
A Additional Dataset information

License and Documentation The documentation and license of the dataset is at https://github.
com/tlc-pack/tenset. The github repo contains instructions and code on how to download and
use the dataset.

Maintenance Plan We will monitor the issues and provide necessary maintenance to ensure the
access to the data.

Author Statement The authors bear all responsibility in case of violation of rights.

Additional Tables and Figures

Network architecture Batch size set Image size (sequence length) set
resnet-18 {1, 4, 8} {224, 240, 256}
resnet-50 {1, 4, 8} {224, 240, 256}
wide-resnet-50 {1, 4, 8} {224, 240, 256}
resnext-50 {1, 4, 8} {224, 240, 256}
mobilenet-v2 {1, 4, 8} {224, 240, 256}
mobilenet-v3 {1, 4, 8} {224, 240, 256}
densenet-121 {1, 2, 4} {224, 240, 256}
inception-v3 {1, 4, 8} {299}
resnet-3d-18 {1, 2, 4} {112, 128, 144}
dcgan {1, 4, 8} {64, 80, 96}
bert-tiny {1, 2, 4} {64, 128, 256}
bert-base {1, 2, 4} {64, 128, 256}
bert-medium {1, 2, 4} {64, 128, 256}
bert-large {1, 2, 4} {64, 128, 256}

Table 6: Networks Configurations. We vary the batch size and input image size (or sequence length)
of common network architectures to generate different computational graphs of neural networks.
For example, the first row means that we set the input shape of resnet-18 as (batch size=1, image
size=224), (batch size=1, image size=240), ..., (batch size=8, image size=240), (batch size=8, image
size=256) respectively, which means 9 different configurations in total.

B Definition of Dataset-based Evaluation Metrics

For a single task, we define the following metrics. Let N denote the number of programs for this task
in the dataset. Let yi denote the measured normalized throughput of program i. The throughput is
the inverse of latency. The throughputs of all programs in a task are normalized to the range of [0,
1], so the best program has a normalized throughput of 1. Let ŷi denote the predicted normalized
throughputs.

• Rooted Mean Square Error (RMSE):
√

1
N

∑N
i=1(yi − ŷi)2.

• Pairwise Comparison Accuracy: C
N ·(N−1)/2 , where C is the number of correct pairs. For

each pair (i, j) where 0 ≤ i < j < N , the pair is correct if (yi ≤ yj ∧ ŷi ≤ ŷj) ∨ (yi >
yj ∧ ŷi > ŷj).

• R2 (Coefficient of Determination): 1−
∑N

i=1(yi−ŷi)
2∑N

i=1(yi−ȳ)2
, where ȳ =

∑N
i=1 yi

N .

• Mean Absolute Percentage Error (MAPE): 100
N

∑N
i=1 |

yi−ŷi

yi
|.

• Top-k Score: Since the ultimate goal of a cost model is to identify the best programs instead
of to accurately predict the latency for each of them, we propose the top-k score metric,
where k is a customized parameter (e.g., 1, 5). The top-k score is

The highest throughput if using the top-k prediction of the cost model
The highest throughput if knowing all labels

=
maxi∈A yi

max0≤i<N yi

15

https://github.com/tlc-pack/tenset
https://github.com/tlc-pack/tenset


, where let A is set of indices of the k programs with the highest predicted throughputs. The
higher the score, the better the model.

For a dataset with M tasks, we can average the metrics for all tasks in a weighted way. The weight of
a task is the number of programs belong to the task.

If we know the M tasks come from a single network, then we can use a special definition of top-k
score. This definition defines top-k score at the neural network level and is better than a simple
weighted average. Let zij be the measured latency of program j in task i. Let Ai be the set of indices
of the k programs with the lowest predicted latencies in task i. Let wi be the number of occurrence
of task i in the network. We can define the top-k score as

The lowest latency if knowing all labels
The lowest latency if using the top-k prediction of the cost model

=

∑
i wi ·max0≤j<Ni

zij∑
i wi ·maxj∈Ai

zij

C Experimental Setup

In all sections, for all models, we use all the listed features in the Appendix B of [48], combined
with a workload embedding generated from an unsupervised whole-graph embedding model, Local
Degree Profile (LDP) [9].

In Sec. 5.1, Model #1 is a XGBoost model trained with Mean Squared Error (MSE) loss, Model #2 is
a MLP model trained with Mean Squared Error (MSE) loss, Model #3 is a MLP model trained with
LambaRank loss.

The hyperparameters of MLP and XGBoost models are listed in Table 7 and Table 8. For LSTM mod-
els, we replace the sum aggregation in MLP with a LSTM layer and keep the same hyperparameters.

For all search-related experiments, we use Azure D32s_v4 for Intel Platinum 8272CL, Azure F16s
for Intel E5-2673 and AWS p2.8xlarge for NVIDIA K80. The training of a model takes about several
GPU hours. We use TVM v0.8dev, LLVM 9 and CUDA 10 for compilation. We use XGBoost 1.2
and PyTorch 1.7 for training models.

Parameter Value
in_dim 324
hidden_dim 256
out_dim 1
learning rate 7e4
num_layers (encoder + decoder) 5

Table 7: Hyperparameters of MLP Models

Parameter Value
max_depth 6
gamma 0.003
min_child_weight 2
eta 0.2

Table 8: Hyperparameters of XGBoost Models

16


	Introduction
	Background: Search-based Compilers with Learned Cost Models
	TenSet: A Dataset for Tensor Programs
	Requirements of the Dataset
	Terminology
	An Illustrative Example of Tensor Programs
	Contents and Data Collection

	Learning and Evaluating a Cost Model in Tensor Compilers
	Learning a Cost Model
	Integration with the Search Algorithm
	Evaluation Metrics

	Experiments
	Evaluation Metrics
	Model Architectures and Loss Functions
	Dataset Size
	Search with a Pre-trained Cost Model
	Transfer Learning
	Optimizing with Additional Random Sampling

	Related Work
	Discussion
	Acknowledgement
	Additional Dataset information
	Definition of Dataset-based Evaluation Metrics
	Experimental Setup



