
A Key Information about OGB-LSC

Dataset documentation. All of our datasets as well as how to use them through our Python package
are documented at https://ogb.stanford.edu/kddcup2021/. Our baseline code to repro-
duce all the results for each dataset is available at https://github.com/snap-stanford/
ogb/tree/master/examples/lsc.

Intended use. OGB-LSC is intended for machine learning and data scientists to develop ML
models to tackle the challenge of large-scale graph ML.

Relevant URLs. OGB-LSC maintains the following:

• Official website (https://ogb.stanford.edu/kddcup2021/) is the main refer-
ence of OGB-LSC. It provides an overview of the OGB-LSC, descriptions of the datasets
as well as detailed documentations of how to use the datasets through the OGB Python
package. The subpage (https://ogb.stanford.edu/kddcup2021/results/)
also contains the leaderboards during the KDD Cup 2021 as well as the technical reports
and code provided by the winners.

• Github repository (https://github.com/snap-stanford/ogb) hosts the
source code for the OGB Python package. OGB-LSC datasets and evaluation are all
managed by the Python package. We also release all the baseline code that we used in our
experiments.

• Datasets are extremely large (around 300GB in total) and are hosted under AWS with the
help of the DGL Team. Our users do not need to directly interact with the URL, as the
dataset download and processing are all managed by our Python package.

• Mailing list (https://groups.google.com/g/open-graph-benchmark) is
used for making any announcements about OGB/OGB-LSC.

Hosting and maintenance plan. OGB-LSC’s Python package is hosted and version-tracked via
Github. All the datasets are hosted under the AWS with the help of the DGL Team. We design the
Python package to handle downloading and processing of the datasets. OGB is a community-driven
initiative that has been actively maintained by our team members.

Licensing. The OGB Python package uses the MIT license. Each dataset has its own license.
Specifically, MAG240M uses ODC-BY, WikiKG90M uses CC-0, and PCQM4M uses CC BY 4.0.

Author statement. We bear all responsibility in case of violation of rights, etc., and confirmation
of the data license.

Computing resources. We ran all the experiments on a server with 10 GeForce RTX 2080 GPUs
and an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz.

Limitations. Large-scale graph ML has a wide variety of application domains and there are
representative graphs that we cannot cover in the current OGB-LSC datasets. Examples include
large-scale recommender systems, social networks, and financial networks. These graphs are hard to
obtain due to privacy and cooperative concerns, but we hope to include these realistic large graphs
in the future if we have a chance. That being said, it is our hope that many methodological insights
on our large graphs (training strategy, GNN architecture, regularization, etc) still transfer well to a
variety of large-scale graphs. We leave the thorough investigation to future work.

Potential negative social impacts. All of our datasets are derived from practically-relevant tasks
in the real world; hence, developing models and deploying them to the real-world could potentially
produce predictions that are influenced by the bias in the datasets. For example, regarding the
MAG240M dataset, we may use the resulting paper and author embeddings to perform a variety of
downstream ML tasks such as searching for similar papers or recommending author collaboration
and paper citations. Thus, it is critical to ensure there is no undesirable bias in the embeddings. There
could be also misuse of highly accurate ML models. For instance, regarding the PCQM4M dataset, we
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Table 8: Basic graph statistics of the OGB-LSC datasets. The last three graph statistics are
calculated over the ‘standardized’ graphs, where the graphs are first converted into undirected and
unlabeled homogeneous graphs with duplicated edges removed. The SNAP library (Leskovec
and Sosič, 2016) is then used to compute the graph statistics. MAG240M (homo) represents the
homogenized MAG240M graph with only paper nodes and citation links. Some graph statistics were
omitted due to their high computational cost (the calculation did not complete in two weeks).

Model #Graphs Avg #nodes Avg #edges Avg deg Avg clust. coeff. Avg diameter

MAG240M 1 244,160,499 1,728,364,232 14.15 0.033 —
MAG240M (homo) 1 121,751,666 1,297,748,926 21.30 0.031 —
WikiKG90M 1 87,143,637 504,220,369 10.93 — —
WikiKG90Mv2 1 91,230,610 601,062,811 12.59 — —
PCQM4M 3,803,453 14.15 14.57 2.05 0.010 7.96
PCQM4Mv2 3,746,619 14.14 14.56 2.05 0.011 7.95

need to make sure that the trained molecular property predictor is used in the right way to develop
useful drugs/materials rather than harmful ones.

B Basic Graph Statistics of the Datasets

The basic graph statistics of the OGB-LSC datasets are provided in Table 8.

C Details about Dataset Updates after the KDD Cup 2021

MAG240M updates. The MAG240M dataset itself has not been changed. The only update is on the
test set. In Table 8, we report the test-dev accuracy of all the models.

WikiKG90Mv2 updates. The WikiKG90M dataset has been updated to WikiKG90Mv2. Below
we summarize the updates we have applied to the dataset.

• No candidate tails provided. The most important update is that we do not provide any
candidate tail entities for validation/test triples. Hence, a model needs to predict the target
tail entity out of all the entities in Wikidata.

• Created from more recent Wikidata. The WikiKG90Mv2 is based on the public Wiki-
data dump downloaded at three time-stamps: May 17th, June 7th, and June 28th of 2021, for
training, validation, and testing, respectively. We retain all the entities and relations in the
September dump, resulting in 91,230,610 entities, 1,387 relations, and 601,062,811 triplets
in total.

• A better text encoder used. The text features of WikiKG90Mv2 are obtained by using
MPNet (Reimers and Gurevych, 2019; Song et al., 2020), which is shown to be significantly
better sentence encoder (Reimers and Gurevych, 2019).

• Balancing relation types in validation/test triples. On the new Wikidata dumps, we found
the relation types of the raw validation/test triples are highly-skewed; the most frequent
relation, “cites work (P2860)”, occupies 60% and 85% of the entire validation and test
triples, respectively. To test a model’s capability to perform well across all types of relations,
we subsample 15,000 triples from the entire validation/test triples such that the resulting
relation counts are proportional to the cubic-root of the original relation counts.

In Table 10, we show head entities that have very sparse connection in the training KG. We see that
textual features could provide important signals for predicting these triples.

We perform an extensive baseline analysis on WikiKG90Mv2. We used the same set of
hyper-parameters and baseline models as our original WikiKG90M. Different from WikiKG90M,
WikiKG90Mv2 does not provide any candidate tail entities. A naı̈vely approach is to use the entire
entities as the tail candidates. However, this approach does not scale well to a KG with nearly 90M
entities because we need to predict scores for all the 90M entities for every triple. Nonetheless, in
practice, most of the entities are obvious negatives: e.g., for the relation type “is located in”, any
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entities that are not locations can be easily filtered out as negatives. Based on the the above intuition,
we consider the relation-specific tail candidate sets. Specifically, on training triples, we pre-compute
20K most frequent tail entities for each relation and treat them as candidate tail entities for that
relation. At inference time, we use our KG model to score among those relation-specific candidates.

The results are provided in Table 10. Overall, we observe that the relative trends are similar to the
original WikiKG90Mv2. Especially the CONCAT encoder provides the best MRR performance.
Different from WikiKG90M, the MRR score on the new WikiKG90Mv2 is far perfect score of 1
and leaves a lot of room for improvement. Overall, we believe it is promising to explore how to
quickly generate a small number of high-quality candidate tail entities out of all the entities so that
KG models only need to score a much fewer number of candidate entities.

PCQM4Mv2 updates. The PCQM4M dataset has been updated to PCQM4Mv2. Below we summarize
the updates we have applied to the dataset.

• 3D molecular structures provided. We additionally provide 3D structures for training
molecules. These structures are calculated by DFT and are obtained together with the
HOMO-LUMO gap.

• SMILES strings are partly updated. In the process of preparing the 3D structures, we
found a subtle mismatch between SMILES strings (i.e., 2D molecular graphs) and the
HOMO-LUMO gap for about 10% of the entire molecules. Specifically, the SMILES
strings can be changed in the course of DFT’s geometry optimization, but in PCQM4M, we
provided the initial SMILES strings. In the updated PCQM4Mv2, we provide SMILES
strings corresponding to the final optimized 3D structures. Note that the HOMO-LUMO
gap was calculated by DFT based on the final 3D structures (Nakata and Shimazaki, 2017);
hence, it makes more sense to correspond the HOMO-LUMO gap with the SMILES string
associated with the final 3D structures.

• Number of molecules decreased slightly. As a result of the SMILES update, some
molecules can no longer be parsed by the commonly-used chemistry toolkit, i.e.,
rdkit (Landrum et al., 2006). As a result, the total number of molecules has been
slightly reduced to 3,746,619.

• Split ratio changed. For PCQM4Mv2, we set the split ratio for train/validation/test-dev/test-
challenge to 90/2/4/4. The split is still done by PubChem compound ID so that there is no
test label leakage, i.e., all the test molecules in PCQM4Mv2 is in the test split of PCQM4M.

Similar to PCQM4M, we also provide our baseline analysis on the updated PCQM4Mv2 dataset. At
inference time, we clamped the output values to be between 0 and 20, which prevents our models
from predicting erroneous values for some test molecules. We show the results in Tables 12 and
13. We found that all the models were able to achieve lower MAE compared to PCQM4M, probably
because we have fixed the mismatch bug described above. Beyond the overall better MAE, we see
that the trend in model performance is mostly preserved; larger and more expressive GNN models
achieve better results. For the GNNs, we observe that the depth helps more than width. Interestingly,
too-wide models often make unstable prediction on validation molecules.
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Table 9: Results of MAG240Mmeasured by the
accuracy (%). R-GRAPHSAGE/-GAT utilize
the full heterogeneous graph information, while
the other models operate on the homogeneous
paper citation graph. Test accuracy is evaluated
on the test-dev set.

Model #Params Validation Test-dev

MLP 0.5M 52.67 52.76
LABELPROP 0 58.44 56.38
SGC 0.7M 65.82 65.30
SIGN 3.8M 66.64 66.03
MLP+C&S 0.5M 66.98 66.05
GRAPHSAGE (NS) 4.9M 66.79 66.21
GAT (NS) 4.9M 67.15 66.71

R-GRAPHSAGE (NS) 12.2M 69.86 68.78
R-GAT (NS) 12.3M 70.02 69.31

KDD 1ST: BD-PGL Ensemble 75.39
KDD 2ND: ACADEMIC Ensemble 75.07
KDD 3RD: SYNERISE AI Ensemble 74.57

Table 10: Textual representation of validation
triplets whose head entities only appear once
as head in the training WikiKG90Mv2.

Head Relation Tail

Herbert Hoover’s Inaugural Address country United States of America
Jussi Award for Best Sound Recording instance of class of award
organ dose calculated from absorbed dose
British Endurance Racing Team country United Kingdom
Knee bursae anatomical location knee
Churches in Dekanat Leuchtenberg is a list of church building
web content management system model item workflow management system
Stephan von Divonne given name Stephan
Minecraft mod depends on software Minecraft
beer pouring uses beer engine

Table 11: Results of WikiKG90Mv2 mea-
sured by the Mean Reciprocal Rank (MRR).

Model #Params Validation Test-dev

TRANSE-SHALLOW 18.2B 0.1103 0.0824
COMPLEX-SHALLOW 18.2B 0.1150 0.0985
TRANSE-MPNET 0.3M 0.1128 0.0860
COMPLEX-MPNET 0.3M 0.1258 0.0988
TRANSE-CONCAT 18.2B 0.2060 0.1761
COMPLEX-CONCAT 18.2B 0.2048 0.1761

Table 12: Results of PCQM4Mv2 measured by
MAE [eV]. The lower, the better. Ablation study
of using only 10% of training data is also shown.
Chemical accuracy indicates the final goal for prac-
tical usefulness.

Model #Params Validation Test-dev

MLP-FINGERPRINT 16.1M 0.1753 0.1760
GCN 2.0M 0.1379 0.1398
GCN-VIRTUAL 4.9M 0.1153 0.1152
GIN 3.8M 0.1195 0.1218
GIN-VIRTUAL 6.7M 0.1083 0.1084

MLP-FINGERPRINT (10% train) 16.1M 0.2429 0.2445
GIN-VIRTUAL (10% train) 6.7M 0.1442 0.1446

Chemical accuracy (goal) – 0.0430

Table 13: Model size and the MAE perfor-
mance [eV]. For both models, the width in-
dicates the hidden dimensionality. For GIN-
VIRTUAL, the depth represents the number of
GNN layers, while for the MLP-FINGERPRINT,
the depth represents the the number of hidden
layers in MLP.

Model Width Depth #Params Validation

MLP-FINGERPRINT

1600 6 16.1M 0.1753
1600 4 11.0M 0.1752
1600 2 5.8M 0.1954
1200 6 9.7M 0.1804

GIN-VIRTUAL

600 5 6.7M 0.1083
600 3 3.7M 0.1239
300 5 1.7M 0.1100
300 3 1.0M 0.1181
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