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Abstract

Many intellectual endeavors require mathematical problem solving, but this skill
remains beyond the capabilities of computers. To measure this ability in machine
learning models, we introduce MATH, a new dataset of 12,500 challenging
competition mathematics problems. Each problem in MATH has a full step-by-step
solution which can be used to teach models to generate answer derivations and
explanations. To facilitate future research and increase accuracy on MATH, we
also contribute a large auxiliary pretraining dataset which helps teach models the
fundamentals of mathematics. Even though we are able to increase accuracy on
MATH, our results show that accuracy remains relatively low, even with enormous
Transformer models. Moreover, we find that simply increasing budgets and model
parameter counts will be impractical for achieving strong mathematical reasoning
if scaling trends continue. While scaling Transformers is automatically solving
most other text-based tasks, scaling is not currently solving MATH. To have more
traction on mathematical problem solving we will likely need new algorithmic
advancements from the broader research community.

1 Introduction

Mathematics is a highly effective tool in many intellectual endeavors. It enables us to count and
quantify objects, and it can be relied upon because it is consistent and based on logic. Mathematics
pervades the sciences and can be used to model planetary orbits, atomic motion, signal frequencies,
and much more. These phenomena can be encoded with mathematics precisely and concisely. This
has even led some to describe mathematics as being “unreasonably effective” (Wigner, 1960). These
observations speak to the broad reach and domain-generality of mathematics.

In machine learning, mathematics is a valuable testbed for problem-solving ability: the ability to
analyze a problem, pick out good heuristics from a large set of possibilities, and chain them together
to produce an answer. This contrasts with plug-and-chug calculations, a skill which ML models
can already exhibit (Henighan et al., 2020). Visual or linguistic reasoning may involve limited
problem-solving ability for tasks such as image classification, but unlike math this is not the focus of
these domains.

To measure the problem-solving ability of machine learning models, we introduce the MATH dataset,
which consists of 12, 500 problems from high school math competitions. Given a problem from
MATH, machine learning models generate a sequence, such as $\frac{2}{3}$, that encodes
the final answer. These answers are unique after normalization, allowing MATH to be scored with
exact match rather than with heuristic metrics such as BLEU. In addition, MATH problems are
tagged by difficulty from 1 to 5, and span seven subjects including geometry, where diagrams
can be specified in text with the Asymptote language. This enables a fine-grained assessment of
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Metamath Theorem Proving
n ∈ N ∧ n+1

2 ∈ N =⇒ ∃m ∈ N : n = 2m+ 1.
GPT-f ’s generated proof:
|- ((N e. NN0 /\ ((N + 1)/2) e.

NN0) -> ((N - 1) / 2) e. NN0)
|- (N e. NN0 -> N e. CC)
|- 1 e. CC
|- ((N e. CC /\ 1 e. CC) ->

(N - 1) e. CC )
...

DeepMind Mathematics Dataset
Divide 1136975704 by -142121963.
A: -8
Let k(u) = u**2+u-4. Find k(0).
A: -4
Sort 2, 4, 0, 6.
A: 0, 2, 4, 6
Solve 4 - 4 - 4 = 188*m for m.
A: -1/47

MATH Dataset (Ours)
Problem: Tom has a red marble, a green marble,
a blue marble, and three identical yellow marbles.
How many different groups of two marbles can
Tom choose?
Solution: There are two cases here: either Tom
chooses two yellow marbles (1 result), or he
chooses two marbles of different colors (
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results). The total number of distinct pairs of
marbles Tom can choose is 1 + 6 = 7 .
Problem: The equation x2 + 2x = i has two
complex solutions. Determine the product of their
real parts.
Solution: Complete the square by adding 1 to
each side. Then (x+ 1)2 = 1 + i = e
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Figure 1: Previous work is based on formal theorem provers or straightforward plug-and-chug
problems. Our dataset, MATH, has competition mathematics problems with step-by-step solutions
written in LATEX and natural language. Models are tasked with generating tokens to construct the final
(boxed) answer.

mathematical problem-solving ability across difficulties and subjects. Finally, problems come with
full step-by-step solutions. By training on these, models can learn to generate their own step-by-step
solutions, which can facilitate learning and make model outputs more interpretable.

The MATH dataset is challenging: large language models achieved accuracies ranging from 3.0%
to 6.9%. Despite these low accuracies, models clearly possess some mathematical knowledge: they
achieve up to 15% accuracy on the easiest difficulty level, and they are able to generate step-by-step
solutions that are coherent and on-topic even when incorrect. We also evaluated humans on MATH,
and found that a computer science PhD student who does not especially like mathematics attained
approximately 40% on MATH, while a three-time IMO gold medalist attained 90%, indicating that
MATH can be challenging for humans as well.

The presence of step-by-step solutions allows models to utilize “scratch space”: rather than having to
generate a final answer immediately, models can first generate solutions that may contain intermediate
computations. Interestingly, we found that having models generate step-by-step solutions before
producing an answer actually decreased accuracy relative to immediately outputting a final answer
without generating solutions, indicating the solutions are currently not useful for models at test time.
In contrast, having models train on solutions increases relative accuracy by 10% compared to training
on the questions and answers directly. We also find that models do better with hints in the form of
partial solutions. Our results show that models can make use of actual step-by-step solutions provided
to them in various ways, but that they are still unable to effectively use their own generated solutions.
Bridging this gap poses an interesting direction for further research.

While MATH covers advanced problem-solving techniques, models may first need to be trained
thoroughly on the fundamentals of mathematics. To address this, we create the first large-scale
mathematics pretraining dataset with hundreds of thousands of step-by-step solutions in natural
language and LATEX. We call this dataset the Auxiliary Mathematics Problems and Solutions (AMPS)
pretraining corpus, which consists of Khan Academy and Mathematica data. AMPS has over 100, 000
Khan Academy problems with step-by-step solutions in LATEX; these exercises are used to teach
human students concepts ranging from basic addition to Stokes’ Theorem. It also contains over
5 million problems generated using Mathematica scripts, based on 100 hand-designed modules
covering topics such as conic sections, div grad and curl, KL divergence, eigenvalues, polyhedra, and
Diophantine equations. In total AMPS contains 23GB of problems and solutions. Pretraining on
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AMPS enables a 0.1 billion parameter model to perform comparably to a fine-tuned model that is
130× larger.

Altogether, while large Transformer models (Vaswani et al., 2017) make some progress on the MATH
dataset, such as by AMPS pretraining or by training with step-by-step solutions, accuracy nonetheless
remains relatively low. While enormous Transformers pretrained on massive datasets can now solve
most existing text-based tasks, this low accuracy indicates that our MATH dataset is distinctly harder.
Accuracy also increases only modestly with model size: assuming a log-linear scaling trend, models
would need around 1035 parameters to achieve 40% accuracy on MATH, which is impractical. Instead,
to make large strides on the MATH dataset with a practical amount of resources, we will need new
algorithmic advancements from the broader research community.

2 Related Work

Neural Theorem Provers. Much of the existing work on machine learning models for mathemati-
cal reasoning relies on automated theorem proving benchmarks. Huang et al. (2019) use the Coq
theorem proving environment to create a machine learning benchmark with 1, 602 theorems and
lemmas. Bansal et al. (2019) introduce the HOList benchmark for automated theorem proving, which
uses a formal language to enable automatic evaluation. Rather than use HOList, Polu and Sutskever
(2020) use the Metamath formalization language for automated theorem proving with promising
results. We show an example of Metamath in Figure 1. These benchmarks can be approached
with seq2seq (Sutskever et al., 2014) Transformers which have traction on the problem (Polu and
Sutskever, 2020; Rabe et al., 2020; Li et al., 2020).

HOList
Auxiliary

HOLStep
Proofs

DeepMind
Math

Symbolic
Integration

MATH
(Ours)
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Figure 2: Compared to existing proof and plug-
and-chug tasks, our mathematical problem solving
task is considerably more challenging. HOList re-
sults are from Wu et al. (2021). HOLStep results
are from Crouse et al. (2019). DeepMind Math ac-
curacy is the median IID accuracy from Henighan
et al. (2020). Symbolic Integration accuracy is
from Lample and Charton (2020).

Rather than prove theorems with standard
pretrained Transformers, McAllester (2020)
proposes that the community create theorem
provers that bootstrap their mathematical capa-
bilities through open-ended self-improvement.
For bootstrapping to be feasible, models will
also need to understand mathematics as humans
write it, as manually converting advanced math-
ematics to a proof generation language is ex-
tremely time-consuming. This is why Szegedy
(2020) argues that working on formal theorem
provers alone will be an impractical path to-
wards world-class mathematical reasoning. We
address Szegedy (2020)’s concern by creating
a dataset to test understanding of mathematics
written in natural language and commonplace
mathematical notation. This also means that the
answers in our dataset can be assessed without
the need for a cumbersome theorem proving en-
vironment, which is another advantage of our
evaluation framework.

Neural Calculators. Recent work shows that
Transformers can sometimes perform laborious
calculations around as well as calculators and
computer algebra systems. Lample and Charton (2020) use Transformers to solve algorithmically
generated symbolic integration problems and achieve greater than 95% accuracy. Amini et al. (2019);
Ling et al. (2017) introduce plug-and-chug multiple choice mathematics problems and focus on
sequence-to-program generation. Saxton et al. (2019) introduce the DeepMind Mathematics dataset,
which consists of algorithmically generated plug-and-chug problems such as addition, list sorting,
and function evaluation, as shown in Figure 1. Recently, Henighan et al. (2020) show that, excluding
problems with astronomically large numbers, the vast majority of the problems in the DeepMind
Mathematics dataset can be straightforwardly solved with large Transformers.

Benchmarks for Enormous Transformers. There are few existing natural language benchmarks
left to solve, as tasks that aggregate multiple subtasks such as SuperGLUE (Wang et al., 2019) are
solved by simply training enormous Transformers (He et al., 2020). Kaplan et al. (2020); Henighan
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Algebra Conic sections, polynomial GCD, De Moivre’s theorem, function inverses, ...
Calculus Arclength, Jacobian, Laplacian, divergence, curl, gradients, integrals, ...
Statistics Expectation, geometric mean, harmonic mean, KL divergence, variance, ...
Geometry Triangle area, triangle inradius, polygon angles, polyhedron diameter, ...
Linear Algebra Characteristic polynomials, eigenvalues, reduced row echelon form, ...
Number Theory Modular inverse, Euler’s totient function, Chinese remainder theorem, ...

Table 1: A subset of the topics covered by our 100 hand-designed Mathematica scripts, which is
part of our Auxiliary Mathematics Problems and Solutions (AMPS) pretraining dataset. Of these
scripts, 37 also generate step-by-step solutions. We generated around 50,000 exercises with each
Mathematica script, or around 5 million problems.

et al. (2020) show that the performance of Transformers predictably increases with an increase in
model size and dataset size, raising the question of whether natural language processing can be solved
by simply increasing compute and funding. Additionally, Chen et al. (2021); Austin et al. (2021) show
that code generation models scale reliably across several orders of magnitude, and, should scaling
continue, Chen et al. (2021)’s HumanEval code generation dataset should be solved in a few orders
of magnitude. In the Supplementary Materials, we even find that large GPT-3 models can perform
remarkably well on a sequence completion test similar to an IQ test, the C-Test (Hernández-Orallo,
1998; Legg and Hutter, 2007). Even difficult logical understanding tasks such as LogiQA (Liu et al.,
2020) will soon be straightforwardly solved by enormous Transformers should trends continue, which
we also show in the Supplementary Materials. Hendrycks et al. (2021) create a multiple-choice
benchmark covering 57 subjects. However, unlike our benchmark, which is a text generation task with
12, 500 mathematical reasoning questions, their benchmark is a multiple choice task that includes
only a few hundred questions about mathematics. In contrast to these benchmarks, we find that our
MATH benchmark is unusually challenging for current models and, if trends continue, simply using
bigger versions of today’s Transformers will not solve our task in the foreseeable future.

3 Datasets

In this section, we introduce two new datasets, one for benchmarking mathematical problem-solving
ability (MATH) and one for pretraining (AMPS).

3.1 The MATH Dataset

The MATH dataset consists of problems from mathematics competitions including the
AMC 10, AMC 12, AIME, and more. Many of these problems can be collected from
aops.com/community/c3158_usa_contests. These competitions span decades and assess the mathe-
matical problem-solving ability of the best young mathematical talent in the United States. Unlike
most prior work, most problems in MATH cannot be solved with a straightforward application of
standard K-12 mathematics tools. Instead, humans often solve such problem by applying problem
solving techniques and “heuristics” (Pólya, 1945).

The Mathematics Aptitude Test of Heuristics dataset, abbreviated MATH, has 12,500 problems
(7,500 training and 5,000 test). With this many training problems, models can learn many useful
heuristics for problem solving. Each problem has a step-by-step solution and a final boxed answer.
Example problems with step-by-step solutions are shown in Figure 1.

Categorizing Problems. Problems span various subjects and difficulties. The seven subjects are
Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry, Intermediate Algebra,
and Precalculus. While subjects like Prealgebra are generally easier than Precalculus, within a subject
problems can take on different difficulty levels. We encode a problem’s difficulty level from ‘1’ to ‘5,’
following AoPS. A subject’s easiest problems for humans are assigned a difficulty level of ‘1,’ and a
subject’s hardest problems are assigned a difficulty level of ‘5.’ Concretely, the first few problems
of an AMC 8 exam are often level 1, while AIME problems are level 5. This allows us to assess
performance across both different subjects and different levels of difficulty.

Formatting. Problems and solutions are consistently formatted using LATEX and the Asymptote
vector graphics language. Our usage of LATEX allows us to flexibly encode mathematical problems
while avoiding unusual symbols or cumbersome formal languages. Meanwhile, mathematical figures
are encoded in the Asymptote language rather than as raster images. This enables pure language
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Model Prealgebra Algebra Number
Theory

Counting &
Probability

Geometry Intermediate
Algebra

Precalculus Average

GPT-2 0.1B 5.2 5.1 5.0 2.8 5.7 6.5 7.3 5.4 +0%

GPT-2 0.3B 6.7 6.6 5.5 3.8 6.9 6.0 7.1 6.2 +15%

GPT-2 0.7B 6.9 6.1 5.5 5.1 8.2 5.8 7.7 6.4 +19%

GPT-2 1.5B 8.3 6.2 4.8 5.4 8.7 6.1 8.8 6.9 +28%

GPT-3 13B* 4.1 2.4 3.3 4.5 1.0 3.2 2.0 3.0 −44%

GPT-3 13B 6.8 5.3 5.5 4.1 7.1 4.7 5.8 5.6 +4%

GPT-3 175B* 7.7 6.0 4.4 4.7 3.1 4.4 4.0 5.2 −4%

Table 2: MATH accuracies across subjects. ‘*’ indicates that the model is a few-shot model. The
character ‘B’ denotes the number of parameters in billions. The gray text indicates the relative
improvement over the 0.1B baseline. All GPT-2 models pretrain on AMPS, and all values are
percentages. GPT-3 models do not pretrain on AMPS due to API limits. Model accuracy is increasing
very slowly, so much future research is needed.

models to process figures, diagrams, and graphics, making it possible to assess these models on
subjects such as geometry for the first time.

To assess models using exact match, we force the final boxed answers to follow consistent formatting
rules. Specifically, probabilities are expressed as simplified fractions. Moreover, matrix entry fractions
are encoded with x/y, while all other fractions are consistently encoded with the \frac{x}{y}
command. Coefficients are encoded without a multiplication symbol (e.g. 5x not 5*x). Expressions
with multiple variables are entered in alphabetical order; polynomials are expressed in decreasing
degree order. Different fraction encodings equivalent, such as \frac{x}{y} and \dfrac{x}{y}
and x/y. Different parenthesis encodings, such as \left( and (, are treated as equivalent.

We also allow units to be included or omitted from an answer, we ignore spaces, and we treat
common equivalent ways of expressing the same number (e.g., 0.5 and 1/2, or 0.1 and .1) as the
same. When the answer is a factorized polynomial, we permit different orderings of the factors, so
that 4(x+ 1)(x− 1) is equivalent to 4(x− 1)(x+ 1), and so on. These rules cover nearly all ways
that different generated or actual solutions can be equivalent in practice.

Automatically Assessing Generated Answers. Due to design choices in MATH, we can assess
the answers generated by a model automatically, even though the space of model outputs is combi-
natorially large. Automatic assessment starts by determining the beginning and end of the answer.
This is possible to do even if a model generates step-by-step solutions because the final answers in
MATH are wrapped and delimited with the \boxed{} command. We can consequently evaluate
a model’s output by parsing what is inside the \boxed{} command and comparing that with the
ground truth answer, while accounting for the equivalent ways of formatting a string described above.
Together, the box delimiter and formatting rules provide a unique answer in a well-defined location,
which allows us to test for equivalence and use accuracy as our primary metric.

Human-Level Performance. To provide a rough but informative comparison to human-level
performance, we randomly sampled 20 problems from the MATH test set and gave them to humans.
We artificially require that the participants have 1 hour to work on the problems and must perform
calculations by hand. All participants are university students. One participant who does not like
mathematics got 8/20 = 40% correct. A participant ambivalent toward mathematics got 13/20. Two
participants who like mathematics got 14/20 and 15/20. A participant who got a perfect score on
the AMC 10 exam and attended USAMO several times got 18/20. A three-time IMO gold medalist
got 18/20 = 90%, though missed questions were exclusively due to small errors of arithmetic.
Expert-level performance is theoretically 100% given enough time. Even 40% would accuracy for a
machine learning model would be impressive but have ramifications for cheating on homework.

3.2 AMPS (Khan + Mathematica) Dataset

Since pretraining data can greatly influence performance (Hernandez et al., 2021; Gururangan et al.,
2020) and since mathematics is a small fraction of online text, we introduce a large and diverse
mathematics pretraining corpus. Our pretraining dataset, the Auxiliary Mathematics Problems and
Solutions (AMPS) dataset, has problems and step-by-step solutions typeset in LATEX. AMPS contains
over 100,000 problems pulled from Khan Academy and approximately 5 million problems generated
from manually designed Mathematica scripts.
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Khan Academy. The Khan Academy subset of AMPS has 693 exercise types with over 100,000
problems and full solutions. Problem types range from elementary mathematics (e.g. addition)
to multivariable calculus (e.g. Stokes’ theorem), and are used to teach actual K-12 students. The
exercises can be regenerated using code from github.com/Khan/khan-exercises/. We show the full list
of problem types in the Supplementary Materials.

Mathematica. To make AMPS larger, we also contribute our own Mathematica scripts to generate
approximately 50× more problems than our Khan Academy dataset. With Mathematica, we designed
100 scripts that test distinct mathematics concepts, 37 of which include full step-by-step LATEX
solutions in addition to final answers. We generated around 50,000 exercises from each of our scripts,
or around 5 million problems in total. This results in over 23 GB of mathematics problems, making it
larger than the 16 GB of natural language used to train BERT (Devlin et al., 2019).

Problems include various aspects of algebra, calculus, counting and statistics, geometry, linear algebra,
and number theory (see Table 1 for a sampling of topics). Unlike prior approaches to algorithmically
generating mathematics problems, we use Mathematica’s computer algebra system so that we can
manipulate fractions, transcendental numbers, and analytic functions.

4 Experiments

In this section, we perform experiments to investigate performance on the MATH dataset. We find
that accuracy remains low even for the best models. Furthermore, unlike for most other text-based
datasets, we find that accuracy is increasing very slowly with model size. If trends continue, then we
will need algorithmic improvements, rather than just scale, to make substantial progress on MATH.
Nevertheless, we show that making progress is also possible today. We find that pretraining on AMPS
enables a small 0.1B parameter model to perform similarly to a large fine-tuned 13B parameter
model.

We also experiment with using step-by-step solutions. We find that having models generate their
own step-by-step solutions before producing an answer actually degrades accuracy. We qualitatively
assess these generated solutions and find that while many steps remain illogical, they are often related
to the question. Finally, we show that step-by-step solutions can still provide benefits today. We
find that providing partial ground truth step-by-step solutions can improve performance, and that
providing models with step-by-step solutions at training time also increases accuracy.

4.1 Experimental Setup

Models and Hyperparameters. Because MATH answers must be generated, we use autoregressive
language models, namely GPT-2 (Radford et al., 2016) and GPT-3 (Brown et al., 2020), which are
decoder models pretrained on natural language text. Our GPT-2 models tokenizes numbers so that
one digit is processed at a time (Henighan et al., 2020). T5’s (Raffel et al., 2020) tokenizer removes
many LATEX symbols, so after a broad hyperparameter sweep lasting two weeks, its performance was
not competitive. We show results with the BART architecture in the Appendix.

Before fine-tuning on MATH, models pretrain on AMPS. We pretrain for one epoch, using AdamW
(Loshchilov and Hutter, 2019), using a batch size of 128, and using a weight decay of 0.05. We use
the standard autoregressive language modeling objective. During pretraining, we upsample Khan
Academy data by a factor of 5 and we downsample Mathematica by a factor of 2 to account for the
large difference in dataset sizes.

During fine-tuning, models predict final answers and solutions. Concretely, if 〈P 〉 is the problem
statement, we train with an equal mix of “〈P 〉 Final Answer: <Answer>” and “〈P 〉 Full
Solution: <Step-by-Step Solution>” sequences. This makes it possible for the model
to both generate full solutions and also to output just the final answer. For fine-tuning we use the
same batch size and weight decay as in pretraining. Models are trained with 8 A100 GPUs, each
requiring less than a day.

Unless otherwise specified, for GPT-2 we use the default HuggingFace (Wolf et al., 2020) generation
parameters, except that we use beam search. Our beam search has a beam size of 20 when only
generating the final answer, and a beam size of 10 when generating full step-by-step solutions. By
default, we evaluate models by prompting them with “〈P 〉 Final Answer:” so that they directly
generate the final answer to each problem, not the step-by-step solution.
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Problem: Suppose a and b are positive real numbers with a > b and ab = 8. Find the minimum
value of a

2+b2

a−b .

Generated solution: Let s = a + b. By QM-AM,
√

a2+b2

a−b ≥
a+b
2 = s

2 . Then a2+b2

a−b ≥
s2

4 , so

a2 + b2 ≥ s2

2 . Hence, a
2+b2

a−b ≥
s2

2 + 2s2

a−b = s2

2 + 2s2 = 8 .

Ground truth solution: We can write a2+b2

a−b = a2+b2−2ab+16
a−b = (a−b)2+16

a−b = a − b + 16
a−b . By

AM-GM, a− b+ 16
a−b ≥ 2

√
(a− b) · 16

a−b = 8. Equality occurs when a− b = 4 and ab = 8. We

can solve these equations to find a = 2
√

3 + 2 and b = 2
√

3− 2. Thus, the minimum value is 8 .

Problem: Right ∆ABC has legs measuring 8 cm and 15 cm. The triangle is rotated about one of
its legs. What is the number of cubic centimeters in the maximum possible volume of the resulting
solid? Express your answer in terms of π.
Generated solution: Rotating the triangle about one leg gives us the following triangle:

8

15
(8)(15)

(8)(−1) + (15)(−1)
=

120

7
= 120π .

Ground truth solution: If the triangle is rotated about the shorter leg, then the radius is the longer
leg and the height is the shorter leg, and the volume is 1

3 · (152π)(8) = 600π cubic centimeters. If the
triangle is rotated about the longer leg, then the radius is the shorter leg and the height is the longer
leg, and the volume is 1

3 (82π)(15), which is 8
15 of the volume we found earlier. So, the maximum

possible volume is 600π cubic centimeters.

Figure 3: Problems, step-by-step solutions generated by our GPT-2 1.5B model, and ground truth
solutions. Observe that models can provide the right answer yet generate a misleading and wrong
explanation. The second generated solution demonstrates that models are capable of generating
Asymptote commands to create figures and graphics.

We also evaluate GPT-3 with fine-tuning and also in a few-shot setting using the OpenAI API. We use
the ‘Curie’ GPT-3 model which has approximately 13 billion parameters, and the ‘Davinci’ model
which has approximately 175 billion parameters. When performing few-shot evaluation, we construct
our prompt by prepending 8 problems with correct answers (but not step-by-step solutions due to
space). Using temperature 0, models output up to 20 tokens for the final answer. The OpenAI API
also allows users to fine-tune models up to 13B parameters at the time of writing, but their API does
not have the option to pretrain on datasets as large as AMPS.

4.2 Analyzing Model Performance

AMPS Pretraining. As an ablation, we test how models with AMPS pretraining compare with
models that were not pretrained on AMPS. Without pretraining on AMPS, a GPT-3 (13B) model
fine-tuned on MATH attains 5.2% accuracy. In contrast, a GPT-2 (0.1B) model both pretrained on
AMPS and fine-tuned on MATH attains 5.4%. Consequently AMPS increases accuracy about as
much as a 130× increase in parameters, demonstrating its value as a pretraining dataset.

We additionally tried pretraining on StackExchange, a real-world but less curated source of mathe-
matics text. A GPT-2 (0.3B) model pretrained on both AMPS and questions and answers from Math
StackExchange (∼3 GB) had 6.0% accuracy. This is actually less than the 6.2% accuracy attained
by pretraining on AMPS alone. Thus our dataset is more useful for pretraining even than diverse
real-world mathematics data.

Model Size. While increasing model parameters often automatically solves many tasks (Brown
et al., 2020), we find that MATH is unusually challenging for enormous Transformers. Table 2 shows
that the average accuracy across subjects for the smallest model, GPT-2 with 0.1 billion parameters, is
5.4%. Meanwhile, a GPT-2 model with 15× the number of parameters attains 6.9% accuracy, a 28%
relative improvement. This indicates that while having more parameters helps, absolute accuracy
remains far from the ceiling and is only increasing slowly, quite unlike most other text-based tasks.
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Problem: The three-digit number "ab5” is divisible by 3. How many different three-digit numbers
can "ab5” represent?
Generated solution: A number is divisible by 3 if and only if the sum of its digits is divisible by 3.
So ab5′′ is divisible by 3 if and only if the two-digit number ab leaves a remainder of 1 when divided
by 3. There are 90 two-digit numbers, of which 90/3 = 30 leave a remainder of 1 when divided by
3.
Ground truth solution: If the number is divisible by 3, the sum of the digits must be divisible by 3.
So a + b must be one more than a multiple of 3, since 5 is one less than a multiple of 3. We have
several options: If a+ b = 1, it must be (1, 0), one possibility. For a+ b = 4, a can be 1 to 4, for four
possibilities. For a+ b = 7, a can be 1 to 7, so seven possibilities. For a+ b = 10, anything from
(1, 9) to (9, 1) works, so nine possibilities. For a+ b = 13, the pairs range from (4, 9) to (9, 4), for
six possibilities. If a+ b = 16, we can have (7, 9), (8, 8), or (9, 7), so three possibilities. a+ b = 19

and up is not possible. So the total number is 1 + 4 + 7 + 9 + 6 + 3 = 30

Problem: Beginning at point A in the diagram, Dora selects one of the four possible
directions with equal probability. Each time she comes to an intersection, she again
randomly selects one of the possible directions. What is the probability that, in her first
four steps, she will walk completely around the gray square? Express your answer as a
common fraction.

A

Generated solution: The total probability that Dora chooses a direction completely around the gray

square is 5
10 =

1

2
.

Ground truth solution: The only way for the Dora to end up at her starting point in four steps
is for her to traverse the four sides of the gray square. She can do this in two ways: clockwise
and counterclockwise. The probability of each of these two paths is

(
1
4

)4
= 1

256 . Therefore, the

probability that she ends up where she started is
1

256
+

1

256
=

1

128
.

Figure 4: Additional example problems, generated solutions, and ground truth solutions from our
MATH dataset. The first problem’s generated solution has the right answer with a correct and simple
explanation. The second problem is a combinatorics problem specified with a figure, which the
model gets wrong.

Problem Difficulty. We also analyze model accuracy while controlling for problem difficulty.
Higher levels of difficulty correspond to lower accuracy, as expected. These results are visualized in
the Supplementary Materials. The accuracy of GPT-2 (1.5B) is around 15% for level 1 (easy) and
around 4% for level 5 (hard). Even our benchmark’s easiest problems are more challenging than
previous benchmarks that focused on straightforward plug-and-chug problems.

Error Detection. To determine whether we can trust the answers from a model, we analyze model
confidence to see whether confidence tends to be higher for correct answers. We define confidence as
the average prediction probability of the tokens that make up a generated answer. GPT-2 (1.5B) is
highly overconfident, with confidences that are often around 100%. Moreover, there is substantial
overlap between correct and incorrect answers. Following Hendrycks and Gimpel (2017), we
computed the probability that a correct answer has higher confidence than an incorrect answer. To
do this, we compute the Area Under the Receiver Operating Characteristic curve (AUROC). An
AUROC of 100% corresponds to being able to perfectly detect correct and incorrect answers, while
50% corresponds to random chance. We find that with GPT-2 (1.5B), the AUROC is quite low at
68.8%. This suggests there is substantial room for improvement in detecting model errors.

4.3 Analyzing Step-by-Step Solutions

Scratch Space. Our MATH dataset and AMPS pretraining dataset provide full step-by-step solu-
tions, an important and rare type of side information (Murty et al., 2020) that can in principle teach
models how to derive answers and use scratch space. By training a language model on these solutions,
we can have models generate full step-by-step solutions. This may be especially useful for difficult
problems, for which outputting the correct answer after just a few forward passes may be insufficient.
By allowing the model to use several steps of processing before outputting a final answer, the model
could adaptively use computation and have higher performance, in addition to making its reasoning
more interpretable.
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Figure 5: Models conditioned on most of a problem’s
step-by-step solution can often understand the solution to
predict the final answer. Not all solutions have an answer
that is immediate from the preceding solution text, though
many are. ‘99%’ of a solution is all the solution text be-
fore the final answer. This demonstrates that, even with
substantial help, models are still struggling.

We test this by prompting models with
“〈P 〉 Full Solution:” to gener-
ate a full solution along with a final
boxed answer, rather than the boxed an-
swer alone. We evaluated this for GPT-
2 (1.5B) and found that this actually
makes performance worse, dropping ac-
curacy to 5.3%. We hypothesize that
the drop in accuracy from using scratch
space arises from a snowballing effect,
in which partially generated “solutions”
with mistakes can derail subsequent gen-
erated text. Nevertheless, when genera-
tion becomes more reliable and models
no longer confuse themselves by their
own generations, our dataset’s solutions
could in principle teach models to use
scratch space and attain higher accuracy.

Examples. We can also qualitatively
assess the step-by-step solutions that the
model generates. We show examples of
generated solutions in Figures 3 and 4.
We find that the model can consistently
generate correct LATEX and often per-
forms steps that appear related to the
question at hand, but still makes many
logical mistakes, both in terms of what
the question seems to be asking and in individual steps that are part of a larger derivation.

The Benefits of MATH Solutions. We find that giving models partial step-by-step MATH solutions
during inference can improve accuracy. We test performance when we allow models to predict the
final answer given a “hint” in the form of a portion of the ground truth step-by-step solution. To do
so, for this experiment we prompt models with “〈P 〉 <Partial Step-by-Step Solution
without Final Answer> Final Answer:” during both fine-tuning and evaluation for
different partial fractions of the step-by-step solution. This is the same as the default setting when
we let models see 0% of the step-by-step solution. When models see “99%” of the solution, they
are given the whole step-by-step solution except for the final answer. We show results with GPT-2
(0.7B) for different fractions of the solution in Figure 5. Observe that the model still only attains
approximately 40% when given 99% of the solution, indicating room for improvement.

Finally, we also find that providing models with step-by-step during training can further improve
performance. We run an ablation by fine-tuning models on MATH with the same setup as before,
except that we only show examples with the final answer and no step-by-step solution. If we fine-tune
with only the final answer, the GPT-2 (1.5B) accuracy decreases by 0.6% to 6.3%.

5 Conclusion

In this paper, we laid groundwork for future research in machine learning for mathematical problem
solving. We introduced the MATH benchmark, which enables the community to measure mathe-
matical problem-solving ability. In addition to having answers, all MATH problems also include
answer explanations, which models can learn from to generate their own step-by-step solutions. We
also introduce AMPS, a diverse pretraining corpus that can enable future models to learn virtually
all of K-12 mathematics. While most other text-based tasks are already nearly solved by enormous
Transformers, MATH is notably different. We showed that accuracy is slowly increasing and, if trends
continue, the community will need to discover conceptual and algorithmic breakthroughs to attain
strong performance on MATH. Given the broad reach and applicability of mathematics, solving the
MATH dataset with machine learning would be of profound practical and intellectual significance.
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