Appendix for “Personalized Benchmarking with the
Ludwig Benchmarking Toolkit”

A Appendix

A.1 Maetrics

LBT reports a wide-range of performance metrics and training metadata for all experiments run
using LBT. All metrics recorded at training time fall into the following categories: model metadata,
hardware information, inference efficiency, fiscal cost, training efficiency, performance and carbon
footprint. For carbon footprint tracking we use the Python experiment-impact-tracker package [14].
In Table [A.T] we provide a more detailed overview of all metrics currently supported by LBT.
The performance metrics listed represent a small subset of the performance metrics reported in
LBT experiments and we refer readers to the Ludwig source code for a more detailed list: https:
//github.com/ludwig-ai/ludwig/blob/master/ludwig/utils/metrics_utils.py

Table A.1: LBT Pre-Computed Metrics. This table lists the off-the-shelf metrics and metadata
reported for any experiments run using LBT.

Model Metadata | Model size (bytes)
Hardware Info | Total CPU cores, Total GPUs, GPU Type, System Memory
Inference Efficiency | Inference time (s)
Cost | Total training cost ($)
Training Efficiency | Time per training step (s), Total training time (s)
Carbon Footprint | Power consumption (kWh), Carbon impact (Kg)
Performance | Accuracy, Precision, Recall, F1, Jaccard Index, Sensitivity, Specificity, AUC, and many
more

Metric Details.
* Hardware information: system information is collected using the psutil [58]] and GPUtil
python modules [59].

* Inference time (s): computed as the average time (as measured using the Python date-
time module) for a model to perform inference on one data sample. The average time is
approximated using 25 random samples from the test set.

* Total training cost ($): measured as the total dollar spend per trained model. This value is
computed by using the average hourly public cloud instance prices for the machines in the
experiments.

» Time per training step (s): measured as the average time to train one batch in a given epoch.

* Total training time (s): measured as the total time to train the model. The value we report is
the time_total_s metric reported by Ray Tune.

* Power consumption (kWh), Carbon impact (Kg): data for these metrics is collected using
the experiment-impact-tracker python package [14]].

Custom Metrics. To add a custom metric, a user needs to register a new LBT metric as shown in

Figure [A.T](top).

A.2 Evaluation Tools

LBT integrates with two open-source evaluation tools for measuring subpopulation based performance
and robustness: Robustness Gym (RG) and TextAttack.

15

https://github.com/ludwig-ai/ludwig/blob/master/ludwig/utils/metrics_utils.py
https://github.com/ludwig-ai/ludwig/blob/master/ludwig/utils/metrics_utils.py

@register_metric("training_speed")
class TrainingSpeed(BaseMetric):
def run(cls, dataset_path: str, model_dir: str)

return training_speed

@register_dataset("new_dataset")
class NewDataset(LBTDataset):
def __init__ (self, cache_dir):
self.name = '"new_dataset"
self.file_name = "new_dataset.csv"
self.cache_dir = cache_dir
def download(self):

def process(self):

def load(self):
return pandas.read_csv(os.path.join(self.cache_dir, self.file_name))

Figure A.1: User-defined metric and dataset. Example of how custom metrics and datasets are
added to LBT experiments.

RG APIL. LBT’s integration with RG lets users inspect model performance on a set of pre-built data
subpopulations (e.g., sentence length, positive words, negative words, gender bias pairs, entity, POS,
etc.) as well as add more subpopulations for their data and use cases. Defining a new subpopulation
requires implementing and registering a new BaseSubpopulation class. Figure[A.2] shows how to
define a new data subpopulation that contains all samples with naughty and obscene words. Figure[A.3]
shows how the RG API is used.

@register_lbtsubpop("naughty_and_obscene")
class NaughtyObsceneSubpopulation(BaseSubpopulation):
def __init_ (self):
self.name = "naughty_and_obscene"
def score_fn(self, batch, columns):

def get_naughty_obscene_word_list(self):

def get_subpops(self, spacy):
return [
HasAnyPhrase(
phrase_groups=[self.get_naughty_obscene_word_list()],
identifiers=[Identifier("Naughty and Obscene Words")],

]

Figure A.2: User-define RG subpopulation. Example of how a custom RG subpopulation is defined
in LBT. The example identifies data subpopulations that contain naughty and obscene words.

TextAttack APIL. LBT’s integration with TextAttack helps LBT users evaluate model robustness
to input perturbations. The integration can be used to generate adversarial attacks against models
trained in LBT. Moreover, users can use the TextAttack interface to augment data files. Figure[A.3]
demonstrates how LBT’s TextAttack API is used.

A.3 Off-the-shelf Models

The model architectures currently supported in the toolkit include RNNs, CNNs (both stacked and
parallel architectures), LSTMs [41], Transformers [60], TabNet [61], ResNet [62], MLP-Mixer [63]],
Vision Transformer (ViT) [64], most of the pretrained language language models available in Hug-
gingFace such as BERT [36], RoBERTa [39], ELECTRA [38]], DistilBERT [37]], XLNet [65]], TS [40I,
XLM [66], GPT [67], GPT-2 [68]], ALBERT [69], FlauBERT [70], CamemBERT [71]], CTRL [72],
XLM-RoBERTza [73]] and Longformer [74]. Because of Ludwig’s extensibility, adding an additional
model is relatively easy. Instructions for adding new models can be found here:
https://ludwig-ai.github.io/ludwig-docs/developer_guide/add_an_encoder/

16

https://ludwig-ai.github.io/ludwig-docs/developer_guide/add_an_encoder/

from lbt.tools.robustnessgym import RG
from lbt.tools.textattack import attack, augment

Robustness Gym API Usage
RG(dataset_name="AGNews", models=["BERT", "RNN"], path_to_dataset="agnews.csv",
subpopulations=["length", "entities", "positive_words", "negative_words"l))

TextAttack API Usage
attack(dataset_name="AGNews", path_to_model="agnews/model/rnn_model",
path_to_dataset="agnews.csv", attack_recipe=["CharSwapAugmenter", "TextFooler"l)

augment (dataset_name="AGNews", transformations_per_example=1
path_to_dataset="agnews.csv", augmenter=["WordNetAugmenter"])

Figure A.3: Sample API usage of evaluation tools. Example of how to use the TextAttack API to
generate adversarial attacks and augment data. The figure also demonstrates how to use the RG API
to evaluate model performance on various data subpopulations.

A4 Text Classification Case Study: Additional Experimental Details

For the purposes of replication, all experiment configuration files used in the study
can be found at the link below. Each configuration file contains the hyperparame-
ter search space, training parameters and model specific parameters used for each model
and dataset hyperparameter optimization search. Replicating an experiment given one
such configuration files requires setting up LBT, and running the following command:
python experiment_driver.py -reproduce <path to experiment config file>

Configuration files:
https://drive.google.com/drive/folders/1CdziTuzPHUUnR1cMzJOEpMspMI_67Era?
usp=sharing

Datasets. For the MGB dataset, the results displayed are for the Wizard subset. For the SBF dataset,
we report the accuracy for the intent classification task.

Hyperparameters. For each dataset, we set the batch size to be the maximum permissible size that
fits in 16GB of GPU memory and hold the batch size constant across all pretrained models (with the
exception of SST5 and AGNews where all pre-trained models are fine-tuned with a batch size of 16,
and T5-small is fine-tuned with a batch size of 32). We also hold the batch size constant across the
RNN and SP-CNN models trained from scratch. For a given dataset, this value may be larger than
the batch size used by the pretrained models. We decided to not hold batch size consistent across all
architectures as training an RNN with a batch size of 16 would be an inefficient use of resources.

A.5 Additional Case Study: Image Classification Benchmark Experiment

We demonstrate that LBT can be used for benchmarking models in tasks beyond the NLP domain by
setting up a small image-classification benchmarking study which compares the efficacy of a stacked
convolutional architecture (similar to VGG [75]) and a ResNet-18 [[62] model on the CIFAR10 [[76]
and MNIST [77] datasets. We configure the hyperparameter search space such that we optimize over
a limited set of hyperparameters, namely batch size, learning rate, and dimensions/number of fully
connected layers. We use the skopt hyperparameter optimization algorithm [45] and sample a total of
10 parameter configurations for each model and dataset pair. All models are trained using the Adam
optimization [44] algorithm. Finally, we emphasize that we perform no image augmentation and
preprocessing strategies (e.g. random crops) to improve performance.

Table shows the accuracy of the best performing model for each dataset and model pair.

The experiment configuration files can be found here:
https://drive.google.com/drive/folders/1jGdbs2en3AJI4onjnH15n411Tbo7S1X77
usp=sharing

A.6 Lessons Learned

Over the course of this work, we gained several insights that we would like to share with maintainers
of other benchmark software libraries.

17

https://drive.google.com/drive/folders/1CdziTuzPHUUnRlcMzJOEpMspMI_67Era?usp=sharing
https://drive.google.com/drive/folders/1CdziTuzPHUUnRlcMzJOEpMspMI_67Era?usp=sharing
https://drive.google.com/drive/folders/1jGdbs2en3AJI4onjnH15n4l1Tbo7SlX7?usp=sharing
https://drive.google.com/drive/folders/1jGdbs2en3AJI4onjnH15n4l1Tbo7SlX7?usp=sharing

Table A.2: Image Classification Experiment Results. The table reports the accuracy of the top
performing models for each dataset and model pair in the small, image classification experiment

Dataset
Model CIFAR10 MNIST
ResNet-18 0.804 0.994
Stacked CNN 0.697 0.993

Power of low-code, configurable interfaces. While developing and using LBT, the value of a
low-code, configuration file interface became abundantly clear. One of the key value-adds of a
configuration-based interface is that it enables users to declare their needs and constraints in plain
English, making it simple for a wide range of audiences to set up experiments fairly quickly. Moreover,
reproducibility is a natural by-product of a declarative, configuration-driven approach as the main
input to the system is a set of files that can be stored and shared. In[A.4]we show how sharing and
replicating an existing experiment from a set of configuration files is trivial.

Lean on the open-source community. LBT is built using a number of open-source packages
including Ludwig [24], Ray Tune [78]], Robustness Gym [16]], TextAttack [15] and the experiment-
impact-tracker [14]]. Relying on existing open-source packages enabled us to integrate the best-of-
breed solutions for various tasks (e.g. Ray Tune for distributed hyperparameter tuning) without
having to re-invent the wheel.

Provide abstractions for extensibility. One of the key design choices of LBT was to structure the
codebase to be modular and extendable. By implementing proper abstractions, adding multiple
tooling integrations became relatively simple. Moreover, adding additional metrics over time (such
as carbon footprint tracking) was also made easier through the implementation of simple abstractions
like a metric registry.

A.7 Additional Figures

This section contains additional figures referenced in the body of the main paper.

18

hyperopt:
executor:
cpu_resources_per_trial: 1
gpu_resources_per_trial: 1
kubernetes_namespace: ray
type: ray
goal: maximize
metric: accuracy
output_feature: label
parameters:
content.reduced_output:
categories:
- cls_pooled
- sum
- avg
space: choice
type: category
label. fc_layers:
categories:
- fc_size: 512
- fc_size: 256

- fc_size: 512

- fc_size: 256
space: choice
type: category
training.learning_rate:
lower: 2.0e-05
space: loguniform
type: float
upper: 0.01
sampler:
num_samples: 20
search_alg:
max_concurrent: 5
type: skopt
type: ray
input_features:
- encoder: bert
level: word
name: content
preprocessing:
word_sequence_length_limit: 128
word_tokenizer: hf_tokenizer
pretrained_model_name_or_path: bert-base-uncased
pretrained_model_name_or_path: bert-base-uncased
type: text
output_features:
- name: label
type: category
training:
batch_size: 16
early_stop: 3
epochs: 25
eval_batch_size: 64
learning_rate: 0.01
validation_metric: accuracy

Figure A.4: Sample LBT experiment configuration. Example of an LBT experiment configuration
file generated at runtime. The file records the model architecture, training parameters, and
hyperparameter search space of the given experiment

19

	Introduction
	Related Work
	The Ludwig Benchmarking Toolkit (LBT)
	Benchmarking for Value-Driven Communities
	Toolkit Overview and Usage
	Toolkit Design and Features

	Case Study: Large-Scale Text Classification Analysis
	Experimental Setup
	Results and Analysis

	Limitations and Conclusion
	Ethical Considerations
	Appendix
	Metrics
	Evaluation Tools
	Off-the-shelf Models
	Text Classification Case Study: Additional Experimental Details
	Additional Case Study: Image Classification Benchmark Experiment
	Lessons Learned
	Additional Figures

