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Abstract

Risk assessment instrument (RAI) datasets, particularly ProPublica’s COMPAS
dataset, are commonly used in algorithmic fairness papers due to benchmarking
practices of comparing algorithms on datasets used in prior work. In many cases,
this data is used as a benchmark to demonstrate good performance without ac-
counting for the complexities of criminal justice (CJ) processes. However, we
show that pretrial RAI datasets can contain numerous measurement biases and
errors, and due to disparities in discretion and deployment, algorithmic fairness
applied to RAI datasets is limited in making claims about real-world outcomes.
These reasons make the datasets a poor fit for benchmarking under assumptions of
ground truth and real-world impact. Furthermore, conventional practices of simply
replicating previous data experiments may implicitly inherit or edify normative
positions without explicitly interrogating value-laden assumptions. Without con-
text of how interdisciplinary fields have engaged in CJ research and context of
how RAIs operate upstream and downstream, algorithmic fairness practices are
misaligned for meaningful contribution in the context of CJ, and would benefit
from transparent engagement with normative considerations and values related
to fairness, justice, and equality. These factors prompt questions about whether
benchmarks for intrinsically socio-technical systems like the CJ system can exist
in a beneficial and ethical way.

1 Introduction
News stories like ProPublica’s Machine Bias [1] forced RAIs (and the COMPAS dataset) into the
spotlight of academic and public scrutiny. Since then, discussions of algorithmic fairness within
the CS community have relied heavily on the COMPAS dataset as a benchmarking tool both for
research on how to build RAIs and as a general source of data for evaluating “fairness” of algorithms.
Benchmarking practices include assessing algorithmic improvements on RAI datasets or studying
specific data-bias issues but incorrectly assuming RAI datasets provide a ground-truth and thus adding
additional data corruption.

This technical focus on CJ data as a vehicle for benchmarking ignores the contextual grounding that
is critical to working with RAI datasets and the interdisciplinary work that has shaped RAI use in the
CJ system. Every step of the RAI pipeline, from data generation to model prediction to evaluation
metrics to deployment, contains decisions that contribute to the fairness of outcomes and the end
goals of fairness, justice, and equality. These decisions are guided by principles which draw from the
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disciplines of criminology, psychology, science, technology, and society, sociology, philosophy, law,
and ethics. A narrow technical focus on dataset bias and benchmarking, while more efficient and
consistent, fails to recognize the degree to which datasets are necessarily situated within a broader
socio-technical frame [2] of racial injustice and theories of incarceration, resulting in misleading and
misguided conclusions about the value of fairness-enhancing tools and their role in CJ.

In this paper we, an interdisciplinary group of researchers and practitioners, provide insight into
the complexities of the CJ context embedded in RAI fairness datasets and research and reveal the
hidden dimensions of justice and equality that the technical discourse does not acknowledge. We
first overview the biases and errors in RAI datasets to demonstrate how compounding distributional
errors hinder real-world relevance and generalization. Then, we interrogate claims around real-world
impact of RAI algorithmic fairness by examining a) the disconnect between fairness metrics and
real-world fairness and b) the implicit values of utilizing RAI datasets on higher values of justice
and power. Then, we provide a multidisciplinary lens into methodological standards and guidelines
used in disciplines that have historically studied RAIs, and contrast these standards with algorithmic
fairness publication practices to understand the differences and incompatibility between the two. We
end with a call to arms that summarizes best and harmful practices around using RAI datasets.

2 Background and Related Work

Criminology, psychology, and other disciplines have studied RAIs for decades and developed them
to improve upon unstructured, human decision-making [3]. There are hundreds of instruments
that vary in the amount of structure they provide, who can implement them, the information they
query, the amount of information they generate, the decision they are intended to inform, and their
level of transparency [4]. RAIs are developed using a combination of theory and analysis to guide
the selection of factors associated with particular outcomes (e.g., engagement in violence, rearrest,
reconviction, failure to appear, etc.) [3, 5]. Factors vary by tool and may include socio-demographic
characteristics like age or gender, as well as other information such as criminal record, education
status, or employment history [6]. Factors are scored based on the strength of their association with
the outcome they are intended to predict and summed to produce a risk score [7, 8, 9]. This score
corresponds to an estimated likelihood of the outcome of interest. While not all RAIs are exclusively
algorithmic, we focus on those that are as they have been at the center of the algorithmic fairness
discussion.

RAI scores and predictions are currently used across the country to aid decisions in areas like pretrial
release conditions, bail determinations, sentencing decisions, parole supervision, probation eligibility,
and more [4, 10, 11]. They have been developed by a variety of actors, including for-profit companies,
non-profits, researchers, and academics, and vary in their level of transparency. Thus far, there is little
conclusive research on how RAIs in general impact key outcomes like incarceration rates, diversion,
racial disparities, crime, etc. in the long term [12], driven by vast differences in deployment methods
as well as in how the measures are evaluated for fairness and justice.2 Proponents of RAIs believe the
instruments can increase consistency and transparency in decision-making and reduce detention rates
[13, 14]. Critics have raised concerns that RAIs themselves are not racially neutral and will contribute
to racist decision-making, lack mechanisms of transparency for defendants or accountability for
decision-makers, and overstate their applicability in the CJ context [15, 16, 17, 18]. Recognizing
limitations of fairness metrics has shifted the focus from unfair RAIs to unfair RAI outcomes in
real-world scenarios. “Determining whether a risk tool is racially biased is probably redundant [...]
The important question is whether the use of actuarial risk assessment tools results in more disparate
outcomes than the status quo, or other viable alternatives” [12].

Within the broader discussions around algorithmic fairness, our work is situated within a growing
body of scholarship that emphasizes the importance of understanding training data provenance and
context [19, 20] as a part of the model building process. In practice, benchmarking, particularly to
demonstrate real-world applicability, complicates this emphasis. Criteria for benchmark evaluation
exist in bioinformatics, with the most relevant being relevance and solvability [21]. ML studies have
mainly explored the former through “benchmark misalignment” which arises with systematically
unstable labels [22, 23], but misalignment in the context of socio-technical systems is rarely discussed.

2The ongoing debate about the interpretation of COMPAS that ProPublica published is one example of the
latter.
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3 Data Biases and Errors in Pretrial RAIs
Fairness in machine learning papers that develop novel methodological contributions evaluate per-
formance on data assuming that covariates, protected attribute(s), and outcome variables follow
a fixed joint distribution: (X,A, Y ) ⇠ D. We overview the statistical bias in pretrial RAIs via
technical issues in the label Y , protected attribute A, covariates X , and distribution. For each issue,
we introduce evidence from CJ and recent work in CS that tries to address it. In Appendix A.1
we include more technical details on some of the methodological proposals. We do not suggest
technology can “solve” data bias: evidence from CJ suggests measurement error is both inherent but
difficult to calibrate since there is no ground-truth. Hence, for the purposes of generic benchmarking
of algorithmic interventions, performance evaluation using RAI data is statistically biased. Issues of
measurement relate broadly to both measurement theory in the social sciences [24] and measurement
error in econometrics.

We focus the critique on pretrial RAIs since the widely used COMPAS dataset is one, though there
are other RAIs used in the context of parole, sentencing, community supervision, or hospitals [25].
Our argument does extend to RAIs used in these other contexts when analogous data bias issues arise.
For example, probation/parole models are subject to similar label bias issues, such as heightened
parole officer involvement or left-censoring when people go back to jail/prison for technical violations
and hence censor the possibility of re-arrest [26, 27]. On the other hand RAIs for contexts besides
pretrial are not subject to the same FTA label bias and may be more narrowly bracketed in clinical or
forensic psychology settings.

Bias in Y . We first consider the outcome value, Y . Typically in pretrial RAIs, the outcome variable
chosen is recidivism during the pretrial period or failure to appear (FTA) for court appointments.
Both of these primary outcomes exhibit label bias due to construct invalidity [24] and measurement
bias. On construct validity, legal cases accept that preventing pretrial flight and violent crime are
among the only concerns that justify pretrial detention.3 Whether or not the available substitutes of
FTA and re-arrest are aligned with these constructs remains an open question [16, 28, 29].

On measurement bias, due to the fundamental unobservability of crime itself, outcome measures of
recidivism that rely on data on “re-arrest” might miss the desired target of “re-offense.” Re-arrest as a
substitute for re-offense is concerning because measurement bias is correlated with A, due to spatially
differentiated policing practices and/or other biases in arrest. Fogliato et al. [30] finds that although
violent crime arrest rates are proposed to be “unbiased” measures of offense, violent arrest rates still
vary in attributes of the offense, including race. One strategy other fields have used to try to overcome
this issue is to include self-reported re-offense [31], which increases accuracy of measured violence
and crime [32, 33]. Similarly, although models that predict FTA are often described as predicting
“flight risk”, FTA generally includes all “nonappearance”, not only cases of “flight” (absconding from
the legal system). As reported via surveys, people do not appear because of scheduling, work, and
transportation difficulty, which are correlated with race and class inequality [34]. Thus, conflating
“flight” and “non-appearance” introduces measurement error correlated with race and class. Perhaps
worse, this creates a prediction outcome less tailored for providing interventions targeted at the
root causes of non-appearance, such as free childcare at court, transportation benefits, and text
message reminders [35]. Measuring FTA as a binary outcome ignores the many occasions on which
people have appeared for court appointments; the distribution of time/schedule precarity suggests
measurement error is again correlated with A.

Fairness in machine learning has in turn studied questions related to label bias. Fogliato et al. [36]
suggests sensitivity analysis, probing how classification results change for different possible amounts
of label bias. Wang et al. [37] studies classification with group-dependent label noise: ensuring
fairness under biased label noise can harm both accuracy and fairness (evaluated with true labels).
However, calibrating noise models may be particularly difficult with CJ data due to the generic lack
of ground truth.

Bias in A. We next consider issues regarding the protected attribute (A), e.g. the group-level
attributes used for disparity assessment, such as race, sex, and other designations. Even when the
protected attribute information appears, it is often estimated under noisy measurement processes.
This can be seen in Lum et al. [38], one study which provides descriptive statistics on how officer-
reported racial designations in CJ data were inconsistent for all but those people designated as Black.

3Stack v. Boyle, 342 U.S. 1 (1951), United States v. Salerno, 481 U.S. 739 (1987)
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Hanna et al. [39] further discusses challenges and inconsistencies associated with demographic data.
Notably, COMPAS race categories lack Native Hawaiian or Other Pacific Islander, and redefine
Hispanic as race instead of ethnicity. Racial categories largely go unquestioned despite instability
well-documented in intersectional work [40, 39]. All this obscures an understanding of whether and
how an RAI functions differently by race.

Some methodological approaches suggest using proxy measures (e.g. covariate-based proxies such
as the distribution of race by geographic area, or viewing observed A as a noisy misclassification of
the true value) to estimate disparities when individual level-observations of the protected attribute
are unavailable or noisy. Unbiased recovery with covariate-based proxies is impossible [41]. Wang
et al. [42] studies robust evaluation and classification. Lahoti et al. [43] consider an adversarially
reweighted approach. Lamy et al. [44] show that under a specific noise model, original fairness
constraints can be guaranteed for the mean-difference score criterion by increasing a constraint
violation parameter. Awasthi et al. [45] provide conditions on whether the equalized odds post-
processing constraint imposed on noisy A still at least improves equalized odds (TPR and FPR).
In the CJ domain, accurate point estimates of disparities are the ultimate target. While directional
analysis of disparity improvement may be more useful in other settings, such analysis may be less
helpful for CJ. Domain-specific empirical studies of the extent of misreported A in CJ may be needed.

Bias in X . Many of the covariates used in pretrial RAIs are low dimensional summaries of criminal
history, such as past arrests or convictions. Since these measures inherit the racial bias of local law
enforcement, they may perpetuate these same harms [46]. To quote Sandra Mayson on her experience
as a public defender in New Orleans, “If a black man had three arrests in his past, it suggested only
that he had been living in New Orleans. Black men were arrested all the time for trivial things. If a
white man, however, had three past arrests, it suggested that he was really bad news!” [17].

Additionally, there are many individual points of discretion for data entry including assessor discretion
with evaluating individuals, booking officers and prosecutors, to final bail decisions made by judges.
For example, COMPAS asks “Is there much crime in your neighborhood,” [47] which allows
racialized meanings of crime [46, 48, 49] to influence the interpretation. Some RAIs incorporate
unvetted booking charges that are subject to officer discretion [38]. Khani and Liang [50] show noise
in covariates leads to statistical inconsistency and group-specific bias, even for ordinary least squares.

Finally, data processing that is done before a CS researcher ever touches a dataset hides ethically
complicated decisions. For example, should past convictions for crimes that are now decriminalized
be counted in the number of past convictions? Should there be a “sunset window” on past FTAs, after
which they can’t be considered by a RAI? All of these choices have statistical implications: Friedler
et al. [51] show that encoding choices have implications for the resulting fairness reported. Johnson
et al. and Yukhnenko et al. [52, 53] study proximal/recent/dynamic risk factors vs. static/historical
risk factors (criminal history), the former are as predictive as the latter. Given the idea of predictive
multiplicity– that multiple different predictive models achieve similar aggregate accuracy [54] –
different data processing decisions may better realize normative objectives like not penalizing now-
decriminalized behavior or not allowing one’s past mistakes to haunt them forever. Many ML models
admit the same accuracy and the specific ones used may have been tie-broken on these previous
considerations. While current datasets focus on disparities measured at a point in time, longitudinal
data may be required to investigate the impacts of compounded qualitatively salient inequities.

Issues with the distribution of data. CJ data is collected downstream of previous decisions: indirect
structural forces, such as criminogenic contacts with the CJ system (e.g. increasing number of
prior charges), or direct endogeneity, via differential location-based policing and/or arrest practices
that induce differential screening intensity. This introduces selection bias [55, 56]. Beneficial CJ
reform may induce systematic shifts in distribution for future populations subject to RAI prediction.
While domain adaptation and distribution shift are well-studied in statistics/CS/ML, true distributions
are ill-defined in CJ. RAI datasets suffer from selective labels, e.g. that outcomes (Y ) recorded in
datasets are only recorded post-selection into the dataset in the first place since observing re-arrest
or non-re-arrest is only possible for individuals not detained [57]. Racial disparities in detention or
bail decisions induce systematic mismatches in the underlying distribution relative to the universe
of those who had interacted with the CJ system. Kallus et al. and Rambachan et al. [58, 59] study
conditions when these distributional differences lead to biases in incomplete fairness adjustment,
although normative implications depend on the joint utility associated with censorship in/out of the
dataset and the final positive outcome of interest. Singh et al. [60] study conditions (assuming a given
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Table 1: Issues with the COMPAS Dataset

Issues with COMPAS Dataset CS translation

Arbitrary choice of threshold for
assessing classification disparities Incorporate discretion

2-year follow-up period includes arrests
after case closed (no longer pretrial) Bias in outcome value Y

Differing follow-up periods for
rearrested vs. not rearrested individuals Bias in outcome value Y

Restricted range of risk scores Issues with distribution of data D

causal graph) under which a stable predictor, in the sense of accuracy and fairness, could be learned.
Coston et al. [61] develop counterfactual risk assessments to account for decisions. Further empirical
and methodological work on these distribution shifts, and decisions that shift distributions, would be
valuable; as well as translational work to further communicate these issues to CJ practitioners.

Table 1 uses the above framing to taxonomize a few COMPAS data issues, with details in A.2.

4 Limits of Algorithmic Fairness in RAI Outputs for Real-World Outcomes

Algorithmic RAIs are part of a complex socio-technical system of decision-makers and institutions
that introduce multiple points of discretion into what algorithm designers often think of as an
automated, single-decision system. As a result, focusing only on algorithmic fairness is not enough
to ensure that fair decisions are made based on the predictions of risk produced by algorithms. Even
if the data bias issues discussed in Section 3 were not present, claims of real-world fairness derived
solely from algorithmic fairness cannot be made because the application of the RAI also impacts
outcomes. A range of legal actors use the predictions produced by RAIs to make decisions so their
interpretation of those predictions, and their decisions about whether to use the predictions or not,
play a large role in getting from fair algorithm to real-world fairness. We provide two examples
below.

One major downstream point of discretion is judicial discretion, where judges choose how to interpret
pretrial RAIs and issue decisions. The degree to which judges follow RAI recommendations varies
greatly, with most jurisdictions giving judges final discretion but some having automatic decisions for
certain risk scores (e.g. automatic pretrial release for “low-risk” defendants in Kentucky) [12]. RAI
critics point out that RAIs, even if developed with the intention of “fairness,” can be ignored by unfair
judges, and RAI proponents point out that the improvements in outcomes that could be achieved with
RAIs may be lost when judges override or ignore RAI recommendations. Studies have shown that
even with an explicitly stated goal to reduce jail and prison populations, many judges ignore RAI
recommendations [62]. Studies have also suggested that there is a racial component to deviation
and that judges may be more likely to deviate from predictions for Black than white people [63, 64]
and for “detain” recommendations than “release” recommendations [65], but it is not yet clear how
such deviations relate to more or less disparities in detention outcomes. Since imposing oversight on
judicial decision-making is notoriously difficult, judges have nearly unchecked discretion [66] and
have resisted measures such as mandatory written responses about deviating from RAIs [67].

Discretion also extends beyond judicial decisions. Jurisdictions have discretion in mapping nu-
meric RAI scores and probabilities to recommendations for decisions. Although the Public Safety
Assessment mandates reporting risk via the scaled scores, jurisdictions determine thresholds for
recommendations of varying degrees of unsupervised or supervised/conditional release in the release
conditions matrix. This allows jurisdictions to account for local context but also introduces discretion
and wide variation in the absolute risk associated with release conditions, with one study reporting
predicted probability of re-arrest ranging from 10% to 42% for “high-risk” individuals across RAIs
[29]. Jurisdictions have also implemented RAIs that contradict implementation guidelines.4

4For example, the Public Safety Assessment guidelines suggest that it should never be used to recommend
detention (Release Conditions Matrix 2020), yet when Cook County, Illinois adopted it in 2015, those with the
highest risk score were recommended for pretrial detention, continuing the high detention rates for “high-risk”
defendants [68].
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These points of discretion illustrate the role that human judgement plays in translating the RAI
prediction into a real world decision. It is critical to recognize that the application of a RAI has as
much of an impact on fairness as the algorithm itself, if not more, because the fairest algorithm will
not result in fair decisions if it is not used or it is misused by the ultimate decision-makers.

5 Normative Values Embedded in Use of RAI Datasets
When researchers engage in work with RAIs used in the criminal legal system, at pretrial or other
time points, they are not just contributing to a discussion about how to develop a fair algorithm, but
also a much larger discussion on the role of values such as fairness, justice, equality, and power in the
criminal legal system. Researchers in the space must grappled with the broad ethical implications,
ranging from implications on the quantitative notions of fairness to the structural conditions that
perpetuate inequality. We highlight some of these implications in the following assumptions and
decisions made in benchmarking: 1) CJ tasks and outcomes, 2) fairness definitions, and 3) real-world
CJ reform and societal impact.

Tasks and Outcomes. When inheriting tasks and outcomes from previous experiments to benchmark
“performance,” implicit normative considerations may slip through the cracks. Assumptions and
encoded values of CJ predictions start but do not end with the data. Decision-making, actuarial
or clinical, includes criminal history as an input: not only is this subject to technical concerns as
discussed in Section 3, it places value on the fairness and justness of individual decisions, laws,
norms and institutions. Upholding current norms and legal definitions around crime risk in choosing
outcomes is also value-laden. By optimizing for an outcome of reduced crime risk, algorithms
currently primarily favor incapacitation of individuals to prevent and deter crime, instead of retribution
or rehabilitation [6]. Primarily valuing reduced crime risk may also come at the cost of overvaluing
incarceration, as incarceration by definition reduces one’s likelihood of committing a crime in the near
future [69], and create substantial lasting harms to those incarcerated and their communities [70, 71].
Even short periods of incarceration have such severe consequences that some studies suggest a person
must pose an extremely high risk of serious crime in order for detention to be justified [28, 72].

Statistical Fairness Objectives. As discussed in Section 4, statistical fairness objectives are limited
in their ability to directly translate to outcomes that align with their predictions due to real-world
decision-makers. There also exists a disconnect between statistical fairness objectives and fairness as
a social ideal, partially due to the values of fairness objectives and partially inherent to the contexts in
which RAIs are deployed. The first component of the disconnect is a result of fairness objectives each
uniquely encoding political and ethical values, when specific measures often cannot simultaneously be
satisfied [73] due to unequal circumstances [74, 69]. Relevant ethical considerations, such as whether
outcomes or treatment should be equal, what equality consists of, and axes of fairness/sensitive
attributes, are also relevant for human-based decision-making, though perhaps more implicit in
prediction-based decision-making under a guise of objectivity. Secondly, fairness objectives are
inherently limited in the degree to which they translate to fairness as a social ideal, which requires
placing the algorithm in context of the unjust institutions they are a part of. Fairness as a social
ideal is unstable and uncertain, constantly being debated and shaped, "a process of continual social
negotiation and adjudication between competing needs and visions of the good" [75].

Real-World Impact. Tying CS research that uses RAI data to real-world impact implicitly assumes
that RAI reform is an avenue for CJ reform. Determining specific avenues of change around theories
of decarceration, decriminalization, bail reform, abolition, etc. casts value judgments on what a
more ideal and just world looks like, which is inseparably tied in an understanding of how historical
structures have reinforced injustice. Even the notion of structural reform, for policing, incarceration,
or CJ in general, is itself value-laden and a contested theory of change [48, 76]. Contributing to CJ
reform values harm reduction in the present at the cost of legitimizing existing structures as worth
reforming and/or possible to reform. Our point is not that one position is more appropriate than
another, but rather that engaging with CJ reform via the development of algorithmic RAIs necessarily
places the algorithm designer in the middle of a debate over values that they cannot avoid.

6 Established Norms in Fields Engaged in Criminal Justice Work
RAI datasets have been used for decades in fields that have historically engaged in CJ work (e.g.,
criminology and psychology). Knowledge of the existing standards and methodological practices
in these fields could provide AI/ML researchers with important insights into publicly available CJ
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datasets. In this section, we discuss the process of creating datasets, standards for RAI publications
in other fields, guidelines for RAI use in practice, and updated standards for language used in CJ
publications. We also provide specific takeaways within each of these topics for AI/ML researchers.

Data Collection. A great deal of time, effort, and expense goes into the creation of the CJ databases
that are available online [77]. It may take years to develop relationships with relevant stakeholders to
obtain data access. This process is complicated by political or pragmatic concerns and motivations
around data access. Stakeholders often require a data use agreement which may restrict the data
researchers can use and whether they can share it beyond the scope of the current project. The
administrative records that contain CJ-related data (covariates and outcomes) are stored across
multiple systems and agencies with varying identifiers, granularity, and accuracy, requiring intricate
record linkage [78]. Management systems are often outdated and commonly require information
to be manually entered by staff, introducing opportunities for errors. Finally, some information is
unavailable in administrative data but must be collected via interviews with people who are justice-
involved [79, 80]. Interviews add further complexity, resource, and potential sources of biases,
including self-selection, non-response, impression management, rater bias, and attrition, among
others [81, 82, 83]. Researchers must go through a rigorous process to obtain approval to interview
people who are justice-involved [84] and they may be limited in the length and content of interviews.

To avoid making assumptions about the data, AI/ML and other technical researchers should contact
CJ researchers, particularly those responsible for datasets, to discuss decisions made during data
collection and dataset creation. Additionally, due to the availability bias in what data is publicly
accessible, generalizations drawn from inferences on these datasets must be viewed with caution.
Finally, we encourage AI/ML researchers to consider collaborating with CJ researchers to obtain data
and create datasets because CJ researchers offer important contextual and practical knowledge while
AI/ML researchers have data organization/management skills CJ researchers likely do not, especially
when dealing with large datasets.

Standards. We turn next to the issue of standards in publication. RAIs have been used in CJ and
health care contexts for decades by psychologists, psychiatrists, and others [85, 86, 87]. When
psychology researchers examine RAIs for accuracy or bias, they typically follow evaluation standards
created jointly by educational and psychological research associations in compliance with APA
ethical guidelines, which serve as the consensus empirical criteria of test bias assessment. Many RAI
bias studies apply these standards [88, 89, 90, 91, 13] to consider instrument performance across the
full range of scores rather than binary or categorical classifications. Psychologists are also informed
by methodological primers [92, 93], which recommend statistical tests to assess discrimination (i.e.,
how well an instrument separates people who do and do not experience an outcome of interest) and
calibration (i.e., how well predicted risk agrees with observed risk). Notably, psychology uses a
different definition of calibration than ML (same likelihood of an outcome across different groups of
people) [94, 95]. One final source of methodological guidance is the Risk Assessment Guidelines
for Evaluating Efficacy Statement [96], a list of 50 items that should be included in publications on
studies of RAIs, intended to improve comparability across studies and transparency in reporting on
research findings. Notably, all these standards and methodologies are most widely used in the field of
psychology, with other fields (e.g., criminology) adhering to them to a lesser degree [13].

These standards are reflected in decades of research on RAIs. AI/ML researchers should be cognizant
of these standards because they will clarify some of the decisions that are being made in research
coming out of fields like psychology and criminology. Further, the Risk Assessment Guidelines for
Evaluating Efficacy Statement functions similarly to a sheet for a dataset [19]. Finding publications
that adhere to this standard would provide AI/ML researchers with important information about the
underlying data.

Guidelines. There are established guidelines regarding how RAIs can and should be implemented to
inform decision-making: selecting an appropriate RAI, implementing the instrument with fidelity, and
making decisions informed by RAI results. [97, 85]. They can be instrument-specific, discuss fairness,
transparency, and effectiveness, [98, 99], and make dataset determinations. For example, pretrial RAI
research studies use a one or two year cutoff for the follow up period because pretrial RAIs are only
intended to be valid during the pretrial period of at most two years [100, 101]. Importantly, these
guidelines are often rooted in ethical or legal obligations [102, 103]. Familiarity with guidelines is
important for AI/ML researchers because using data from RAIs without understanding how they are
actually used in practice could lead to false conclusions. Further, new research that contradicts the
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way RAIs are actually being used is unlikely to see uptake in practice. Finally, recommendations
based on new research may be impossible to apply if they contradict current guidance rooted in
ethical or legal obligations.

Language Guidelines. AI/ML research papers should consider updated language guidelines when
writing about the CJ system. Several guides outline outdated vs. currently preferred terms: the intent
is to stop using terms that define people by their crimes and punishments and instead center their
humanity (Cerda-Jara et al., 2019; Solomon, 2021). Some of these guides are specific to people who
are justice-involved [104] while others cover biased language more broadly (e.g., APA Standards
for Bias-Free Language). The preferred terms for talking about people who are justice-involved are
shifting away from previously acceptable but dehumanizing terms. Where before papers used terms
like “felons” and “prisoners,” now phrases like “person convicted of a felony” or “incarcerated person”
should be used. In the quest for fairness, researchers can unintentionally perpetuate unfairness if they
use language that contributes to the marginalization of the very people for whom they are trying to
create more fair algorithms.

7 Mismatch Between AI Fairness Practices and Criminal Justice Research
Following our discussion of the many challenges and pitfalls of working with RAI datasets, we
analyze how current research and publication practices in algorithmic fairness can be ill-suited for
meaningful engagement with fairness in CJ applications and can exacerbate previously delineated
issues with data quality, real-world relevance, and inadvertent normative implications. We highlight a
focus on methods, the decontextualization of data in experiments, and the conference publication
workflow as factors contributing to this mismatch. In addition, we note how problematic experiments
can become adopted as benchmarks, creating a compounding effect. Our critique focuses on methods
papers (justifying a particular algorithmic measure or method on an RAI dataset) instead of “science”
or substantive papers that focus on learning new science from data with typically standard methods
(e.g. studying issues within specific RAI datasets).

Firstly, we argue that the focus on methods in the ML research literature, while well-suited for the ML
community, is misaligned with the broader scientific goals involved with studying RAIs. A methods
paper typically justifies a method in relation to other methods, rather than justifying it in terms of new
science output. The dataset is secondary – merely a benchmark to provide a baseline comparison.
The methods paper must also then model the science goal – say of greater equity in the RAI – as
a measurable objective that it can outperform the competition in. This leads to an often obsessive
focus on SOTA (state-of-the-art) optimizations in which the data remains passive. A paper can be
of high quality in a pure AI/ML methods sense, but irrelevant for CJ impact or worse, introduce or
perpetuate mistranslations of the CJ context. Given the visibility and stature of ML venues, this can
have inadvertent consequences as methods claims are vetted far more than CJ-adjacent claims.

Secondly, placing the data in subservience to optimization goals decontextualizes it – the objective is
beating a measure of performance instead of gleaning new insights from the data. This leads to many
of the problems described in previous sections, in which meaningless or erroneous conclusions are
drawn from the data due to a lack of data context. For example, experiment designs are sometimes
so disconnected from context that a prediction of high-risk is treated as the preferred outcome for
an individual in an equal opportunity model simply because high-risk is the “positive” label in the
dataset.5 It is also not uncommon for “granted bail” to be described as the positive decision [105]
despite the fact that many individuals are unable to afford bail [106, 107, 108, 109], implying that
being incarcerated during the pretrial period is positive for them. Decontextualization of the data
creates further problems when algorithmic fairness papers imply that their results have consequences
for how RAIs work (or should work). Risk assessment in CJ is not a modular pipeline in which each
component can be replaced with a fairer version the way you would replace a sorting algorithm with
a more efficient implementation. It is a tangled mess drenched in an ongoing history of inequity.
Claiming improvements based on using an RAI dataset out of context can result in a host of issues
that challenge the validity of conclusions drawn and raise ethical questions about claims made.

Thirdly, the conference publication workflow and community norms in CS make appropriate use
of RAI datasets difficult, in contrast to other fields that rely on journal publications. Experiments
in AI/ML conference papers are often implemented quickly and for the purpose of supplementing

5An author of the present work has noticed this several times in reviewing manuscripts for top-tier ML
conferences.
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the methodological or theoretical contributions of a paper that is already intended for submission or
even under review. For example, researchers sometimes perform new experiments on a new dataset
during a rebuttal period of less than one week, which favors grabbing any freely-available benchmark
datasets containing people as data points and demographic labels for those people. For instance,
the COMPAS dataset has emerged as a popular choice satisfying these criteria and bolstered by its
connection to the highly-cited Machine Bias article [1] and status as a “real-world” dataset.

Finally, the importance of benchmarking from a methods-first point of view causes inappropriate
experiments to have a broader, compounding effect on future research. Use of a dataset for empirical
validation in a seminal paper often leads to follow-up work replicating those experiments and
establishing that dataset as a de facto benchmark for the problem studied. Expectations of the typical
conference review process, which limit discussion and author rebuttal relative to journal publication
norms of other fields, reinforce this positive feedback loop. Omitting a commonly-used dataset in
an experiments section is a dangerous gamble for authors whose paper may be rejected for failing
to compare to established benchmarks. Thus, researchers are incentivized to continuously replicate
even flawed experiments. This is not a purely hypothetical concern: this compounding effect is one
of the reasons for the (in our opinion) overuse of the COMPAS dataset.

Calls to address these issues often implore researchers to collaborate with domain experts and
practitioners, but these collaborations are challenging. The rapid publication cycle in which methods
might build upon each other within a year or two often establishes an appearance of consensus around
a benchmark, which becomes difficult to change or refute later. This cycle does not match the slower,
more deliberate process of acquiring and understanding data from a single source. Furthermore, the
fundamental difference between science and methods contributions needs to be recognized as well as
the focus on data-as-benchmark versus deriving meaning from the data.

While none of these issues are insurmountable, researchers who wish to engage meaningfully in this
space must ensure that their incentives are aligned in order to avoid the problems we enumerate.

8 Call To Arms
We now suggest best practices for addressing the challenges of relying on RAI datasets for broad
investigations of fairness as well as CJ-focused algorithmic interventions.

Things not to do. Firstly, researchers working broadly in algorithmic fairness should avoid the use
of CJ-related datasets (e.g., COMPAS) as generic real-world examples to illustrate or benchmark
a new fairness algorithm or measure. As this deep dive into CJ datasets has hopefully shown, CJ
data should be interpreted within a rich domain context, and taking it out of this context to perform a
typical ‘horse-race’ analysis is misleading. Even worse, such analysis could be misunderstood as
saying something specific about CJ problems, which would be incorrect as well as politically fraught.

Researchers should also avoid making broad conclusions about practices in CJ solely from the use
of CJ datasets. Once again, the context in which these datasets can be interpreted varies widely
even within different locales with different laws, practices and data acquisition methods. Broad
conclusions are likely to be misleading or wrong, and risk becoming political scoring points against
the broader backdrop of discussions about CJ and ideas for reform.

Things to be careful about. This paper does not advocate completely avoiding datasets from CJ
or quantitative methods for real-world problems. Rather, we encourage understanding of the CJ
context and how such models will be used in practice to foster meaningful progress. By partnering
with CJ researchers, ML researchers could gain access to insights about the data and challenges
to model use in practice that may inspire new research directions and prevent falling into the traps
previously identified. ML researchers working in this space should particularly avoid over-selling
the implications of or potential uses of their work. Thorough discussions of modeling assumptions
are useful to communicate the work to people from different disciplinary backgrounds. Clearly and
thoroughly describing limitations of the methodology as well as potential consequences of deploying
the system in the real world will go a long way towards a more meaningful engagement.

Some of this may be hard to do within a traditional CS conference publication workflow and
timetable, where the applying a method to a new dataset at the last minute is acceptable. Accessing
CJ datasets often requires applying months in advance for approval, followed by data cleaning and
interpretation, and would contribute to studying disparities in other RAIs besides COMPAS. Along
similar lines, conference organizers and reviewers can enforce requirements for ethical/acceptable
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use, documentation, and release of CJ datasets in particular. If researchers use COMPAS out of a
perceived expectation to use a real-world dataset, even if benchmarking on that dataset is irrelevant
as we argue in Sections 3 and 4, then reviewers should encourage well-designed simulations instead.

Things that might be helpful. Even when meaningful collaborations with domain experts in CJ are
not possible, ML researchers can leverage their specific skill set and expertise for the broader issue of
RAIs and their use. We list a few greatly-needed examples of such contributions.

Building datasheets and model cards for CJ datasets/RAIs. Datasheets [19, 110] are becoming a
valuable accountability mechanism to understand the limitations and operating conditions for any
dataset. Preparing datasheets for CJ datasets will require capturing the choices described in sections
above as well as many of the lenses on bias that ML researchers have developed over the years.

Identifying implicit assumptions in fairness algorithms. A critical (and reflexive) examination of
fairness interventions is a process by which the researcher identifies value positions and assumptions
inherent in the way a particular intervention is formalized, or how a measure of fairness is formulated
(E.g., whether the algorithm falls into a particular kind of formalization trap or whether its framing of
fairness is based on assumptions about the underlying data). Given the many contested assumptions
and values that stakeholders bring into the discussion of any RAI, surfacing such biases ensures that
algorithms are not used blindly in a way that could exacerbate existing biases.

Investigate where problems in data and interpretation could make algorithms fail. Even if we can
surface the underlying assumptions that an algorithm uses and verify that these are reasonable within
the context, can we be sure that the algorithm will behave in a robust manner if the assumptions are
violated slightly? This is the idea of assumption stability – it asks if algorithms are robust under
changes in the underlying assumptions (which might manifest as distribution shifts or unexamined
correlation between features). The ML and algorithms communities have a rich history of robustness
investigations in the context of learning models, and their tools can aid in addressing this question.

Investigate the use of different metrics and their problems. There are many standard metrics used
in the risk assessment literature to validate RAIs. For example, a model that gets an AUC score
of above 0.65 is considered a reasonable model for deployment [79, 111]. However, as Zhou et
al. [112] have shown, reporting accuracy disparities as group-conditioned AUCs does not actually
measure across-group ranking disparities and different models with the same AUC might perform
very differently across demographics or risk thresholds. Similarly, work by Marx et al. [54] has
identified ways in which models that exhibit the same overall accuracy might behave differently
on individuals, and proposed a new measure of predictive multiplicity to capture this variation as a
way of introducing reasoned skepticism about the performance of a given model. Similarly, testing
standards in other fields require examining the functional form of the statistical association between
RAI scores and predicted outcomes [113].

Expand limitations of benchmarking for real-world relevance. Our concerns around RAI datasets
center around relevance: representativeness of the real-world and applicability to impact real outcomes.
Our work enables future work to analyze how RAI datasets are ill-suited for benchmarking in other
ways, shape criteria for evaluating benchmark datasets, and explore if benchmarks for socio-technical
systems like the CJ system can exist at all in a beneficial and ethical way.

9 Conclusion
Throughout this paper, we have argued that using the COMPAS dataset as a generic benchmark,
perhaps in deference to convention, is a poor choice for technical and normative reasons. Conducting
CJ research necessitates developing a contextual understanding of the past and present of the CJ
system, which demands grappling with questions around ethics given deeply entrenched systemic
inequity. We are encouraged by the increasing awareness within the CS discipline around broader
impact, negative consequences, and ethical considerations of this work, as well as a growing under-
standing of the elaborate ways that algorithms interact within socio-technical systems. We hope that
this paper can provide insight into issues and complexities with using RAI datasets as benchmarks for
real-world fairness, to better align with goals of developing more informed and just policy decisions.
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