RedCaps: Web-curated image-text data
created by the people, for the people

Karan Desai Gaurav Kaul Zubin Aysola Justin Johnson
University of Michigan
{kdexd,kaulg,aysola,justincj}@umich.edu
https://redcaps.xyz

Abstract

Large datasets of paired images and text have become increasingly popular for learning generic representations for vision and vision-and-language tasks. Such datasets have been built by querying search engines or collecting HTML alt-text – since web data is noisy, they require complex filtering pipelines to maintain quality. We explore alternate data sources to collect high quality data with minimal filtering.

We introduce RedCaps – a large-scale dataset of 12M image-text pairs collected from Reddit. Images and captions from Reddit depict and describe a wide variety of objects and scenes. We collect data from a manually curated set of subreddits, which give coarse image labels and allow us to steer the dataset composition without labeling individual instances. We show that captioning models trained on RedCaps produce rich and varied captions preferred by humans, and learn visual representations that transfer to many downstream tasks.

1 Introduction

Figure 1: RedCaps dataset comprises 12M image-text pairs from 350 subreddits. RedCaps data is created by the people, for the people – it contains everyday things that users like to share on social media, for example hobbies (r/crafts) and pets (r/shiba). Captions often contain specific and fine-grained descriptions (northern cardinal, taj mahal). Subreddit names provide relevant image labels (r/shiba) even when captions may not (mlem!), and sometimes may group many visually unrelated images through a common semantic meaning (r/perfectfit).

Large datasets of image-text pairs from the web have enabled successful transfer learning applications in computer vision. Two such prominent datasets – SBU [1] and Conceptual Captions [2] – are widely used for pre-training vision-and-language (V&L) representations [3–11] that transfer to a variety of downstream V&L tasks like visual question answering [12–14], visual reasoning [15, 16], and image captioning [17, 18]. Recent work [19, 20] also shows that image-text data from COCO [17] can be used to learn visual features that are competitive with supervised pretraining [21] on ImageNet [22, 23] when transferred to downstream tasks [24–28]. More recently, CLIP [29] and ALIGN [30] scale up to 400M and 1B+ web-curated image-text pairs, enabling zero-shot visual recognition.
These datasets have an appealing advantage – they are free from expensive annotations. However, they apply complex filtering steps to deal with noisy web data. For example, Conceptual Captions (CC-3M [2], CC-12M [31]) discard captions without nouns, or whose nouns do not match with image labels predicted by in-house image taggers. They also perform text pre-processing like replacing proper nouns with common nouns. These pipelines are data-inefficient – for example, CC-3M collected 5B image-text pairs and filtered them down to 3.3M. CLIP and ALIGN scale primarily by relaxing such filtering, resulting in gargantuan datasets which could be extremely noisy.

How can we obtain high-quality image-text data from the web without complex data filtering? We argue that the quality of data depends on its source and the intent behind its creation. Revisiting data sources, SBU query Flickr with predefined keywords while CC-3M and CC-12M extract images and HTML alt-text from an unspecified set of web pages; CLIP and ALIGN give only vague descriptions of their data sources, and their datasets are non-public. In these sources, text is secondary to images: Flickr focuses on photos, and alt-text is an oft-overlooked fallback when images cannot be viewed that frequently contains metadata or generic text (e.g. “alt img” [30]). To obtain higher-quality data, we look for sources where humans use both images and text equally for interaction on the web.

In this paper, we explore the Reddit [32] social media platform for collecting image-text pairs. Textual data from Reddit is already used for pre-training massive language models [33–36] in NLP. We collect images and their captions as submitted by Reddit users in topic-specific subreddits. Our dataset of image captions from Reddit (RedCaps in short) consists of 12M image-text pairs submitted in 350 subreddits between 2008–2020. RedCaps data is created by the people, for the people to engage with the broader community. Figure 1 shows some examples from RedCaps – the captions are more conversational, humorous, emotional, and generally more diverse than HTML alt-text.

Apart from linguistic diversity, Reddit offers many other advantages. Subreddits provide additional image labels and group related content – manually selecting subreddits allows us to steer dataset contents without labeling individual instances. Reddit’s voting system gives free and organic quality control: unappealing or spam content is actively downvoted by users or removed by moderators. RedCaps is one of the largest public image-text datasets, but it is not static: we plan to release regular updates with newly uploaded Reddit content, allowing RedCaps to grow over time.

We claim that captions written with the intent of human interaction on Reddit are a better source of data than used in other image-text datasets. To this end, we follow VirTex [19] to learn visual representations by training image captioning models from scratch. We find that human evaluators prefer captioning outputs from models trained on RedCaps vs CC-3M. We also transfer the learned features to eleven different downstream datasets for tasks including image classification, object detection, instance segmentation, and fine-grained recognition using both fine-tuning and language-based zero-shot classification [29]. We show that features learned on RedCaps outperform those learned on SBU or CC-3M, demonstrating the utility of our data collection strategy.

2 RedCaps: Collecting image-text pairs from Reddit

Reddit is the singular data source for RedCaps. This leads to a very different data collection pipeline than datasets based on HTML alt-text or search engine results. Here we describe how we collect RedCaps.

Overview of Reddit: Reddit is a social media platform for content sharing and discussion. It comprises user-run communities called subreddits that cover diverse topics like animals (r/cats, r/foxes), food (r/pizza, r/sushi), leisure (r/hiking, r/crafts), and utility (r/ceramics, r/tools). Users can submit new posts or share existing posts from other subreddits (cross-posting), and may comment and upvote (or downvote) posts to express their interest.

We are specifically interested in posts containing images. Figure 2 shows an image post submitted by user u/johndoe in subreddit r/itookapicture. It contains an image of a duck and the caption “ITAP of three ducks chilling near a stream.” To obtain these image-text pairs, we extract images and their captions from the Reddit API.

Figure 2: Preview of a Reddit image post: We build RedCaps by extracting images and metadata (in orange) from such image posts.
works in dialog modeling and text summarization have trained on Reddit comments [33, 37–40]. For

There has been growing awareness about potential biases and harms that can arise from internet-scale image and text datasets [45–51]. There is a fundamental tension in such datasets: the use of internet data is motivated by the desire to use datasets larger than can be manually annotated or verified, but this also means that such datasets cannot be fully controlled or curated by their creators.

1 Many subreddits are jokingly titled -porn to indicate beautiful non-pornographic images.
We identify two potential risks with RedCaps – privacy of people appearing in RedCaps images, and harmful stereotypes – and attempt to minimize them by automatic data filtering. We also discuss the impact of data curation from Reddit on user consent and data distribution in RedCaps.

Privacy: The individual who posts a given photo on Reddit may not be the person appearing in said photo; this can pose privacy risks for people who did not expect to appear in images online [49, 50]. Our first method of mitigation is the manual curation of subreddits which are not focused on describing people (Section 2.1). As an additional measure, we use RetinaFace [52] to filter images having any face detection with confidence \(\geq 0.9 \). Results of this filtering are shown in Table 1. The number of detections are high (1.2M), however the precision is low (32%) – most detections are masked faces, statues, and animals. Nevertheless we remove all of these images to reduce privacy risks while minimizing impact to downstream vision tasks.

Harmful Stereotypes: Another concern with Reddit data is that images or language may represent harmful stereotypes about gender, race, or other characteristics of people [48, 49, 51]. We select only non-NSFW subreddits with active moderation for collecting data. This stands in contrast to less curated uses of Reddit data, such as GPT-2 [35] whose training data includes at least 63K documents from banned or quarantined subreddits which may contain toxic language [53]. We attempt to further reduce harmful stereotypes in two ways:

- **NSFW images:** We use the InceptionV3 [54] model from [55] to filter images detected as *porn* or *hentai* with confidence \(\geq 0.9 \). Similar to face filtering, we estimated precision of our filtering and estimated amount of missed detections, shown in Table 1. The model detects 87K images with low precision (\(\sim 1\% \)) – most detections are non-NSFW images with pink and beige hues.

- **Potentially derogatory language:** We filter instances whose captions contain words or phrases from a common blacklist [56]. It is important to note that such coarse filtering might suppress language from marginalized groups reclaiming slurs [51]; however, as RedCaps is not intended to describe people, we believe this is a pragmatic tradeoff to avoid propagating harmful labels.

Consent: When submitting to Reddit, users expect their posts to be publicly visible and accessible via the Reddit API we use to download data. However, they did not explicitly consent for their data to be used for training large-scale neural networks [49]. We mitigate this concern in two ways. First, we distribute URLs instead of images; posts deleted from Reddit will thus be automatically removed from RedCaps. Second, we provide a public form allowing anyone to request that specific instances be removed from RedCaps on our website. These decisions mean that over time some image will disappear from RedCaps, making it difficult to exactly reproduce experiments in the future. However we believe this to be less important than allowing users to opt out from RedCaps. Even if images are removed, we expect RedCaps to grow over time as we include newer posts (Figure 3).

Reddit demographics: Reddit’s user demographics are not representative of the population at large. Compared to US adults, Reddit users skew male (69% vs 49%), young (58% 18-29 years old vs 22%), college educated (36% vs 28%), and politically liberal (41% vs 25%) [57]. Reddit users are predominantly white (63%) [57], and 49% of desktop traffic to Reddit comes from the United States [58]. All of the subreddits in RedCaps use English as their primary language. Taken together, these demographic biases likely also bias the types of objects and places that appear in images on Reddit, and the language used to describe these images. We do not offer explicit countermeasures to these biases, but users of RedCaps should keep in mind that size doesn’t guarantee diversity [51]. Subtler issues may also exist, such as imbalanced representation of demographic groups [59] or gender bias in object co-occurrence [60] or language [61]. These are hard to control in internet data, so we release RedCaps with explicit instructions on suitable use-cases; specifically requesting models not be trained to identify people, or make decisions that impact people. We document these instructions and other terms-of-use in a datasheet [45], provided in Appendix G.
3 RedCaps data analysis

![Graph showing dataset size comparison]

<table>
<thead>
<tr>
<th>Datasets in 2021</th>
<th># Instances Released</th>
</tr>
</thead>
<tbody>
<tr>
<td>RedCaps (ours)</td>
<td>12,011,111 ✔️</td>
</tr>
<tr>
<td>CC-12M [31]</td>
<td>12,423,374 ✔️</td>
</tr>
<tr>
<td>WIT-english [62]</td>
<td>5,500,746 ✔️</td>
</tr>
<tr>
<td>CLIP [29]</td>
<td>400M ✗</td>
</tr>
<tr>
<td>ALIGN [30]</td>
<td>1.8B ✗</td>
</tr>
</tbody>
</table>

Figure 3: **Dataset size comparison**: RedCaps is one of the largest public image-text datasets, and is expected to grow over time.

Dataset size: Figure 3 (top) shows the growth of RedCaps between 2011–2020 based on creation timestamps of image posts (see Figure 2). We observe that both SBU and CC-3M have shrunk in size since their release. Since these datasets have released images as URLs (similar to us), an instance would become invalid if the underlying image is removed from the URL. Likewise, some instances in RedCaps can also disappear in the future if Reddit users delete their posts. However, new image posts on Reddit outnumber deleted posts – we expect RedCaps size to increase in future versions.

Figure 3 (bottom), compares RedCaps with recent image-text datasets released in 2021. RedCaps is 2× larger than the English subset of multilingual Wikipedia image-text dataset [62], and nearly as large as CC-12M [31]. Based on current trends, we expect RedCaps to outsize CC-12M by the end of 2021. While CLIP [29] and ALIGN [30] used orders of magnitude larger training datasets, they are not released for public use – RedCaps remains one of the largest public image-text datasets.

Subreddit distribution: RedCaps instances are distributed across 350 subreddits in a long-tail distribution. In Figure 4, we show top 20 subreddits with most instances in RedCaps. Subreddit sizes highly correlate with their popularity on Reddit, which depends on what users find interesting to view and share on social media. Large subreddits are based on general photography (r/pics, r/mildlyinteresting, r/itookapicture), while specific subreddits show that Reddit users enjoy sharing images of food (r/food, r/foodporn), cute pets (r/cats, r/dogpictures, r/rabbits), and show off their hobbies (r/gardening, r/crochet, r/baking) and accessories (r/sneakers, r/mechanicalkeyboards, r/carporn). This gives a distribution of visual concepts encountered by humans in daily life without having to predefine an ontology of object classes.

Caption lengths: Figure 5 compares caption lengths between RedCaps and other datasets. We see that RedCaps has the highest mode length at 5 words (vs 3 for CC-3M, SBU) and a heavier tail of long captions ≥25 words. SBU has a fairly flat distribution of captions between 3 and 17 words, likely since they only retain captions with at least one preposition and two words in a manually curated term list; RedCaps and CC-3M captions are not filtered in this way and have more peaked distributions reflecting natural language usage.

Word count statistics: Table 2 (top) compares linguistic diversity between datasets by computing the number of unique unigrams (words), bigrams, and trigrams occurring at least 10 times. This reveals that CC-3M has surprisingly little linguistic diversity, having less unique unigrams than SBU despite having ≈3× more captions. RedCaps has the most unique terms, with more than 4× unigrams and more than 3× bigrams and trigrams than CC-3M. Greater linguistic diversity means that models trained on RedCaps should recognize a larger variety of visual concepts.

2We use full SBU and CC-3M annotations for analysis instead of discarding captions with invalid URLs.
Table 2: **Word count statistics:** Number of \(\{1,2,3\} \)-grams occurring at least 10 times (top) and top-5 trigrams in each dataset (bottom).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Unigrams</th>
<th>Bigrams</th>
<th>Trigrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBU</td>
<td>28,989</td>
<td>107,847</td>
<td>99,687</td>
</tr>
<tr>
<td>CC-3M</td>
<td>21,223</td>
<td>230,077</td>
<td>287,017</td>
</tr>
<tr>
<td>RedCaps</td>
<td>95,777</td>
<td>770,100</td>
<td>866,243</td>
</tr>
</tbody>
</table>

Table 2 (bottom) shows the most frequent trigrams per dataset. SBU has many prepositional phrases, likely since they require all captions to contain a preposition. Common CC-3M trigrams *image may contain, may contain person* suggest that the alt-text from which CC-3M takes captions may sometimes be automatically generated. RedCaps trigrams *I don’t, one of my* are more conversational and draw a personal connection between the author and the image, whereas other trigrams *itap of a and itap of the* reflect community conventions on *r/itookapicture.*

Linguistic statistics: We use part-of-speech (POS) tagging to dig deeper into linguistic diversity of RedCaps. We use the `en_core_web_trf` model from SpaCy [63] to tag POS in all captions. Figure 6 (top) shows number of unique words per POS appearing at least 10 times. RedCaps has \(>2\times\) more common nouns and \(>4\times\) more proper nouns than SBU, and \(>2\times\) more adjectives and \(>1.5\times\) more verbs than CC-3M. Nouns in CC-3M are artificially deflated, since their pipeline replaces proper nouns with hyponyms (which may explain their low unigram counts in Table 2).

Figure 6 (bottom) shows the most frequent occurring nouns in RedCaps. We see a variety of common nouns, both concrete (*cat, plant*) and abstract (*day, time*). We find that nouns like *guy, baby,* and *boy* are frequent with RedCaps images with pet animals. Moreover, most frequent proper nouns comprise many cities (*chicago, london*), states (*california, texas*), and countries (*japan, germany, india*), indicating the geographical diversity of RedCaps.

4 Experiments

We aim to show that RedCaps offers a unique style of data for both vision and V&L applications. We demonstrate both applications by adapting VirTex [19], a recent method for pre-training visual representations by performing image captioning as a proxy task. In this section, we measure the effect of data quality on downstream vision tasks by training VirTex models with the same architecture but different datasets – SBU, CC-3M, and RedCaps. To control for RedCaps’s size, we also train on a subset of RedCaps instances from 2020 – this has size comparable to CC-3M (3.2M vs 2.9M).

Extending VirTex to VirTex-v2: VirTex comprises an image encoder (*visual backbone*) and a pair of text decoders (*textual head*) that predict the caption token-by-token in forward and backward directions. The base model from [19] used a ResNet-50 [21] visual backbone, and Transformers [64] in textual head that are \(L = 1\) layers deep and \(H = 2048\) dimensions wide, and was trained on COCO Captions [17] (118K images). We modify this model from [19] to VirTex-v2 in order to scale to larger noisy datasets, making the following changes:

- **Model architecture:** We use deeper Transformers with \(L = 6\) layers. To balance the memory requirements, we reduce the width to \(H = 512\). We use the recent *Pre-LN* Transformer variant [35, 65, 66] that is more stable to train large transformers [67] – LayerNorm [68] is moved inside the residual connection, and we add LayerNorm before the prediction layer.
Table 3: Transfer learning: zero-shot and linear probe. We train VirTex-v2 models on different image-text datasets, then transfer the learned features to seven downstream classification datasets (N = #classes). Models trained on RedCaps perform best on all datasets except one.

- **Tokenization:** Similar to VirTex, we use SentencePiece tokenizer [69] with BPE [70]. We build a vocabulary of 30K tokens from the combined caption corpus of SBU, CC-3M and RedCaps. For fair comparison, we use the same vocabulary for all models trained on different datasets. When training with RedCaps, we prefix the caption with subreddit tokens: e.g. for Figure 1 (r/birdpics), the caption becomes [SOS] bird pics [SEP] northern male cardinal [EOS]. We use wordsegment [71] to break subreddit names to words (e.g. itookapicture → i took a picture).

- **Training details:** We use AdamW [72, 73] with weight decay 10^{-2} and max learning rate 5×10^{-4} with linear warmup for the first 10K iterations, followed by cosine decay [74] to zero. We also use label smoothing ($\epsilon_{ls} = 0.1$) [54] which has improved language generation for machine translation [64]. We train for 1.5M iterations with total batch size 256 across 8 × 2080Ti GPUs. We save checkpoints every 2000 iterations, and average the last five checkpoints to use for downstream tasks and image captioning. All other details remain unchanged from [19]. We have open-sourced all the training code and pre-trained checkpoints, available at https://redcaps.xyz.

4.1 Transfer learning on downstream vision tasks

We evaluate the quality of visual representations learned from SBU, CC-3M, and RedCaps by training VirTex-v2 models on each, then transferring the visual backbone to image classification and instance segmentation on eleven different downstream datasets. Our evaluation setup closely follows recent works on self-supervised learning [75–77] and language-supervised [19, 29] learning. We describe the main evaluation settings here; see Appendix F for more details.

Zero-shot image classification: Training with language supervision enables zero-shot transfer to downstream tasks without any task-specific training [29, 78]. We evaluate the utility of different datasets for representation learning by comparing zero-shot performance on seven classification datasets: Oxford-IIIT Pets [79], Food-101 [80], Flowers-102 [81], Stanford Cars [82], Country-211 [29], and SUN-397 [83], and Birdsnap [84]. Inspired by CLIP [29], we perform zero-shot classification by designing one prompt per category in the target dataset and ranking the log-probabilities predicted by the trained captioning model for each prompt, averaging predictions from the forward and backward Transformers. For SBU and CC-3M we follow CLIP and use the prompt [SOS] a photo of a/an _ [EOS]; for RedCaps we adjust to the training setup and use a prompt with prefixed subreddit – [SOS] i took a picture [SEP] itap of a/an _ [EOS].

Results are shown in Table 3 (top). VirTex-v2 models trained on RedCaps outperform those trained on SBU and CC-3M by wide margins on six out of seven datasets. This not due to RedCaps’s larger size: models trained on RedCaps-20 also outperform those trained on CC-3M.

Linear probe image classification: We also evaluate image classification on these datasets by training linear models over frozen visual features. Our evaluation details exactly follow CLIP – we use scikit-learn [85] logistic regression with L-BFGS. We train for 1K iterations, and search L2 regularization λ over 96 logarithmic spaced values in $[10^{-6}, 10^{6}]$ by validating on held-out 10% training data. Results are shown in Table 3 (bottom) with similar trends as zero-shot transfer.

Comparison with CLIP: Despite improvements over SBU and CC-3M, our absolute zero-shot performance falls behind CLIP (e.g Food-101 top-1 with ResNet-50 – 81.1 vs. 54.6). Their results are not comparable, as CLIP uses a different architecture (contrastive vs autoregressive), deeper
Figure 7: Human evaluation: CC-3M vs. RedCaps. We decode image captions from VirTex-v2 models trained on CC-3M and RedCaps. We show both captions (excluding subreddit names) to three crowd workers and ask them to guess which is more likely to be written by a human. All three workers chose the underlined caption for each of the displayed images. We found that workers preferred organic references (little guy vs animal), witty remarks (snow sculpture), and specific mentions (singapore) by the RedCaps-trained model. Among negative cases are mostly instances where RedCaps-trained models make blatant errors in identifying common visual objects (e.g. pizza).

Other tasks: We evaluate on standard transfer tasks with four other datasets: PASCAL VOC and ImageNet-1k linear classification with frozen features and instance segmentation [86] on COCO [26] and LVIS [27] with end-to-end fine-tuning of Mask R-CNN. These tasks follow the same setup as [19]. On ImageNet, we also perform k nearest neighbor classification (k=20), following [87, 88], and zero-shot classification as described above. Results are shown in Table 4. All models perform similarly on fine-tuning tasks (COCO and LVIS), while RedCaps trained model gains on tasks involving minimal or no fine-tuning – k-NN (52.0 vs 45.4) and zero-shot (22.7 vs 20.7) on ImageNet, and linear classification on VOC (87.5 vs 87.0).

4.2 Image captioning

We hope that the human interaction flavored data of RedCaps enables more human-like and conversational image captioning models. We use VirTex-v2 pre-trained models for image captioning – we use nucleus sampling [89] with nucleus size 0.9 to decode a caption from the forward Transformer. In this section, we demonstrate all results on an additional held-out test set of 1K instances sampled randomly from image posts submitted to our selected subreddits in the first week of 2021.

Evaluating caption predictions: Automatic captioning evaluation metrics correlate poorly with human judgement [90, 91]. We thus evaluate caption predictions via user studies. We sample captions from models trained on RedCaps and CC-3M, then present crowd workers with the image and both captions. Workers are told that one caption is written by a human and the other machine-generated, and asked to guess which is human-written. We take a majority vote among three workers for each of our 1K test images. Results are shown to the right – workers preferred captions from the RedCaps-trained model for 633/1000 images.

Subreddit-conditioned generation: Captions from different subreddits have distinct styles, focusing on different image aspects or using community-specific jargon. We use this observation to generate captions with distinct styles by prompting a RedCaps-trained model with different subreddits. Figure 8 shows examples of such diverse captions for images; see Appendix (Figure 11) for more.
5 Related work

RedCaps is directly related to many recent efforts on building large datasets of image-text pairs from the internet without expensive human annotation. Two notable datasets are SBU [1] and Conceptual Captions [2]. Originally intended for image-text retrieval and image captioning, they are now widely used for training generic V&L representations [3–11, 92] that transfer to downstream tasks like visual question answering [12–14], referring expressions [93], and visual reasoning [15, 16]. More recent works build larger datasets specifically for V&L pre-training, e.g., LAIT [94], Conceptual-12M [31], and Wikipedia-ImageText [62]. Similar to these datasets, RedCaps offers rich semantic data for pre-training applications. However, our choice of data source and hence the data quality is unique.

Image-text datasets are now also used for learning visual features. Li et al. [78] trained visual N-gram models on YFCC-100M [95]; [19, 20] learn features from COCO Captions [17] that are competitive with supervised ImageNet training [21, 96] on many downstream tasks [22, 24, 26–28], and [29, 30] scale up to very larger non-public datasets that are larger than RedCaps.

A core motivation for collecting image-text data is scaling to larger datasets without bearing annotation costs. Related to this goal are efforts that learn from large quantities of noisy non-text labels for web images such as WebVision [97], YFCC-100M [95], JFT-300M [98, 99], and Instagram-3.5B [100].

6 Conclusion

This paper has introduced RedCaps, a large-scale dataset of images and captions collected from Reddit. As a source of data, Reddit is appealing: text and image are both created and shared by people, for the explicit purpose of starting a discussion with other people, leading to natural and varied content. Its subreddit structure allows manually curating of our dataset’s content without labeling individual instances. We utilize this structure to collect a dataset focused on animals, objects, scenery, and activities, and specifically aim to minimize the appearance of people. We have shown that RedCaps is useful for learning visual representations that transfer to many downstream tasks, including zero-shot settings that use no task-specific training data. We have also shown that RedCaps can be used to learn image captioning models that generate high-quality text of multiple styles.

RedCaps is not without flaws. We have tried to minimize problematic content through subreddit curation and automated filtering, but the unfathomable nature of large data means that RedCaps may contain a small number of instances with NSFW images or harmful language. Reddit’s demographic biases mean that RedCaps may not equally represent all groups. Users should carefully consider these limitations for any new tasks developed on RedCaps, and should be especially wary of applications that make predictions about people. Despite these limitations, we hope that RedCaps will help enable a wide variety of new applications and advances in vision and language.
Acknowledgments

We thank Mohit Virli for suggestions on the project website. We thank Mohamed El Banani, Nilesh Kulkarni, Stefan Lee, Ramprasaath Selvaraju, Ramakrishna Vedantam, and Erik Wijmans for helpful discussions and feedback on the paper. We thank Priya Goyal and Ishan Misra for help related to VISSL codebase. We thank all anonymous reviewers for constructive feedback during the review phase. We also thank the UMich ARC-TS team for support with GPU cluster management.

References

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In CVPR, 2018.

