perturbations for robustness testing (EQASC-PERTURBED).

A number of structured explanation datasets supplement datasets for reading comprehension. Ye et al.
[138] collect semi-structured explanations for NATURALQUESTIONS [68] and SQUAD [102]. They
require annotators to use phrases in both the input question and context, and limit them to a small set
of connecting expressions. Inoue et al. [53] collect R4C, fact chain explanations for HOTPOTQA [137].
Lamm et al. [70] collect explanations for NATURALQUESTIONS that follow a linguistically-motivated
form (see the example in Table 1). We discuss structured explanations further in §5.

4 Link Between EXNLP Data, Modeling, and Evaluation Assumptions

All three parts of the machine learning pipeline (data collection, modeling, and evaluation) are
inextricably linked. In this section, we discuss what EXNLP modeling and evaluation research reveals
about the qualities of available EXNLP datasets, and how best to collect such datasets in the future.

Highlights are usually evaluated following two criteria: (i) plausibility, according to humans, how
well a highlight supports a predicted label [133, 29], and (ii) faithfulness or fidelity, how accurately a
highlight represents the model’s decision process [6, 127]. Human-annotated highlights (Table 2) are
used to measure the plausiblity of model-produced highlights: the higher the overlap between the
two, the more plausible model highlights are considered. On the other hand, a highlight that is both
sufficient (implies the prediction, §2; first example in Table 2) and comprehensive (its complement
in the input does not imply the prediction, §2; second example in Table 2) is regarded as faithful to
the prediction it explains [29, 23]. Since human-annotated highlights are used only for evaluation of
plausibility but not faithfulness, one might expect that the measurement and modeling of faithfulness
cannot influence how human-authored explanations should be collected. In this section, we show that
this expectation might lead to collecting highlights that are unfitting for the goals (ii) and (iii) in §1.
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Typical instructions for collecting highlights encourage sufficiency and compactness, but not compre-
hensiveness. For example, DeYoung et al. [29] deem MOVIEREVIEWS and EVIDENCEINFERENCE high-
lights non-comprehensive. Carton et al. [23] expect that FEVER highlights are non-comprehensive, in
contrast to DeYoung et al. [29]. Contrary to the characterization of both of these work, we observe that
the E-SNLI authors collect non-comprehensive highlights, since they instruct annotators to highlight
only words in the hypothesis (and not the premise) for neutral pairs, and consider contradiction/neutral
explanations correct if at least one piece of evidence in the input is highlighted. Based on these
discrepancies in characterization, we first conclude that post-hoc assessment of comprehensiveness
from a general description of data collection is error-prone.

Alternatively, Carton et al. [23] empirically show that available human highlights are not necessarily
sufficient nor comprehensive for predictions of highly accurate models. This suggests that the same
might hold for gold labels, leading us to ask: are gold highlights in existing datasets flawed?

Let us first consider insufficiency. Highlighted input elements taken together have to reasonably
indicate the label. Otherwise, a highlight is an invalid explanation. Consider two datasets whose
sufficiency Carton et al. [23] found to be most concerning: neutral E-SNLI pairs and no-attack
WIKIATTACK examples. Neutral E-SNLI cases are not justifiable by highlighting because they
are obtained only as an intermediate step to collecting free-text explanations, and only free-text
explanations truly justify a neutral label [20]. Table 2 shows one E-SNLI highlight that is not sufficient.
No-attack WIKIATTACK examples are not explainable by highlighting because the absence of offensive
content justifies the no-attack label, and this absence cannot be highlighted. We recommend (i)
avoiding human-annotated highlights with low sufficiency when evaluating and collecting highlights,
and (ii) assessing whether the true label can be explained by highlighting.

Consider a highlight that is non-comprehensive because it is redundant with its complement in the
input (e.g., a word appears multiple times, but only one occurrence is highlighted). Highlighting
only one occurrence of “great” is a valid justification, but quantifying faithfulness of this highlight
is hard because the model might rightfully use the unhighlighted occurrence of “great” to make
the prediction. Thus, comprehensiveness is modeled to make faithfulness evaluation feasible. Non-
comprehensiveness of human highlights, however, hinders evaluating plausibility of comprehensive
model highlights since model and human highlights do not match by design. To be able to eval-
uate both plausibility and faithfulness, we should annotate comprehensive human highlights. We
summarize these observations in Figure 2 in Appendix A.

Mutual influence of data and modeling assumptions also affects free-text explanations. For example,
the E-SNLI guidelines have far more constraints than the COS-E guidelines, such as requiring self-
contained explanations. Wiegreffe et al. [128] show that such data collection decisions can influence
modeling assumptions. This is not an issue per se, but we should be cautious that EXNLP data
collection decisions do not popularize explanation properties as universally necessary when they
are not, e.g., that free-text explanations should be understandable without the original input or that
highlights should be comprehensive. We believe this could be avoided with better documentation,
e.g., with additions to a standard datasheet [39]. Explainability fact sheets have been proposed
for models [114], but not for datasets. For example, an E-SNLI datasheet could note that self-
contained explanations were required during data collection, but that this is not a necessary property
of a valid free-text explanation. A dataset with comprehensive highlights should emphasize that
comprehensiveness is required to simplify faithfulness evaluation.

Takeaways
1. It is important to precisely report how explanations were collected, e.g., by giving access to

the annotation interface, screenshotting it, or giving the annotation instructions verbatim.
2. Sufficiency is necessary for highlights, and EXNLP researchers should avoid human-

annotated highlights with low sufficiency for evaluating and developing highlights.
3. Comprehensiveness isn’t necessary for a valid highlight, it is a means to quantify faithfulness.
4. Non-comprehensive human-annotated highlights cannot be used to automatically evaluate

plausibility of highlights that are constrained to be comprehensive. In this case, EXNLP
researchers should collect and use comprehensive human-annotated highlights.

5. Researchers should not make (error-prone) post-hoc estimates of comprehensiveness of
human-annotated highlights from datasets’ general descriptions.

6. EXNLP researchers should be careful to not popularize their data collection decisions as
universally necessary. We advocate for documenting all constraints on collected explanations
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in a datasheet, highlighting whether each constraint is necessary for explanation to be valid
or not, and noting how each constraint might affect modeling and evaluation.

5 Rise of Structured Explanations

The merit of free-text explanations is their expressivity, which can come at the costs of underspecifica-
tion and inconsistency due to the difficulty of quality control (stressed by the creators of two popular
free-text explanation datasets: E-SNLI and COS-E). In this section, we highlight and challenge one
prior approach to overcoming these difficulties: discarding template-like free-text explanations.

We gather crowdsourcing guidelines for the above-mentioned datasets in Tables 6–7 in Appendix and
compare them. We observe two notable similarities between the guidelines for the above-mentioned
datasets. First, both asked annotators to first highlight input words and then formulate a free-text
explanation from them, to control quality. Second, template-like explanations are discarded because
they are deemed uninformative. The E-SNLI authors assembled a list of 56 templates (e.g., “There
is hhypothesisi”) to identify explanations whose edit distance to one of the templates is <10. They
re-annotate the detected template-like explanations (11% in the entire dataset). The COS-E authors
discard sentences “hansweri is the only option that is correct/obvious” (the only given example
of a template). Template explanations concern researchers because they can result in artifact-like
behaviors in certain modeling architectures. For example, a model which predicts a task output from
a generated explanation can produce explanations that are plausible to a human user and give the
impression of making label predictions on the basis of this explanation. However, it is possible that
the model learns to ignore the semantics of the explanation and instead makes predictions based on
the explanation’s template type [66, 55]. In this case, the semantic interpretation of the explanation
(that of a human reader) is not faithful (an accurate representation of the model’s decision process).

Despite re-annotating, Camburu et al. [21] report that E-SNLI explanations still largely follow 28 label-
specific templates (e.g., an entailment template “X is another form of Y”) even after re-annotation.
Similarly, Brahman et al. [18] report that models trained on gold E-SNLI explanations generate
template-like explanations for the defeasible NLI task. These findings lead us to ask: what are the
differences between templates considered uninformative and filtered out, and those identified by
Camburu et al. [21], Brahman et al. [18] that remain after filtering? Are all template-like explanations
uninformative?

Although prior work indicates that template-like explanations are undesirable, most recently, struc-
tured explanations have been intentionally collected (see Table 5; §3). What these studies share is
that they acknowledge structure as inherent to explaining the tasks they investigate. Related work
[GLUCOSE; 85] takes the matter further, arguing that explanations should not be entirely free-form.
Following GLUCOSE, we recommend running pilot studies to explore how people define and generate
explanations for a task before collecting free-text explanations for it. If they reveal that informative
human explanations are naturally structured, incorporating the structure in the annotation scheme is
useful since the structure is natural to explaining the task. This turned out to be the case with NLI;
Camburu et al. [21] report: “Explanations in E-SNLI largely follow a set of label-specific templates.
This is a natural consequence of the task and dataset”. We recommend embracing the structure when
possible, but also encourage creators of datasets with template-like explanations to highlight in a
dataset datasheet (§4) that template structure can influence downstream modeling decisions. There
is no all-encompassing definition of explanation, and researchers could consult domain experts or
follow literature from other fields to define an appropriate explanation in a task-specific manner, such
as in GLUCOSE [85]. For conceptualization of explanations in different fields see Tiddi et al. [119].

Finally, what if pilot studies do not reveal any obvious structure to human explanations of a task?
Then we need to do our best to control the quality of free-text explanations because low dataset quality
is a bottleneck to building high-quality models. COS-E is collected with notably less annotation
constraints and quality controls than E-SNLI, and has annotation issues that some have deemed make
the dataset unusable [87]; see examples in Table 7 of Appendix A. As exemplars of quality control,
we point the reader to the annotation guidelines of VCR [143] in Table 8 and GLUCOSE [84]. In §6
and §7, we give further task-agnostic recommendations for collecting high-quality EXNLP datasets,
applicable to all three explanation types.

Takeaways
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1. EXNLP researchers should study how people define and generate explanations for the task
before collecting free-text explanations.

2. If pilot studies show that explanations are naturally structured, embrace the structure.
3. There is no all-encompassing definition of explanation. Thus, EXNLP researchers could con-

sult domain experts or follow literature from other fields to define an appropriate explanation
form, and these matters should be open for debate on a given task.

6 Increasing Explanation Quality

When asked to write free-text sentences from scratch for a table-to-text annotation task outside
EXNLP, Parikh et al. [92] note that crowdworkers produce “vanilla targets that lack [linguistic]
variety”. Lack of variety can result in annotation artifacts, which are prevalent in the popular SNLI
[16] and MNLI [129] datasets [97, 45, 120], among others [40]. These authors demonstrate the
harms of such artifacts: models can overfit to them, leading to both performance over-estimation and
problematic generalization behaviors.

Artifacts can occur from poor-quality annotations and inattentive annotators, both of which have been
on the rise on crowdsourcing platforms [25, 7, 87]. To mitigate artifacts, both increased diversity of
annotators and quality control are needed. We focus on quality control here and diversity in §7.

6.1 A Two-Stage Collect-And-Edit Approach

While ad-hoc methods can improve quality [20, 143, 84], an effective and generalizable method is to
collect annotations in two stages. A two-stage methodology has been applied by a small minority
of EXNLP dataset papers [58, 144, 143], who first compile explanation candidates automatically or
from crowdworkers, and secondly perform quality-control by having other crowdworkers assess the
quality of the collected explanations (we term this COLLECT-AND-JUDGE). Judging improves the
overall quality of the final dataset by removing low-quality instances, and additionally allows authors
to release quality ratings for each instance.

Outside EXNLP, Parikh et al. [92] use an extended version of this approach (that we term COLLECT-
AND-EDIT): they generate a noisy automatically-extracted dataset for the table-to-text generation task,
and then ask annotators to edit the datapoints. Bowman et al. [17] use this approach to re-collect
NLI hypotheses, and find, crucially, that having annotators edit rather than create hypotheses reduces
artifacts in a subset of MNLI. In XAI, Kutlu et al. [67] collect highlight explanations for Web page
ranking with annotator editing. We advocate expanding the COLLECT-AND-JUDGE approach for
explanation collection to COLLECT-AND-EDIT. This has potential to increase linguistic diversity via
multiple annotators per-instance, reduce individual annotator biases, and perform quality control.
Through a case study of two multimodal free-text explanation datasets, we will demonstrate that
collecting explanations automatically without human editing (or at least judging) can lead to artifacts.

E-SNLI-VE [32] and VQA-E [75] are two visual-textual datasets for entailment and question-
answering, respectively. E-SNLI-VE combines annotations of two datasets: (i) SNLI-VE [131],
collected by replacing the textual premises of SNLI [16] with FLICKR30K images [140], and (ii) E-
SNLI [20], a dataset of crowdsourced explanations for SNLI. This procedure is possible because every
SNLI premise was originally the caption of a FLICKR30K photo. However, since SNLI’s hypotheses
were collected from crowdworkers who did not see the original images, the photo replacement process
results in a significant number of errors [122]. Do et al. [32] re-annotate labels and explanations for
the neutral pairs in the validation and test sets of SNLI-VE. However, it has been argued that the
dataset remains low-quality for training models due to artifacts in the entailment and the neutral class’
training sets [78]. With a full EDIT approach, we expect that these artifacts would be significantly
reduced, and the resulting dataset could have quality on-par with E-SNLI. Similarly, the VQA-E
dataset [75] converts image captions from the VQA V2.0 dataset [43] into explanations, but a notably
lower plausibility compared to a carefully-crowdsourced VCR explanations is reported in [78].

Both E-SNLI-VE and VQA-E present novel and cost-effective ways to produce large EXNLP datasets
for new tasks, but also show the quality tradeoffs of automatic collection. Strategies such as
crowdsourced judging and editing, even on a small subset, can reveal and mitigate such issues.
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6.2 Teach and Test the Underlying Task

In order to both create and judge explanations, annotators must understand the underlying task and
label-set well. In most cases, this necessitates teaching and testing the task. Prior work outside
of EXNLP has noted the difficulty of scaling annotation to crowdworkers for complex linguistic
tasks [106, 35, 99, 85]. To increase annotation quality, these works provide intensive training
to crowdworkers, including personal feedback. Since label understanding is a prerequisite for
explanation collection, task designers should consider relatively inexpensive strategies such as
qualification tasks and checker questions. This need is correlated with the difficulty and domain-
specificity of the task, as elaborated above.

Similarly, people cannot explain all tasks equally well and even after intensive training they might
struggle to explain tasks such as deception detection and recidivism prediction [89]. Human explana-
tions for such tasks might be limited in serving the three goals outlined in §1.

6.3 Addressing Ambiguity

Data collectors often collect explanations post-hoc, i.e., annotators are asked to explain labels assigned
by a system or other annotators. The underlying assumption is that the explainer believes the assigned
label to be correct or at least likely (there is no task ambiguity). However, this assumption has been
shown to be inaccurate (among others) for relation extraction [8], natural language inference [96, 88],
and complement coercion [35], and the extent to which it is true likely varies by task, instance, and
annotator. If an annotator is uncertain about a label, their explanation may be at best a hypothesis and
at worst a guess. HCI research encourages leaving room for ambiguity rather than forcing raters into
binary decisions, which can result in poor or inaccurate labels [108].

To ensure explanations reflect human decisions as closely as possible, it is ideal to collect both labels
and explanations from the same annotators. Given that this is not always possible, including a checker
question to assess whether an explanation annotator agrees with a label is a good alternative.

Takeaways
1. Using a COLLECT-AND-EDIT method can reduce individual annotator biases, perform quality

control, and potentially reduce dataset artifacts.
2. Teaching and testing the underlying task and addressing ambiguity can improve data quality.

7 Increasing Explanation Diversity

Beyond quality control, increasing annotation diversity is another task-agnostic means to mitigate
artifacts and collect more representative data. We elaborate on suggestions from related work (inside
and outside EXNLP) here.

7.1 Use a Large Set of Annotators

Collecting representative data entails ensuring that a handful of annotators do not dominate data
collection. Outside EXNLP, Geva et al. [40] report that recruiting only a small pool of annotators
(1 annotator per 100–1000 examples) allows models to overfit on annotator characteristics. Such
small annotator pools exist in EXNLP—for instance, E-SNLI reports an average of 860 explanations
written per worker. The occurrence of the incorrect explanation “rivers flow trough valleys” for
529 different instances in COS-E v1.11 is likely attributed to a single annotator. Al Kuwatly et al.
[3] find that demographic attributes can predict annotation differences. Similarly, Davidson et al.
[28], Sap et al. [110] show that annotators often consider African-American English writing to be
disproportionately offensive.2 A lack of annotator representation concerns EXNLP for three reasons:
explanations depend on socio-cultural background [63], annotator traits should not be predictable
[40], and the subjectivity of explaining leaves room for social bias to emerge.

On most platforms, annotators are not restricted to a specific number of instances. Verifying that no
worker has annotated an excessively large portion of the dataset in addition to strategies from Geva

2In another related study, 82% of annotators reported their race as white [111]. This is a likely explanation
for the disproportionate annotation.
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et al. [40] can help mitigate annotator bias. More elaborate methods for increasing annotator diversity
include collecting demographic attributes or modeling annotators as a graph [3, 126].

7.2 Multiple Annotations Per Instance

HCI research has long considered the ideal of crowdsourcing a single ground-truth as a “myth” that
fails to account for the diversity of human thought and experience [9]. Similarly, EXNLP researchers
should not assume there is always one correct explanation. Many of the assessments crowdworkers
are asked to make when writing explanations are subjective in nature, and there are many different
models of explanation based on a user’s cognitive biases, social expectations, and socio-cultural
background [82]. Prasad et al. [98] present a theoretical argument to illustrate that there are multiple
ways to highlight input words to explain an annotated sentiment label. Camburu et al. [20] find a low
inter-annotator BLEU score [91] between free-text explanations collected for E-SNLI test instances.

If a dataset contains only one explanation when multiple are plausible, a plausible model explanation
can be penalized unfairly for not agreeing with it. We expect that modeling multiple explanations can
also be a useful learning signal. Some existing datasets contain multiple explanations per instance
(last column of Tables 3–5). Future EXNLP data collections should do the same if there is subjectivity
in the task or diversity of correct explanations (which can be measured via inter-annotator agreement).
If annotators exhibit low agreement between explanations deemed as plausible, this can reveal a
diversity of correct explanations for the task, which should be considered in modeling and evaluation.

7.3 Get Ahead: Add Contrastive and Negative Explanations

The machine learning community has championed modeling contrastive explanations that justify
why a prediction was made instead of another, to align more closely with human explanation
[31, 49, 82]. Most recently, methods have been proposed in NLP to produce contrastive edits of the
input as explanations [107, 134, 130, 55]. Outside of EXNLP, datasets with contrastive edits have
been collected to assess and improve robustness of NLP models [59, 38, 74] and might be used for
explainability too.

Just as highlights are not sufficiently intelligible for complex tasks, the same might hold for contrastive
input edits. To the best of our knowledge, there is no dataset that contains contrastive free-text or
structured explanations. These could take the form of (i) collecting explanations that answer the
question “why...instead of...”, or (ii) collecting explanations for other labels besides the gold label,
to be used as an additional training signal. A related annotation paradigm is to collect negative
explanations, i.e., explanations that are invalid for an (input, gold label) pair. Such examples can
improve EXNLP models by providing supervision of what is not a correct explanation [112]. A
human JUDGE or EDIT phase automatically gives negative explanations: the low-scoring instances
(former) or instances pre-editing (latter) [58, 144].

Takeaways
1. To increase annotation diversity, a large set of annotators, multiple annotations per instance,

and collecting explanations that are most useful to the needs of end-users are important.
2. Reporting inter-annotator agreement with plausibility of annotated explanations is useful

to known whether there is a natural diversity of explanations for the task and should the
diversity be considered for modeling and evaluation.

8 Conclusions

We have presented a review of existing datasets for EXNLP research, highlighted discrepancies in
data collection that can have downstream modeling effects, and synthesized the literature both inside
and outside EXNLP into a set of recommendations for future data collection.

We note that a majority of the work reviewed in this paper has originated in the last 1-2 years,
indicating an explosion of interest in collecting datasets for EXNLP. We provide reflections for current
and future data collectors in an effort to promote standardization and consistency. This paper also
serves as a starting resource for newcomers to EXNLP, and, we hope, a starting point for further
discussions.
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