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Abstract

We present a new dataset and benchmark with the goal of advancing
research in the intersection of brain activities and eye movements. Our
dataset, EEGEyeNet, consists of simultaneous Electroencephalography
(EEG) and Eye-tracking (ET) recordings from 356 different subjects col-
lected from three different experimental paradigms. Using this dataset,
we also propose a benchmark to evaluate gaze prediction from EEG mea-
surements. The benchmark consists of three tasks with an increasing level
of difficulty: left-right, angle-amplitude and absolute position. We run
extensive experiments on this benchmark in order to provide solid base-
lines, both based on classical machine learning models and on large neural
networks. We release our complete code and data and provide a simple
and easy-to-use interface to evaluate new methods.

1 Introduction

Tracking eye position is a subject of active research due to its multiple applications across
different fields such as behavioural science [1], assistive technology [2], or user experience
[3]. Eye tracking in combination with conventional research methods, like behavioral
measures, can help assess and potentially diagnose neurological diseases such as Autism
Spectrum Disorder [4], Obsessive Compulsive Disorder [5], Schizophrenia [6], Parkinson‘s
[7], and Alzheimer‘s disease [8]. Additionally, eye tracking technology can be used to
detect states of drowsiness [9], to support communication for locked-in patients [10], and to
measure attention in marketing [11]. In the last decade, technological advances have allowed
complementing eye-tracking technology with EEG — a non-invasive, minimally restrictive,
and, relatively low-cost measure of mesoscale brain dynamics with high temporal resolution.
Combining behavioral information gained from eye tracking with the neurophysiological
markers provided by EEG enables researchers to study perceptual, attentional or cognitive
processes in naturalistic situations [12]. Notably, estimating gaze position using EEG would
make available gaze position information in a wide variety of studies that cannot acquire
eye tracking data otherwise, either because of the unavailability of ET hardware or the lack
of in-house expertise. This, in turn, could accelerate scientific discovery on human behavior
and neurological and psychiatric diseases, particularly during free viewing of complex
stimuli (i.e. naturalistic paradigms) and in clinical settings, in which the installation of an
eye-tracker is impractical (e.g. hospital bed).
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Advancing cognitive research at the intersection of brain dynamics and eye movement
requires synchronized data from EEG and eye-tracking. Such data contains gaze pattern
of eye movements recorded with eye- tracking as well as the neurophysiological markers
provided by EEG, allowing researchers to study attention and reaction time [13], or to
improve brain-computer interfaces [14]. In the same line, estimating gaze position from EEG
signals is typically approached with machine learning and deep learning models [15, 16],
which need significant amounts of annotated data for training. However, collecting and
annotating simultaneous EEG and eye position data is time-consuming and expensive since
it requires equipment and expertise for both EEG acquisition and eye-tracking. Hence,
the access to concurrently recorded EEG-ET data is highly restricted, which significantly
slows down progress in this field. To help bridging this gap, we release EEGEyeNet, a
large dataset of EEG data synchronized with precise eye-tracking recordings. Furthermore,
given the multiple benefits that EEG-based eye tracking can bring to different domains, in
conjunction with our dataset, we present a benchmark for evaluating gaze estimation from
EEG. This benchmark comprises three tasks of increasing difficulty and is conceived as a tool
to facilitate comparable and reproducible research on gaze estimation from EEG data. We
run extensive experiments on the proposed benchmark to establish baseline performance.
In order to foster further research in this field we make all of our code and infrastructure
available in the following site: http://www.eegeye.net.

To conclude, our key contributions can be summarized as:

• A dataset of high-density 128-channel EEG data synchronized with video-infrared
eye tracking from 356 healthy adults that amounts to a total of more than 47 hours
of recording. Along with the raw dataset we provide preprocessed data and code
for preprocessing and feature extraction.

• A benchmark for gaze estimation from EEG signals that consists of three evalu-
ation tasks with increasing difficulty. This benchmark is built on a subset of the
EEGEyeNet dataset.

• An extensive experimentation that establishes baseline performance on the pro-
posed benchmark.

2 Related Work

Gaze prediction is an active research topic with applications in human behaviour analysis
[17], advertisement [18], and human-computer interaction [19], to name a few. Previous
research found evidence suggesting that action selection is facilitated by attention [1]. Fur-
thermore, [20] demonstrated the possibility of performing activity recognition from eye
movements. To predict gaze location, some models use saliency maps [21, 22], while others
leverage machine learning techniques to estimate gaze position from indirect data: Krafka
et al. [23] use webcam images, and Son et al. [24] and LaConte et al. [25] use functional mag-
netic resonance imaging (fMRI). Similarly, O’Connell and Chun [26] reconstructed fixations
maps, which can predict eye movement patterns, directly from fMRI data. Interestingly, our
recent work indicates that it might be possible to infer gaze direction directly from EEG data
[16]. Although to our knowledge no previous work has employed deep learning to estimate
eye position from EEG, there are studies demonstrating that combining EEG and ET can
improve performance in various tasks, as compared with a single modality. In particular,
this has been reported in the vigilance estimation [27], information extraction and sentiment
analysis [28], or analysing users’ behaviour when performing a web search [29].

Related Datasets. There exist some openly available datasets that combine EEG and ET
data. However, in comparison to EEGEyeNet, they are acquired from a smaller sample
of individuals [28, 30] or using a less advanced EEG-ET setup [31, 32]. A prominent
example of a multimodal neurophysiological dataset, including EEG and ET data collected
from a significant sample of participants (126 individuals), was proposed by Langer et al.
[33]. However, it is devised as a resource for assessing information processing in the
developing brain and contains data from young participants only. This way, EEGEyeNet
dataset is the first large-scale and precisely annotated EEG-ET dataset containing recording
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from participant across the adult lifespan (18-80 years old). In Table 1 we compare the
EEGEyeNet dataset with the cited datasets in terms of the number of participants, their age,
and recording/session length.

Paper/Dataset Participants Female/Male Age Recording Length Session Length
ZuCo 1.0 12 5/7 25-51 x 48-72h
ZuCo 2.0 18 8/10 23-52 x 30h-54h
Notaro et al 22 11/11 18-40 7h x
MAMEM 36 9/27 25-71 x 52h
Langer et al 126 56/70 6-44 x 378h
EEGEyeNet 356 190/166 18-80 47h 415h

Table 1: Metadata comparison of the cited datasets. Since [28, 30, 32, 33] reported only the
duration of the entire experimental session (including participant’s preparation, practice
trials that were aimed to acquaint the participant with the experimental procedures, breaks
between the subsequent experiments, etc.), we decided to distinguish the recording’s length
from the whole session length.

3 EEGEyeNet Dataset

In this section, we provide a detailed description of the EEGEyeNet dataset. Together
with the raw data, we release two sets of preprocessed data: minimally and maximally
preprocessed; as well as the preprocessing code. This way, we give users the freedom to
manipulate raw data while easing the experimentation barrier by additionally providing
ready-to-use clean data.

3.1 Data Acquisition

Participants. Data were recorded from 356 healthy adults. The study included 190 female
and 166 male participants, of ages between 18 and 80 years. All participants gave their
written informed consent before participation in the experiment and received a monetary
compensation (the local currency equivalent of 50 US Dollars). The data was collected
according to the principles expressed in the Declaration of Helsinki [34].

Figure 1: Recording Setup

Recording setup. High-density
EEG data was recorded at a sam-
pling rate of 500 Hz, with midline
central recording reference, using
a 128-channel EEG Geodesic Hy-
drocel system. The impedance of
each electrode was checked prior
to each recording session and kept
below 40 kOhm. Simultaneously,
eye position was recorded with an
infrared video-based ET EyeLink
1000 Plus from SR Research at a
sampling rate of 500 Hz and an
instrument spatial resolution of less
than 0.01� root mean square (RMS)
of the distances between successive
samples. The ET was calibrated
with a 9-point grid before each
recording. In a validation step, the
ET calibration was repeated until
the error between two measurements at any point was less than 0.5�, or the average error
for all points was less than 1�. Participants were seated at a distance of 68 cm from a 24-inch
monitor with a resolution of 800 ⇥ 600 pixels. A stable head position was ensured with a
chin rest. The illustration of the recording setup can be seen in Figure 1.
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3.2 Preprocessing

EEG data is often contaminated by artifacts produced by environmental factors, e.g., temper-
ature, air humidity, as well as other sources of electromagnetic noise, such as line noise [35].
These artifacts interact in a complex manner with participant-related artifacts, typically
reflecting unwanted physiological signals such as eye movements, eye blinks, muscular
noise, heart signals or sweating, which differ from participant to participant. The resulting
artifacts in the EEG data are typically more prominent than the signal of interest (i.e. brain
activity). Therefore, EEG data requires preprocessing in the form of artifact cleaning or
artifact correction [36]. We preprocessed the entire EEGEyeNet dataset using the openly
available toolbox from Pedroni et al. [37] in two ways: minimally and maximally. Minimal
preprocessing includes the detection and interpolation of bad electrodes, and filtering the
data with 40 Hz high-pass filter and 0.5 Hz low-pass filter (cf. Appendix A). The difference
between these two types of preprocessing is that maximal preprocessing removes a much
larger number of artifacts (muscles, heart, eyes, line noise, channel noise). To do this, inde-
pendent component analysis (ICA) is applied in combination with IClabel [38], a pre-trained
classifier that estimates the probability of a component reflecting artifactual activity. If a
component receives a probability estimation larger than 0.8 for any class of artifact we
remove it from the data. Minimally preprocessed data includes ocular artifacts, which
is expected to make the estimation of gaze position easier. On the other hand, maximal
preprocessing is a state-of-the-art technique for neuroscientific applications [37] that aims to
keep only neurophysiological information in the data.

After preprocessing (both minimally and maximally), the EEG and eye-tracking data were
synchronized using “EYE EEG” [39] to enable EEG analyses time-locked to the onsets of
relevant events depending on the experimental paradigm. Synchronization quality was
ensured by comparing the trigger latencies recorded in the EEG and eye-tracker data. All
synchronization errors did not exceed 2 ms.

3.3 Data Annotation

Existing literature studying eye movement generally distinguishes between three different
events [40]: saccades, fixations, and blinks. Saccades are rapid, ballistic eye movements that
instantly change the gaze position. Fixations are defined as time periods without saccades,
and blinks are considered a special case of fixation, where the pupil diameter is zero. For
each of the experimental paradigms described in Section 3.4, we provide annotations in the
form of start and end time of each event, as well as the start and end position of saccades
and the average position of fixations. See Appendix B for further details.

3.4 Experimental Paradigms

Figure 2: Pro- and Antisaccade. Schematic
view of the experimental setup and gaze be-
havior during a prosaccade (left) and antisac-
cade (right) trial.

Pro- and Antisaccade. The pro- and anti-
saccade paradigm was designed according
to the internationally standardized protocol
for antisaccade testing developed by Anto-
niades et al. [41] and is described in detail
in [42]. Each trial starts with a central fix-
ation square. The participants are asked
to focus on the center of the screen for a
randomized time-period between 1 and 3.5
seconds. Subsequently, the cue (i.e. a dot)
appears horizontally on the left or the right
hand-side of the central fixation square. In
the prosaccade trials, the participants are
asked to focus their gaze on the cue as fast
as possible, while in the antisaccade trials
the participants are instructed to perform
a saccade towards the opposite side of the
cue. In both cases, the cue is shown for one
second. As soon as the cue disappears, the
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participants shift their focus back to the center of the screen; this is illustrated in Figure 2.
Data recorded following this paradigm may be used for different research purposes, such as
estimating gaze direction or examining responses to inhibition.

Figure 3: Large Grid. Schematic view of the
experimental setup and stimuli location on
the screen.

Large Grid. Participants are asked to fix-
ate on a series of dots that are sequentially
presented, each at one of 25 different screen
positions. Unlike the others, the dot at the
center of the screen appears three times,
resulting in 27 trials (displayed dots) per
block, each dot is displayed for 1.5 to 1.8
seconds. The positions of the dots were
selected to ensure coverage of all corners
of the screen as well as the center (see Fig-
ure 3). The shape of the grid and its use
for eye gaze estimation follows the work
from Son et al. [24]. Given that Son et al.
[24] used the Large Grid paradigm for func-
tional Magnetic Resonance Imaging (fMRI),
we have adapted the length of the stimulus
and the number of repetitions to our setup.
To record a larger number of trials and re-
duce the predictability of the subsequent
positions in the primary sequence of the stimulus, we use different pseudo-randomized
orderings of the dots presentation, distributed in five experimental blocks, as shown in
Figure 3. The entire procedure is repeated 6 times during the measurement, resulting in 810
stimuli for each participant.

Figure 4: Visual Symbol Search. Three rep-
resentative trials of the VSS task. For each
row, the first two symbols are target symbols,
the next five correspond to the search group,
and the response check boxes are labeled as
response.

Visual Symbol Search. Visual Symbol
Search (VSS) is a computerized version of
a clinical assessment to measure process-
ing speed (Symbol Search Subtest of the
Wechsler Intelligence Scale for Children IV
(WISC-IV) [43]) and the Wechsler Adult In-
telligence Scale (WAIS-III) [44]). Partici-
pants are shown 15 rows at a time, where
each row consists of two target symbols, five
search symbols and two additional symbols
that contain respectively the words “YES”
and “NO”. For each row, participants need
to indicate by clicking with the mouse but-
ton on the “YES” or “NO” symbol, whether
or not one of the two target symbols ap-
pears among the five search symbols. Each
recording of the VSS paradigm takes 120
seconds with a maximum of 60 trials, where
one trial corresponds to one row; in 50% of
the trials one of the target symbols does
appear in the search symbols and in the re-
maining 50% none does. Once participants
finish a set of 15 rows, they press a “next page” button which displays a new set of 15 rows.
Participants are instructed to solve as many rows, or trials, as possible within the given
120 seconds. Before beginning the actual recording, participants perform a training of four
trials, for which they receive feedback to ensure they understand the task. No feedback is
provided throughout the actual recording. Data collected according to this paradigm may
be used for investigating behavioral and neurophysiological correlates of processing speed.
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The EEGEyeNet dataset contains data recorded following all three different experimental
paradigms mentioned above. These paradigms cover typical cognitive tasks and provide a
wealth of eye movement patterns.

Finally, in Table 2 we report for each paradigm the number of appearances of the three
events that we extract: fixations, saccades and blinks; we report these after both minimal
(min) and maximal (max) preprocessing. In Appendix C we give further details about the
characteristics of each of these events. These numbers make apparent the large size of the
EEGEyeNet dataset, with a total of over 47 hours of recorded events.

Paradigm Preproc. # Fixations # Saccades # Blinks Total time

Pro- Antisac. min 357115 358384 56179 38 h
max 358587 359856 57991 38 h 6 mins

Large Grid min 68075 68245 11108 7 h 52min
max 69013 69185 11237 7 h 58 min

VSS min 43384 43443 971 1 h 29 min
max 43279 43339 945 1 h 28 min

Total min 468574 470072 68258 47 h 21 min
max 470879 472380 70173 47 h 33 min

Table 2: Overview of EEGEyeNet Dataset. Number of eye-tracking events (fixations,
saccades, blinks) for the EEGEyeNet experimental paradigms. The difference in the number
of eye events between the two preprocessing versions is due to fact that in the minimal
preprocessing more events are identified as artifacts and removed from the sample.

4 Benchmark

Based on the EEGEyeNet dataset we propose a benchmark to assess EEG-based eye tracking
methods. This benchmark consists of three different tasks with increasing difficulty. For
each of the tasks, we provide data preparation modules that cut the data into samples of one
second with a temporal resolution of 2ms from all 128 EEG channels; This way all samples
have a shape of 500 ⇥ 128, i.e., 500 time points for each of the 128 EEG channels. This is also

Figure 5: Each sample of EEG data has a shape of 500 ⇥ 128, i.e., 500 time points for each
of the 128 EEG channels. On the left side (A) we can see gaze data (along XY-axes) of the
one-second sample. On the right side (B) we can see a subset of the preprocessed EEG data
(electrodes matching the 10–20 systems were chosen).
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illustrated in Figure 5. We use exclusively minimally preprocessed EEG data as it produces
better performance as compared to maximal preprocessed data. In Appendix E, we report
our results for the maximally preprocessed data, as well as the results of the experiments
ran on the Zuco 2.0 dataset [30]. For comparability, we also provide a stable split of the data
across participants, with 70% of the participants for training, 15% for validation and 15% for
test. Note that each participant’s data is contained only in one of the three sets, i.e., the same
participant does not appear during training and validation or test. In Table 3 we include a
summary of how the data is split in each task of the benchmark.

# Participants # Samples
Dataset Total Train Validation Test Total Train Validation Test

Left-Right 329 229 50 50 30842 21042 4980 4820
Angle/Amplitude 27 19 4 4 17830 12275 2836 2719
Abs. Position 27 19 4 4 21464 14706 3277 3481

Table 3: Benchmark Data. Detail of the data split for each task of the proposed benchmark.

4.1 Task 1: Left-right

The first and simplest task of our benchmark consists of determining the direction of
the subject’s gaze along the horizontal axis. This task is performed exclusively on the first
experimental paradigm (Pro- and Antisaccade). We make sure that in all the samples provided
for this task, after the cue, the participant performs a saccade towards the correct direction
and then fixates on the cue; otherwise, the sample is not included in the data. Given that
the antisaccade task has been viewed as an indicator of behavioral inhibition abilities [45]
and that here we are interested in saccade direction, for the sake of simplicity, we use only
data from the prosaccade trials of the antisaccade experimental paradigm. From the 30, 842
samples used in this task, 14, 827 correspond to the “left” label and 16, 015 to “right”.

Each sample starts at the instant when a cue is shown on the screen and contains one saccade:
the goal is to determine whether it is a left or a right saccade. This is a binary classification
task, and therefore, performance is measured in terms of accuracy with a random baseline of
52.3%, given by the majority class. Although seemingly simple, determining the horizontal
direction of the human gaze is of paramount importance in multiple real-world applications,
e.g., gaze-based writing systems for people with disabilities [46].

4.2 Task 2: Angle/Amplitude

The second task of our benchmark consists of determining the angle and amplitude of a
saccade and is performed on data from the Large Grid paradigm. The one-second samples
in this task contain a saccade onset in the middle of the sample. This way, each sample
contains a complete saccade as well as a part of the preceding and succeeding fixations.
During the data preparation for this task, we remove samples with fixations that are shorter
than 150ms and with saccades with an amplitude of less than 1� [47].

Given a sample, the task of the model is to regress the two target values, i.e., angle and
amplitude of the relative change of the gaze position during the saccade. The evaluation
metric for this task is the square root of the mean squared error (RMSE) for the angle (in
radians along the shortest path of the unit circle) and amplitude (in millimeters) separately.
The naive baseline is given by the mean angle and amplitude in the training set and
amounts to 1.90 RMSE radians for the angle and 74.7 RMSE mm for the amplitude. This
task is significantly harder than the Left-Right task and aims at serving as an intermediate
step for the development of a purely EEG-based ET. Despite its difficulty, there is evidence
that EEG recordings contain angle information [48].

4.3 Task 3: Absolute Position

Finally, we propose the task of determining the absolute position of the subject’s gaze in the
screen, described in terms of XY-coordinates. Again, this task is performed on the Large Grid
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paradigm. We provide samples of one second during which the participant is performing
only one fixation. The data preparation module ensures that in this time window there is no
other event happening, i.e., the participant performs only a fixation. However, we note that
in order to estimate the current gaze position we expect past information, e.g., the previous
gaze position, to be helpful. For this reason, we also encourage experimentation on different
ways of processing and cutting the full EEG recordings provided in the dataset.

Performance is measured as the euclidean distance in millimeters between the actual and
the estimated gaze position in the XY-coordinate plane. Random performance is again
calculated as the mean position across the training set and corresponds to a distance of 123.3
mm. This is the hardest task in the proposed benchmark and aims at simulating a purely
EEG-based eye-tracker. We expect this task to help in the development of general methods
to further improve gaze estimation systems as well as in setting an upper bound on the
reach of EEG-based eye-tracking.

5 Baselines

We run extensive experiments on the proposed benchmark in order to provide baselines of
different complexity. In our repository we provide an intuitive interface to reproduce our
results and to use the methods presented here as a starting point for further research. We
consider both models based on classical machine learning as well as large neural networks.

5.1 Models

Machine Learning. These models operate on features extracted from the data rather than
on the raw data. Therefore, in a feature extraction step, we apply a band-pass filter in the
alpha band [8 � 13 Hz] on the continuous EEG signals across the entire trial. The choice of
the alpha band is motivated by growing evidence suggesting that alpha activity is integral to
spatial attention, and therefore plays a central role in covert orienting in a range of paradigms
[49]. After band-passing the signal, the Hilbert transform was applied, resulting in a complex
time series from which we extract phase and amplitude. Using the resulting features, we
experiment with different models. Left-Right is a classification task while Angle/Amplitude
and Absolute Position are regression tasks and thus, some of the considered models can
be applied only to either of those two types of tasks. In particular, the classification-only
models that we study are Gaussian Naive Bayes (NB) Linear Support Vector Classification
(SVC) and Radial Basis Function (RBF) kernel SVC, whereas the regression-only models
are Linear, Ridge and Lasso Regression as well as Elastic Net and RBF Support Vector
Machine for regression (SVR). Furthermore, we use K-Nearest Neighbours (KNN) and four
tree-based models, Random Forest, Gradient Boost, AdaBoost and XGBoost, which can be
used for both, classification and regression. In all cases we use the implementation from the
Sklearn library [50], for detailed model hyperparameters see Appendix D.

Deep Learning. We evaluate five state-of-the-art architectures for time series on the pro-
posed benchmark: a standard one-dimensional convolutional neural network (CNN), a
CNN with pyramidal shape, the EEGNet model by Lawhern et al. [51], an InceptionTime
model [52], and an Xception model [53]. All of these models use convolutions as the primary
operation (see Appendix D for architectural details). We tune the learning rate and other
hyperparameters on the validation set of the Left-Right task and use those values in all the
reported results (cf. Appendix D). We use binary cross entropy loss to train the models for
Left-Right, and mean square error (MSE) loss for the other two tasks; in all cases we use the
Adam optimizer [54] and early stopping on the validation sets.

5.2 Results

In Table 4 we provide the results of our evaluation for each of the models considered and for
each of the three tasks. We tune the learning rate of the different deep learning models on
the validation set of the Left-Right task and use the same rate in the other two tasks, i.e., 1e�4.
We run 5 times each experiment and report mean performance and standard deviation.
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Left-Right Angle/Amplitude Abs. Position
Model Accuracy Angle RMSE Amp. RMSE RMSE

KNN 90.7 ±0 1.26 ±0 59.3 ±0 119.7 ±0
GaussianNB 87.7 ±0 - - -
LinearSVC 92.0 ±0 - - -
RBF SVC/SVR 89.4 ±0 1.88 ±0 75.9 ±0 123 ±0
Linear Regression - 1.39 ±0 64.6 ±0 118.3 ±0
Ridge Regression - 1.39 ±0 64.2 ±0 118.2 ±0
Lasso Regression - 1.38 ±0 63.9 ±0 118 ±0
Elastic Net - 1.38 ±0 63.6 ±0 118.1 ±0

Random Forest 96.5 ±0 1.09 ±0.01 59.8 ±0.1 116.7 ±0.1
Gradient Boost 97.3 ±0.1 1.11 ±0.01 60 ±0.1 117 ±0.1
AdaBoost 96.3 ±0 1.43 ±0.01 65 ±0.1 119.4 ±0.1
XGBoost 97.9 ±0 1.11 ±0 61.3 ±0 118 ±0

CNN 98.3 ±0.5 0.33 ±0.05 32 ±3.6 70.2 ±1.1
PyramidalCNN 98.5 ±0.2 0.34 ±0.04 30.7 ±1 73.6 ±1.9
EEGNet 98.6 ±0.1 0.70 ±0.08 46 ±5.2 81.7 ±1.0
InceptionTime 97.9 ±1.1 0.44 ±0.16 43.6 ±21.85 70.8 ±0.8
Xception 98.8 ±0.1 0.47 ±0.28 32.2 ±1.9 78.7 ±1.6

Naive Baseline 52.3 1.90 74.7 123.3

Table 4: Results. Mean and standard deviation of 5 runs of the considered models on the
three benchmark tasks. Angle is measured in radians, Amplitude and Abs. Position in mm.

Left-Right. We see that classical machine learning models achieve high performance in
this task, much above the naive baseline of 52.26%. In particular, tree-based models reach
a performance of over 96%, which confirms Left-Right as the easiest task in the proposed
benchmark. Notably, although classical models obtain high scores, all the deep learning
models reach a performance consistently higher, with an accuracy of over 98% in all cases
(except for InceptionTime, 97.9%). This shows that despite the high performance, differences
in performance can still be noticeable.

Angle/Amplitude. The results in Table 4 clearly show that this task is harder than Left-
Right. Except for RBF SVC/SVR, which performs close to random, all classical machine
learning models reach a similar performance for the estimation of both amplitude and angle.
This result is above the naive baseline although not by a big margin. Tree-based models
perform the best among classical statistical models, however, they are clearly inferior to
deep learning models in this task. Somewhat surprisingly, among the deep learning models
the simplest ones, i.e., CNN and PyramidalCNN perform the best, with an RMSE of 0.33 and
0.34 radians in angle estimation, and 32 and 30.7 mm in amplitude estimation, respectively.
Overall, we see that there is still a considerable gap between the best results reported here
and ideal performance. Our results constitute a baseline that should orient future work on
estimating angle and amplitude of saccades from EEG data.

Absolute Position. Finally, we see in the last column of Table 4 the results of our experi-
mentation on absolute position estimation. We see that classical models generally fail in this
task, with performances very close to the naive baseline. On the other hand, deep learning
models reach an euclidean distance with respect to the true location in the range of 70 to
80 mm. Although these results are far from ideal performance, the considerable gap with
the naive baseline shows that EEG-based eye tracking can potentially be achieved to an
acceptable degree of accuracy. Our results, set the baseline for this task in 70.2 mm, as
reached by CNN, again one of the simpler deep learning models. However, as explained in
Section 4.3, exploiting previous information is likely to improve performance, and thus, it
would be interesting to see how sequence models, such as Recurrent Neural Networks or
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Transformers would perform in this task. There is a lot of room for improvement and we
hope that this task will help future work in advancing EEG-based eye tracking.

In summary, our evaluation reveals that deep learning models are superior to other statistical
techniques in estimating gaze position from EEG data. Although this is not surprising,
given the complexity of the task and the larger expressive capacity of neural networks, it
confirms that EEGEyeNet is a valuable resource for developing large neural models. We
expect that future work will surpass our scores advancing EEG-based eye tracking.

6 Discussion and Future Work

The dataset and benchmark presented in this work provide an approachable framework to
conduct research in the intersection of brain activity and eye movement. We will actively
maintain and continuously extend both the dataset and the benchmark with further mea-
surements from more participants and new experimental paradigms. We acknowledge as
current limitations the relatively small number of participants recorded for the Large Grid
paradigm and the fact that the test sets of our benchmark are publicly available. We will
address both points by (1) recording more data and (2) building an automatic evaluation
service that keeps the test set hidden from the users and includes a leaderboard.

To facilitate extensive use of EEGEyeNet for various research purposes, we provide in our
repository data preparation tools with an easy-to-use interface where users can define their
own benchmarking tasks or extract other information from the dataset. In particular, the
user can specify whether some recording blocks from the experimental paradigm should be
ignored, which events to extract from the data and how the data should be preprocessed.
Additionally, the user can also decide whether feature extraction should be performed or
not. As with the other resources presented in this work, the data preparation module is in
continuous development. We plan to adapt this software tool in the future according to the
users’ needs. Overall, we expect that EEGEyeNet will become a central resource for a broad
range of EEG and Eye-Tracking related research, specifically:

Research in Cognitive Area. EEGEyeNet’s rich structure and high-density coverage of
EEG and Eye-Tracking data may help advance other areas that study the combination of
gaze position and brain activity to identify variations in attention, arousal and participant’s
compliance with the task demands. Moreover, the behavioral information gained from eye
tracking with the high temporal resolution and neurophysiological markers provided by
EEG enables research of the perceptual, attentional, cognitive processes.

Benchmarking. We expect the high quality, diversity and large scale of the EEGEyeNet
dataset to be leveraged, in order to include new tasks in the proposed benchmark, as well
as to build benchmarks for related domains. In particular, we plan to include segmentation
tasks that evaluate the ability of a given model to detect and distinguish events such as
fixations or saccades.

7 Conclusion

Recording eye-tracking data is a complex and expensive process that requires specialized
hardware, trained operators and participants’ consent. Collecting such data in combination
with EEG adds an additional level of complexity to the data acquisition process. Therefore,
behavioral research studying the combination of brain activity and eye movements is
typically restricted by the lack of appropriate data. In this work, we have introduced
EEGEyeNet, a large dataset of EEG and eye tracking data, with the view of making basic
cognitive neuroscience research more approachable. Furthermore, given the potential
benefits that EEG-based eye-tracking can bring in different domains, we have proposed
a benchmark to facilitate the development of new methods tackling this challenge. Our
experiments on this benchmark show that deep learning models perform better than classical
statistical models. This confirms that the amount of data contained in EEGEyeNet is large
enough to reliably train large neural models, which is a promising direction for further
developing EEG-based eye tracking.
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