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Abstract

Detection of fallen persons due to, for example, health problems, violence, or
accidents, is a critical challenge. Accordingly, detection of these anomalous
events is of paramount importance for a number of applications, including
but not limited to CCTV surveillance, security, and health care. Given that
many detection systems rely on a comprehensive and diverse dataset, it is
crucial to include fallen person images collected under diverse environments
and various situations. However, existing datasets are limited to only specific
environmental conditions and lack diversity. To address the challenges
mentioned above and help researchers develop more robust detection
systems, we create a novel, large-scale dataset for the detection of fallen
persons composed of fallen person images collected in various real-world
scenarios, with the support of the South Korean government. Our Vision-
based Fallen Person (VFP290K) dataset consists of 294,713 frames of fallen
persons extracted from 178 videos, including 131 scenes in 49 locations. We
empirically demonstrate the effectiveness of the features through extensive
experiments analyzing the performance shift based on object detection
models. In addition, we evaluate our VFP290K dataset with properly
divided versions of our dataset by measuring the performance of fallen
person detecting systems. Furthermore, we discuss limitations and future
work that could be extended based on our dataset. We ranked first in the first
round of the anomalous behavior recognition track of AI Grand Challenge
2020, South Korea, using our VFP290K dataset, which can be found here3.
Our achievement implies the usefulness of our dataset for research on fallen
person detection, which can further extend to other applications, such as
intelligent CCTV or monitoring systems. The data and more up-to-date
information have been provided at our VFP290K site4.
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1 Introduction

People fall due to various causes related to indoor and outdoor accidents. In some cases,
these falls can be fatal and lead to severe injuries or even death. According to World Health
Organization (WHO), in the US, 20∼30% of elders who fall suffer moderate to severe injuries,
such as bruises and hip fractures [3]. Moreover, there exists a golden hour to cope with,
handle, and treat such falls that might cause severe injuries. If the elderly are left untreated
for a prolonged time, the severity of their condition increases. Therefore, detecting fallen
people in advance is crucial [1, 4, 36].
In addition, the Centers for Disease Control and Prevention (CDC)’s Child Injury Report
states that about 2.8 million children visit emergency rooms across the US each year due to
falls, which are the leading cause of more than 50% of baby injuries under a year old [2].
Therefore, the fallen person detector trained with our dataset can quickly notify medical
staff or caregivers to handle emergencies properly and prevent further severe injuries from
falls. So far, many researchers have focused on building fallen person detection models based
on sensor, camera, and multimodal approaches.
Typically, sensor-based approaches are constructed based on wearable, ambient sensor, or
motion capture data [16, 23, 35, 34, 28, 10], and vision-based approaches use data collected
from regular or depth cameras, including CCTVs [7, 12, 22, 39, 5]. In addition, the multimodal-
based approach is set up with data extracted from both sensor and camera [14, 19, 21].
Although multimodal approaches yield high and robust performance with more accurate
data from people who carry multiple sensors [16], they are usually inefficient, unrealistic,
and exhibit poor usability [21]. Thus, the aforementioned approaches have several practical
deployment limitations, making them inappropriate for real-world applications. On the other
hand, vision-based monitoring systems require minimal human intervention once they are set
up. Moreover, a vision-based approach is widely used as an alternative to monitor the target
area passively and further detect fallen persons. Therefore, we focus on the vision-based
approach to detect fallen persons in our work.
However, existing vision-based datasets for training fallen person detection models lack the
following key characteristics: light condition, camera height, and realistic occlusion effects
by other objects or persons in diverse backgrounds. Primarily, existing datasets tend to be
collected in particular areas such as fixed space or a small number of rooms. This results
in detection models overfit to training data and perform poorly in real-world settings. In
order to achieve robust and high detection performance, it requires data to be collected from
diverse backgrounds, different lighting conditions.
To address these dataset challenges, we focus on constructing a novel Vision-based Fallen
Person (VFP290K) dataset for detecting fallen persons, which can be used with various
object detection algorithms for intelligent CCTV or monitoring applications.
Our main contributions are summarized as follows: (1) We present the VFP290K dataset,
a large-scale vision-based fallen person detection dataset in real-world scenarios, providing
a comprehensive public benchmark dataset for detecting fallen persons addressing the
limitations of existing datasets. (2) For dataset generation, we collected 294,713 frames
from 178 videos filmed at 49 different locations, representing rich backgrounds and diverse
environments. In addition, we introduce and apply strict annotation rules to ensure our
dataset is consistent. (3) We precisely split our dataset into training, validation, and test
datasets and report statistical characteristics. (4) Finally, through extensive experiments, we
empirically demonstrate the effectiveness and usefulness of our benchmark dataset, evaluating
various popular object detection models.
Note: Our work won first place at the AI Grand Challenge 2020 (https://www.ai-challenge.
kr) in South Korea, where the challenge was carried out to contribute to the National Dataset
Generation Challenge Initiative hosted by the Ministry of Science and ICT and Institute for
Information & Communications Technology Promotion, and operated by the Government of
South Korea.
We publicly release our dataset5 with a GPL-3.0 license to foster research in this area.

5https://sites.google.com/view/dash-vfp300k/
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Table 1: Comparison of Vision-based datasets for fallen person detection.
Dataset Year Total

Frames
Light

condition
Camera
height

# of
Background

Fallen subjects
in a frame Occlusion Availability

(August, 2021) Localization

MultiCam [7] 2010 22,064 N 280cm 1
(Indoor) 1 N Y N

Le2i [12] 2012 - N - 4
(Indoor) - N N N

Mastorakis et al. [22] 2012 - N 204cm -
(Indoor) 1 N N Y

EDF/OCCU [39] 2014 99,699 N - 1
(Indoor) 1 Y N N

Adhikari et al. [5] 2017 21,499 N 240cm 5
(Indoor) 1 N Y N

VFP290K (Ours) 2021 294,713 Day: 138
Night: 40 1m∼3m 49

(Real-world) 1 to 8 persons Y Y Y

2 Related work

Several researchers have proposed datasets for developing the fallen person detection
systems [7, 12, 22, 39, 5]. These datasets are collected using various devices, such as a
regular camera for an RGB image or a Kinect camera for a depth image. The summary
of the existing datasets is presented in Table 1. Auvinet et al. [7] proposed the MultiCam
dataset, where eight regular cameras filmed a subject in a living room. Charfi et al. [12]
introduced the Le2i dataset, a collection of data acquired from a single Kinect camera in
four indoor environments (home, coffee room, office, and classroom). Both datasets were
proposed in the early 2010s and have drawn significant interest from researchers to develop
fallen person detection.
Recently, significant advancements have been made in the fallen person detection research
field. Mastorakis et al. [22] collected a depth-based dataset including 48 falls in an indoor
setting taken from 204 cm height. Especially, they annotated fallen frames with a 3D
bounding box for localization. Zhang et al. [39] collected two datasets, EDF and OCCU,
incorporating occlusion cases for detecting fallen persons: OCCU has 80 videos containing
occlusion cases, and EDF has 60 videos with only non-occlusion fall situations. Adhikari et
al. [5] considered background bias by creating a fallen person dataset based on the subtracted
background. On the other hand, diverse and occluded scenarios are considered only in
the specific experimental setting, which cannot cover the real-world scenarios. To address
such limitations, we propose the real-world 2D annotated vision-based dataset, VFP290K,
incorporating diverse background, light, location, and scene conditions as well as different
human activities.
There are numerous studies for detecting fallen persons using computer vision techniques [32,
29, 11, 38, 17]. While early approaches used heuristic-based methods that compare the ratio
between the width (W ) and height (H) of the detected bounding box, recent works utilize
deep learning, such as pose estimation or distance measurement with 3D depth images [6].
However, so far, comparing the performance of different approaches has not been easy due to
the lack of benchmark datasets. To address this issue, we propose a fallen person dataset as
a standard benchmark that can be evaluated across different algorithms. Also, our dataset
provides 2D annotated information along with the expected benchmark performance from
popular detection algorithms.

3 Vision-based Fallen Person (VFP290K) Dataset

3.1 Overview

We introduce VFP290K dataset, the novel benchmark dataset for the fallen person detection.
Our VFP290K is comprised of 294,713 frames extracted from 178 videos, including 131
scenes in 49 locations, capturing several essential aspects needed for a detection task such
as different light condition and camera height. Table 1 describes the details of our dataset
compared to existing datasets. Specifically, we define metadata as follows, where the more
detailed explanation can be found in Appendix 1.
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Figure 1: Samples of the annotated images in the VFP290K dataset. A red bounding box
indicates a normal person, and a green bounding box indicates a fallen person.

Light condition (Mday,night). Light condition is one of the most important features
impacting the fallen person detection performance, as the quality of the image is highly
dependent on it. We consider two different light conditions as follows: Mday and Mnight.
Camera height (Mlow,high). Camera height is directly related to CCTV and indoor camera
environments. It is consequential to model contemplate all the possible height requirements
for different CCTV devices, as there are many different types of CCTV with varying positions.
To address this issue, we film the video into two different camera heights with Mlow and
Mhigh, representing about 1 ∼ 3m and higher than 3m, respectively.
Background (Mstreet,park,building). One of the main contributions of our work is to include
a number of different backgrounds, from public areas to indoor environments. We divide the
background into the following three sub-categories: street, park, and building, whereas other
datasets capture the fixed or same location.
Location (Mlocation). Along with the three background categories, we vary and specify each
filming region to different locations, where the videos are shot in 49 locations. Therefore, we
can provide more fine-grained and detailed information about the background features.
Scene (Mscene). As a subcategory of each location, we enumerate entire scenes divided by
different viewpoints in whole 178 videos. That is, some videos have multiple viewpoints in
the exact location.

3.2 Dataset Generation

We generate our VFP290K dataset with the following three steps: data acquisition, data
annotation, and data quality assurance.
Data acquisition.We use GoPro HERO5 camera, which provides diverse resolution settings
similar to CCTV with a 1080p wide-angle lens. The image size is configured to 1920×1080. We
collected data for two months, from August to October 2020. And we recruit 15 volunteers to
perform different fall scenarios, where the recruitment and consent form details are provided
in Appendix 2. In order to provide a more comprehensive dataset, we attempted our best to
include more diverse ethnicity. In particular, three students are international students with
different skin colors and age. Also, to provide a more diverse dataset, volunteers intentionally
change their appearance by changing clothes, wearing masks and caps. Given a set of scenarios
at different locations, participants performed walking, roaming, and falling in streets, parks,
and indoor areas. Also, we perform face anonymization for pedestrians who are not directly
participated in our study. The detailed explanation for the anonymization can be found in
Appendix 5, and the samples of our dataset are presented in Fig. 1.
Data annotation. First, we consider the object of our dataset to be either a fallen and
non-fallen person. We assign “class 1” to a bounding box of a fallen person and “class 0” to
that of a non-fallen person, constructing our fall person object detection task as a binary
classification task. Precisely, we define the fall events considering the different postures
followed by stumbling, bending down, and limping, similarly shown in the work proposed
by Foroughi et al. [15].
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Occlusion Rule
(a) (b) (a) (b)

Figure 2: The rigorous annotation rules for the high-quality and consistent dataset. Occlusion
Rule (a): We assign a bounding box to the entire body even if a target person is partially
occluded. Occlusion Rule (b): Since an object occludes the upper body, we only annotate
the detectable body parts: legs. Overlap Rule (a): We do not annotate the person at the
back since the front person’s frame occludes the other subject’s frame over 80%. Overlap
Rule (b): both persons are annotated because the occluded part is less than 80%.

Moreover, we use the following three rules to determine the fall event: 1) both shoulders
should touch the ground (representing lie down, backward, and forward fall), 2) one side
shoulder touches the ground (representing sideway fall), and 3) the lower body from hips to
foot touches the ground when the upper body is occluded (sitting down from fall). Next, we
annotate the bounding box to localize each subject using the LabelImg annotator [31]
In order to provide accurate annotations as much as possible, including overlap and occlusion
cases, we introduce strict annotation rules, which ensure the consistency and high-quality
of the VFP290K dataset. The details of the overlap and occlusion cases can be found in
Appendix 4. Two strict annotation rules are enforced to provide accurate and consistent
labeling as follows:

• Rule 1. Occlusion labeling rule. We assign a bounding box to the entire body
of a target person when other objects or persons partially occlude the target person’s
body (referring to the occlusion rule (a) in Fig. 2). In addition, we annotate the
bounding box only at the visible body parts of the subject if the subject of the frame
is severely occluded so that the other part of the body is invisible (referring to the
occlusion rule (b) in Fig. 2).

• Rule 2. Overlap labeling rule. Overlap is a special case of the occlusion case,
where the object is blocked by a person, inducing two bounding boxes to cross over.
In this case, we only allocate a bounding box to the person in the front when the
person in the back is occluded more than 80% (See the overlap rule (a) in Fig. 2).
Otherwise, we annotate all persons based on the occlusion rule (see overlap rule (b)
in Fig. 2). Note that we only apply the overlap rule to the not fallen cases, as our
VFP290K dataset focuses on fallen person detection.

Data quality assurance. We assure the high-quality of the VFP290K dataset based on a
rigorous quality control process. We employed five different students from our institution to
cross-check every single frame for each video, where each student was instructed to adhere
to the following annotation check rules to determine if: 1) in the given frame, the occlusion
labeling rule and overlap labeling rule are strictly enforced, 2) a bounding box is correctly
shown for the fallen person according to the fall event definition, 3) the label for the fall and
non-fallen frames are correctly assigned, and 4) personally identifiable information (PII) is
fully anonymized for non-volunteers. We provide separate training for each student to make
sure they understand the specific rules, by first explaining the purpose of the dataset and
highlighting the details of the annotation process over several days. If there is a disagreement,
all five annotators discussed and reached an agreement when at least half of them agreed.
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3.3 Dataset Analysis

Num. of different metadata features. We provide the number of videos,
frames, places per background, and scenes per background, as shown in Table 2,
to capture the underlying distribution of each metadata feature. Note that
Mscene is calculated by counting the combination of different places and views.

Table 2: The number of data according to features in
our VFP290K dataset.

Features # of videos # of frames # of places # of scenes
Light

Condition
Day 138 221,666 - -
Night 40 73,047 - -

Camera
height

Low 97 50,081 - -
High 81 244,632 - -

Background
Street 118 57,965 13 29
Park 47 212,752 30 95

Building 13 23,996 6 7

We maintain the balance of two
types of camera height that are under
or over 3m. We mainly install the
camera on the street rather than
installing it in a park or building
since the CCTV is likely to be
more popularly used in the street
environment. In addition, we change
viewpoints, producing 29, 95, and 7
scenes, respectively, to provide more
diverse background information.
Analysis on feature-level distribution. We assume that if the dataset possesses diverse
underlying characteristics about background or light condition, then the dataset would be
much more distributed than clustered. Thus, we analyze the feature level distribution of
our dataset by visualizing and validating the underlying distribution of high-dimensional
metadata features. Furthermore, we compare the feature distributions between ours and
other popular publicly available datasets (The more detailed explanation can be found in
Appendix 6). As shown in Fig. 3.(a) and (b) for MultiCam and Adhikari et al.’s dataset
showed the clustered data points at each region, implying their dataset is limited in diversity.
On the other hand, our VFP290K dataset are more distributed across different data points,
as shown in Fig. 3.(c) and (d). These clearly visualize and demonstrate that our dataset is
more suitable for developing a robust detection system, as our dataset captures more diverse
condition than other datasets.

Figure 3: Visualization of the datasets from feature perspective. We utilize ImageNet-
pretrained VGG-19 network [27] to obtain feature vectors and t-SNE [33] results. Each data
point indicates an image sample.

Figure 4: The distributions of our VFP290K benchmark and evaluation setting.

3.4 Benchmark Dataset

Creating a quantifiable and comparable benchmark dataset is one of our main contributions
by providing VFP290K dataset composing training, validation, and test dataset. An unbiased
and non-redundant split in a benchmark dataset is a crucial issue. Therefore, we proceeded
with a balanced video-wise split, where the total number of frames/videos with different
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characteristics and scenarios is roughly maintained in the same ratio to prevent bias. Moreover,
the training and test split is maintained in 8:2 ratio. Indeed, we presented our balanced
video-level statistics in Fig. 4.
The summary of the benchmark dataset information is presented in Fig. 4.(a). Training
and test datasets are divided into the ratio of 8:2 based on the full frames, covering all
features, such as light condition, camera height, and background. More specifically, training,
validation, and test datasets have a total of 216,104, 19,085, and 59,525 frames, respectively.
In addition, we also consider the statistically balanced data split for our evaluation setting
for each set. As shown in Fig. 4.(b), all separated datasets have a balanced distribution
split in the same way for the benchmark. Note that we provide 4 JSON files representing
each data split information for reproducibility. As a result, all datasets, including training,
validation, and test, have a balanced distribution across all features in our VFP290K dataset.

3.5 Dataset Availability, Usage, and Ethics

Dataset availability. We manage and provide our VFP290K dataset through our
VFP290K website6, where VFP290K dataset is maintained and available on our website’s
download tab7. Also, we release our dataset under a CC BY 4.0 license.
Dataset usage. Our data can be utilized for a variety of purposes in the area of a fallen
person or anomalous event detection and further be used as a part of the crime/disaster
prevention system. For example, intelligent CCTV systems have become an essential for
social infrastructures installed in streets, parks, and buildings for security and health care
applications. More than 1 billion CCTV cameras are expected to be installed worldwide [30]
to capture and provide rich information about human activities, such as to capture the
evidence of crimes and monitor health incidents. However, manually identifying anomalous
events in the recorded videos is a highly time-consuming task. Therefore, it is critical to
leverage machine learning algorithms to automatically detect such anomalous events. In
addition to the benchmark dataset, we provide the several fallen person detectors and release
our code here8 with a GPL-3.0 license.
Ethics and social impact. Our VFP290K dataset adheres to the standards of FAIR
Data principles [37] to meet findability, accessibility, interoperability, and reusability so
that all relevant metadata is specified to the research community. For volunteers in our
dataset, we explained the purpose of our data collection and received the agreement from
individuals in advance. Also, we completely anonymized the PII of non-volunteers using the
anonymization methods described in Appendix 5. Furthermore, our work does not have a
negative social impact, as we fully adhered to the data collection protocol approved by the
IRB and anonymized personal information.

4 Experiments

4.1 Experimental Setting

We conduct two different experiments with our VFP290K dataset and illustrate how
performance changes according to various characteristics. The first experiment evaluates the
overall performance of the benchmark on VFP290K dataset using different baseline models.
For the baseline models, we use the following 7 popular object detection models: Two-stage
detection models (Faster-RCNN [26], Cascade R-CNN [8], and DetectoRS [24]), one-stage
detection models (RetinaNet [20], YOLOv3 [25] and YOLOv5 [18]), and transformer-based
model (DETR [9]), where more detailed model descriptions are provided in Appendix 7.
And, the details of training, validation, and test distribution are shown in Fig. 4.
The second experiment evaluates the detection performance with different environment
conditions, as we hypothesize that certain environment (e.g., night) would be more challenging
to detect fall person than other cases (e.g., day). Specifically, we consider the following

6https://sites.google.com/view/dash-vfp300k
7https://doi.org/10.23056/VFP300K_DASHLAB
8https://github.com/DASH-Lab/SwoonDetector
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Table 3: Benchmark performance of VFP290K dataset. We conduct experiments in 7 popular
object detection models: Two-Stage (Faster R-CNN (F R-CNN), Cascade R-CNN(C R-CNN),
DetectoRS), One-Stage (RetinaNet, YOLO3, YOLO5) and DETR in Transformer-Based
(T-Based).

Method Two-Stage One-Stage T-Based
Model F R-CNN C R-CNN DetectoRS RetinaNet YOLO3 YOLO5 DETR
mAP 73.2 75.1 74.6 75.0 59.0 74.1 60.5
AP50 87.3 87.4 86.6 91.0 81.3 83.8 86.8
AP75 79.9 81.1 79.7 81.1 67.0 78.4 68.7

Figure 5: The Precision-Recall curves for Cascade R-CNN, RetinaNet, and DETR on the
benchmark dataset. AP represents AP50 score, and the dotted line indicates the point where
AP drops drastically for fallen person class.

scenarios: Mday vs. Mnight, Mlow vs. Mhigh, and Mstreet vs. Mpark vs. Mbuilding. As
mentioned previously, the purpose of this experiment is to identify the effect of various
feature characteristics. We sample one frame per every five frames for each experiment for
training, as this experiment is to demonstrate the effect of the specific features, which cannot
be captured in the first baseline experiments. For the detail of training, validation, and test
distribution, they are presented in Table 2 and Fig. 4.(b). Note that we conduct the second
experiment mainly for one-stage detection models, as they can be easily utilized for the real
world deployment.
Evaluation metrics. We use the average precision (AP ) over multiple Intersection over
Union (IoU) thresholds as our evaluation metric. Specifically, we use averaged mAP with
IoU thresholds, ranging from 0.5 to 0.95 with a step size of 0.05. AP values are calculated
with respect to a single IoU threshold (0.5, 0.75), denoted as AP50 and AP75. Also, we
report precision-recall curves (PR curves) to capture the trade-off between the precision and
recall for the benchmark performance.
Implementation details. To ensure reproducibility and maximize our dataset accessibility,
we leverage as much publicly accessible implementations as possible. We choose the official
implementations based on MMDetection toolbox [13] for the baseline models except YOLOv5.
As YOLOv5 is not supported yet, we use the official implementation from here9. The more
detailed hyper-parameter settings and configurations for the first and the second experiment
are provided in Appendix 7.

4.2 Experiment 1. Benchmark Performance

The performance results are presented in Table 3. While two-stage models such as Faster
R-CNN, Cascade R-CNN, and DetectoRS achieved mAP scores of 73.2, 75.1, and 74.6,
respectively, one-stage models such as RetinaNet, YOLOv3, and v5 produced mAP scores of
75.0, 59.0, and 74.1. Furthermore, DETR achieved 60.5 mAP which is drastically decreased
from 86.8 AP50. The best performing model is Cascade R-CNN based on mAP . As a result,

9https://github.com/ultralytics/yolov5
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Table 4: Experimental results for comparing performance change according to different
background conditions. We present performance by altering the training and test set for
Mstreet vs. Mpark vs. Mbuilding scenario. These experimental results demonstrate that diverse
backgrounds make a robust detection model for fallen events. Bold text indicates the highest
performance.

Backbone Training Street Park Building Street Park Building Street Park Building
Test Street Park Building

Faster R-CNN AP 74.2 73.2 61.6 62.0 70.6 51.7 74.8 84.7 70.2
AP50 91.0 86.0 82.8 78.6 85.7 70.5 87.6 95.7 82.1
AP75 82.9 80.9 72.3 69.0 76.8 58.8 81.3 92.0 79.1

RetinaNet AP 77.0 74.3 65.4 66.4 73.7 58.7 82.8 85.1 80.4
AP50 92.2 86.1 81.1 83.0 88.8 75.2 93.2 96.0 91.5
AP75 84.3 80.4 73.0 72.0 79.1 64.7 90.1 91.8 87.5

YOLOv3 AP 61.0 51.0 28.4 41.6 53.7 28.2 61.0 66.4 67.1
AP50 81.7 66.4 40.0 57.8 75.9 42.1 81.7 82.4 83.1
AP75 68.9 60.0 33.6 46.8 63.2 31.5 68.9 78.4 79.0

YOLOv5 AP 66.9 67.1 22.6 39.8 69.2 20.9 67.5 80.2 60.6
AP50 78.3 74.5 33.5 46.5 77.6 33.5 74.3 84.8 70.7
AP75 72.9 71.9 26.6 42.8 72.7 26.6 72.7 83.6 67.9

Table 5: Experimental results for comparing performance change according to light condition
and camera height. We present the performance by altering the training and test set for
Mday vs. Mnight or Mlow vs. Mhigh scenario. This experimental result demonstrates that
balancing light condition and camera angle images is important to make a robust detection
model for fallen events. Bold text indicates the highest performance.

Backbone Training Day Night Day Night Low High Low High
Test Day Night Low High

Faster R-CNN AP 76.7 63.2 52.3 55.9 70.0 57.3 56.1 72.9
AP50 91.7 82.6 71.4 78.3 89.8 76.0 74.9 89.6
AP75 84.3 80.8 57.2 60.9 80.8 66.9 63.6 81.7

RetinaNet AP 77.9 66.7 53.4 56.6 70.2 61.0 59.6 73.9
AP50 93.2 85.6 74.7 78.5 90.3 81.8 78.0 90.9
AP75 84.8 74.1 56.7 62.0 79.2 69.5 66.9 81.7

YOLOv3 AP 61.5 43.2 29.9 41.5 56.7 37.5 34.9 56.3
AP50 87.4 63.0 54.5 63.5 80.8 60.6 53.0 80.0
AP75 72.8 49.0 30.6 45.1 67.8 41.4 39.4 65.3

YOLOv5 AP 79.4 34.3 39.2 41.4 59.0 41.2 35.0 71.8
AP50 88.8 44.7 51.7 56.1 75.2 54.2 44.8 84.3
AP75 84.2 38.4 41.6 44.2 68.0 46.5 39.4 78.1

two-stage models performed better than one-stage models or DETR; however, one-stage
models except YOLOv3 still achieved comparable performance to other models.
We present the PR curves for the best performing models in each method: Cascade R-CNN,
RetinaNet, and DETR. As shown in Fig. 5, each PR curve is created by ranking the detection
results exploiting the classifier’s scores and thresholding values. When recall approaches
0.83, precision drops drastically, indicating that the models are confused to detect objects
based on high recall scores. This can be a critical issue for the fallen person detection, as
the ultimate goal is to detect people who have fallen. Thus, we show that it is important
to develop a detection model that focuses on improving recall. Overall, to the best of our
knowledge, there are no previous datasets annotated with a bounding box for vision-based
fallen person detection. And, we provide the standard benchmark dataset performance using
VFP290K dataset with the popular detection models.

4.3 Experiment 2. Performance under Different Environment Conditions

Different background. We hypothesize that the performance of the fallen person detection
system can be affected by background bias. Therefore, we perform a series of experiments
that measure performance by altering the Mstreet, Mpark, and Mbuilding scenarios. The
performance is compared in Table 4. When evaluating the models trained with each
background, they performed well on the identical type of background, except the Mbuilding.
Also, we observe the similar trends that the models showed significant performance drop,
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when deploying other types of background, e.g., Faster R-CNN trained with Mstreet produced
74.2 mAP on Mstreet’s test set, but obtained 62.0 mAP on Mpark’s test set.
Interestingly, regardless of the dataset the models was originally trained, Mbuilding is
relatively easy to detect due to fewer people appearance. Since VFP290K dataset has
various distributions for background, models trained on our VFP290K dataset can be more
robust against background bias due to more diverse environments we provide.
Different light condition and camera height. We conduct experiments on different
light condition (Mday vs. Mnight) and camera height (Mlow vs. Mhigh). The performance
results are presented in Table 5. Interestingly, the models trained with Mnight produced
similar performances on both light conditions. This result implies the model trained with
Mnight can produce more robust and resilient results with varying light condition and camera
height. Interestingly, at night, we learned that people’s skin color is less critical for detection
models because of the dark luminescence. On the other hand, the silhouette of human posture
is more important to detect the fall event.

5 Discussion

To the best of our knowledge, we are the first to create a large-scale vision-based fallen
person dataset covering diverse environments, representing multiple view, different occlusion
and light condition with simulating realistic situations. Although our VFP290K dataset
shows great promise for research purposes, we encountered several limitations while creating
and experimenting with the dataset.
Limitations. First, despite the broad coverage of various features under realistic situations,
the VFP290K dataset did not consider the falling scenarios from physical violence. Second,
we did not focus on too tiny objects, due to the difficulty of annotation. Also, we did not
consider all different weather environments, such as rainy or storm weather condition. Lastly,
we could not include all the age groups, but our work includes diverse backgrounds and
ethnicity. As our dataset will be continuously updated, we plan to include different age
groups for future work.
Anomalous Event Detection. We conducted an additional experiment using the best
performers of our VFP290K, Cascade R-CNN, and RetinaNet, to detect an anomalous event
defined as a fallen situation. As a result, we confirmed that the performance of anomalous
detection is slightly worse than training both fallen and non-fallen persons. The experiment
showed that our dataset could also be used for anomalous event detection. The details are
provided in Appendix 8.
Future work. We plan to develop an extended version of the VFP290K dataset comprising
images collected from abnormal user behavior scenarios and collect more data, considering
more diverse weather condition and including tiny objects. In addition, we consider deploying
the detection models for real publicly available fall test videos (from YouTube) to verify the
generalizability of our dataset.

6 Conclusion

We propose a large-scale vision-based fallen person dataset, VFP290K, consisting of 294,713
frames extracted from 178 videos. To the best of our knowledge, our data is the largest
dataset, incorporating the diverse conditions. Also, we applied strict and consistent annotation
rules to produce a high-quality dataset. Furthermore, we present benchmark results for
vision-based fallen person detection using the popular object detection algorithms. We
demonstrate that detecting fallen persons from the VFP290K dataset is challenging, as it
successfully reflected real-world conditions, and we further find that the performance can
vary according to differing environments. Moreover, we present a side-by-side comparison
between VFP290K and existing dataset, showing much more rich and diverse features through
extensive analysis and evaluation. Overall, our VFP290K dataset shows great promise for
real-world applications related to fallen person detection using CCTV or monitoring systems.
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