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Abstract

There has been a recent surge in methods that aim to decompose and segment
scenes into multiple objects in an unsupervised manner, i.e., unsupervised multi-
object segmentation. Performing such a task is a long-standing goal of computer
vision, offering to unlock object-level reasoning without requiring dense annota-
tions to train segmentation models. Despite significant progress, current models are
developed and trained on visually simple scenes depicting mono-colored objects on
plain backgrounds. The natural world, however, is visually complex with confound-
ing aspects such as diverse textures and complicated lighting effects. In this study,
we present a new benchmark called CLEVRTEX, designed as the next challenge to
compare, evaluate and analyze algorithms. CLEVRTEX features synthetic scenes
with diverse shapes, textures and photo-mapped materials, created using physically
based rendering techniques. It includes 50k examples depicting 3-10 objects ar-
ranged on a background, created using a catalog of 60 materials, and a further test
set featuring 10k images created using 25 different materials. We benchmark a large
set of recent unsupervised multi-object segmentation models on CLEVRTEX and
find all state-of-the-art approaches fail to learn good representations in the textured
setting, despite impressive performance on simpler data. We also create variants
of the CLEVRTEX dataset, controlling for different aspects of scene complexity,
and probe current approaches for individual shortcomings. Dataset and code are
available at https://www.robots.ox.ac.uk/~vgg/research/clevrtex.

1 Introduction

Supervised scene understanding has seen significant progress in the last decade. The introduction of
deep learning to the field and large, manually annotated datasets have made it possible to address tasks
such as object detection [39], semantic or instance segmentation [27], layout prediction [57] and dense
captioning [31] with considerable accuracy. However, in absence of labels, and thereby supervision,
such tasks are exceedingly difficult, even though it is easy to imagine that with enough images (or
videos), it should be possible to identify objects and the general composition of a scene without
human annotations. This renders unsupervised multi-object segmentation, as well as object-centric
learning a challenging yet promising field with high potential.

While certain tasks in the general context of unsupervised scene understanding and decomposition
have a relatively long history in computer vision, the majority of applications focus on single objects:
image classification [8, 29, 53], saliency detection [45, 61], foreground/background segmentation [2,
10, 43, 54] and general image-level representation learning [9, 11, 25, 28]. These methods are
usually developed on datasets such as ImageNet [48] that contain one object of interest per image.
Nevertheless, most real-world scenes are often comprised of multiple objects in varying spatial
configurations.
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Figure 1: Qualitative comparison of our new CLEVRTEX dataset with previous unsupervised multi-
object learning datasets featuring 3D objects. See Table 1 for quantitative comparison.

Table 1: Comparison of the proposed CLEVRTEX dataset with previous unsupervised multi-object
learning datasets featuring 3D objects.

Dataset #Images #Objects #Shapes #Obj. #Obj. #Backgrounds AnnotationsColors Materials

GQN [18] 12M 1–3 7 — 1 15 Camera parameters
ObjectRoom [6] 1M 1–6 4 10 1 100 Semantic, factor of variation
ShapeStacks [26] 310k 2–6 4 5 1 25 Semantic, stability, stability type
CLEVR [32] 100k 3–10 3 8 2 1 Semantic, factors of variation

CLEVRTEX (Ours) 50k+10k 3–10 4+4 — 60+25 60+25 Semantic, depth, normal, shadow,
factors of variation

Only recently, methods have been developed to analyze and decompose whole scenes containing
multiple objects, i.e., jointly learning to represent and segment objects from raw image input,
without supervision. However, since moving from individual objects to complex scenes drastically
complicates the problem, these methods currently rely on simple synthetic datasets. The complexity
of these datasets ranges from simple, single-color 2D shapes arranged against a black background [6]
to rendered 3D scenes composed of uniformly colored, 3D primitives (cubes, spheres, cylinders) [32]
(Fig. 1). Interestingly, current methods work very well on this kind of data and saturate the existing
benchmarks such that a quantitative comparison of models becomes difficult.

How to scale such methods to visually complex real-world data remains an open problem. When
analyzing the current state-of-the-art methods and datasets, it becomes clear that there is a strong
reliance on simple appearance (e.g., single color, simple shape). For example, Greff et al. [24] identify
a tendency of their model to segment by color, and it fails when applied to natural images. In fact, the
majority of methods learn semantic objects using similar compositional principles, which exploit
statistical advantages in aligning simple scene elements with internal representations. Natural images
and the objects therein, however, do not possess strong, consistent colors. Instead, they feature
confounding textures, often a mixture of repeating and irregular patterns, which might violate such
assumptions.

This work introduces a dataset and benchmark as the next step towards eventually tackling real-
world scenarios. We propose CLEVRTEX, a synthetic dataset that consists of textured foreground
objects and background, unlike existing benchmarks. Interestingly, we find that simply moving from
uniformly colored to textured objects poses extreme challenges for current models, and no existing
method achieves satisfactory performance. For this reason, we also introduce several variants of our
dataset to gradually scale the visual complexity of the scenes and investigate where current algorithms
struggle. To probe the generalization capability of models to out-of-distribution scenes, we create
additional test sets that contain unseen shapes and materials and camouflaged objects. Together with
CLEVRTEX and its variants, we are releasing the code to generate the dataset from scratch. Finally,
we find that existing work does not rely on a consistent set of metrics and benchmarks. In an extensive
set of experiments, we benchmark the majority1 of current work on both CLEVR and our newly
introduced CLEVRTEX.

2 Related Work

Object recognition benchmarks such as PascalVOC [19] or MS COCO [37] have been fundamental to
object detection research. However, the current unsupervised multi-object segmentation models are
yet unable to handle diverse real-world images featured in such datasets and have relied on visually

1wherever code was available or could be obtained from the authors
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trivial 2D and 3D data. Here, we review datasets and benchmarks used in unsupervised multi-object
segmentation methods and point out the differences to CLEVRTEX.

2D Datasets Earlier unsupervised multi-object learning approaches were applied to transformed
versions of existing 2D datasets, often originally crafted for disentanglement research, such as
Shapes [46], variants of MNIST [35]: TexturedMNIST [22] and MultiMNIST [49], as well as
the multi-object version of dSprites [42], i.e., Multi-dSprites [6]. Others borrow data from the
reinforcement learning community, such as the ATARI game environment [1] or Tetrominoes [4].
However, 2D datasets, whilst valuable for development, do not contain the visual cues and details
(e.g. shadows and perspective) needed to learn object segmentation that generalizes to real images.

3D Datasets Simple 3D Phong-shaded datasets (Fig. 1) have been crafted for use in the unsuper-
vised multi-object setting. The object-room dataset [6], a multi-object extension of 3D shapes [5],
features colored shapes arranged in a room with colored walls. ShapeStacks [26] features stacked,
solid-colored primitives on a simple background with a pattern. CLEVR [32], which is most closely
related to our work, was introduced as a visual question-answering dataset but has become a popular
benchmark in unsupervised scene decomposition as well. It features a set of 3-10 primitive shapes
arranged on a gray photo backdrop; objects can have either a rubbery or metallic appearance and one
of 8 color tints. CLEVR6 [24] is a filtered version of the CLEVR dataset that includes only up to
6 objects per image. It is often used for training in multi-object representation learning, with the
remainder of CLEVR used to test generalization to more crowded scenes [14, 40].

Additional variants of CLEVR have also been generated for other tasks, such as ARROW [30]
for exploring scene composition accuracy, and a recursive version in [13] for learning part-whole
relationships. Multi-view variations [34, 52] are used for 3D representation learning, and further
include new object geometry, such as toys [36] and chairs [59]. However, these datasets feature
simple scenes of low visual complexity, with contrasting solid colors present on objects. CLEVRTEX
instead contains difficult objects with various materials that include repeating patterns and small
details and often blend in rather than stand out from the background.

The main differences in data statistics between CLEVRTEX and commonly used multi-object learning
datasets are also summarised in Table 1.

Unsupervised Multi-Object Segmentation in Natural Scenes Some attempts have also been
made to scale to natural scenes. Eslami et al. [17] apply the AIR model modified with a 3D rendering
engine to infer identities and positions of crockery items on a table, training on simulated data,
and evaluating against real-world images. Monnier et al. [44] test their sprite-based method on
foreground/background segmentation on the Weizmann Horse dataset [3]. Engelcke et al. [16] apply
Genesis-V2 to robotic manipulation datasets, Sketchy and APC [60]. Sketchy [7] features recordings
of a robotic arm manipulating solid colored toys, towels, or other small objects on a test table, but it
lacks segmentation masks. The APC [60] dataset is used instead for evaluation but only contains a
single foreground object. These attempts signal promise that unsupervised multi-object segmentation
can eventually scale to diverse real-world images.

Visual Fidelity in Simulation Simulation has always been central to progress in ma-
chine/reinforcement learning. However, as usual, the gap between a simulated setting and the
ability to generalize to real-world environments is of concern. Several new simulators aim to improve
the visual fidelity using photo-mapped environments or artists’ compositions [33, 41, 50, 56]. Re-
cently, TWD [20] introduced a rich physics engine and PBR rendering of environments with a library
of objects. Similar to our work, the emphasis is partly on increasing visual fidelity while moving
away from trivial settings and towards real-world applications. However, RL environments have
not seen much use in the unsupervised vision domain due to the often specific nature of the data,
egocentric perspective, and temporal dependency.

3 CLEVRTEX

We introduce CLEVRTEX, a simulated dataset designed to present the next challenge in unsupervised
multi-object learning. It introduces confounding visual aspects such as texture, irregular shapes, and
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various materials while maintaining control over scene composition. CLEVRTEX is available under
CC-BY license.

3.1 Dataset Creation

CLEVRTEX is a much more visually complex extension of CLEVR [32] targeted at multi-object
learning. It is procedurally generated using the API of Blender2, a powerful open-source 3D suite.

At the center of the CLEVRTEX generation process is a catalog of diverse photo-mapped materials3

ranging from forest floor duff, rocks, brickwork, and tiles to fabrics, metallic weaves, and meshes — a
full list of materials is shown in Appendix C.5). To generate each image, we start with a scene
containing only a photo backdrop, which will become the background. For viewpoint and lighting
diversity, we apply random jitter to the position of the camera and three lights. We then fill the scene
with 3 to 10 objects (number sampled uniformly), sampling each object from a set of shapes: a cube,
a sphere, a cylinder, and a non-symmetric shape of anthropomorphized monkey head4 for increased
complexity in object silhouettes. Objects are added to the scene one by one by sampling position
(continuous, (x, y) ⇠ Uniform(�3, 3)), scale (discrete, s 2 {.9, .6, .4}), and rotation (continuous,
✓ ⇠ Uniform(0, 360)). If a new object collides with already existing shapes in the scene, the object’s
transformation is resampled until no collision is found or a maximum number of trials is exceeded, at
which the process restarts by removing all objects.
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Figure 2: CLEVRTEX and its variants.

We then sample a material for each object and the back-
ground. Using adaptive subdivision, we create material-
specific geometry by displacing vertices of the starting
shapes. This creates reliefs for simpler materials or
distorts shapes, extruding features or introducing holes.
The materials use albedo, subsurface scattering, and re-
flectivity maps to generate detailed visuals. Using phys-
ically based rendering ensures appropriately detailed
reflections, highlights, and lighting effects. In addition,
we generate ground truth segmentation maps through the
rendering process and automatically check that no object
is fully occluded. In that case, the scene is resampled
from scratch. Further figures depicting scene lighting,
objects, their scales and deformations are available in
Appendix C.5.

The object shapes and placement mimics that of the
CLEVR dataset [32] for backward compatibility. We do
not generate the question-answering part of the original
CLEVR dataset but include full metadata. This means
that this dataset could also be used for other CLEVR-based tasks such as question answering,
although this is not our focus here. Similarly, in anticipation that our dataset might also find usages
beyond its intended setting, we include depth, albedo, shadow, and normal maps alongside the images,
segmentation maps, and metadata. We share the code to generate CLEVRTEX alongside the dataset.

3.2 Statistics

CLEVRTEX contains 50 000 images, of which we use 10% for testing, 10% for validation and the
remaining 80% (40 000 images) for training. Each image contains between three and ten objects
(uniformly sampled). There are four possible shapes, which have been modified to enable clean
texture mapping. We use three distinct object scales to maintain identifiable size “names”, as in
CLEVR, and custom meshes to ensure that the scaling of the objects does not distort texture details.
The object placement and rotation are sampled from a continuous range. Note that even though two

2https://www.blender.org/
3We use the computer graphics term “material” to refer to the collection of resources used to creates the

likeness of appropriate real-world material on simulated surfaces. Materials are typically a composition of
various modalities, such as normal, diffuse, specular, and displacement maps, as well as a computation graph
and shaders. We use the term “texture” to refer to 2D images mapping color information onto 3D surfaces.

4A modified version of Suzzane – a prefab shape available in Blender.
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shapes — cylinder and sphere — are rotationally symmetric, the materials applied to them are not.
We use a catalog of 60 materials with non-commercial licenses to generate the whole dataset before
splitting the data into training sets. The materials are manually adjusted to ensure visually pleasing
results at different scales and the background.

3.3 Variants

We create the following modifications of CLEVRTEX, each with 20 000 images (see Fig. 2), to enable
a more detailed analysis and evaluation and probe methods for their shortcomings.

The first variant, PLAINBG, is a dataset consisting of textured objects on a plain background, i.e.,
the background is always set to a simple material as in CLEVR. We also create the reverse version,
VARBG (varied background), where the objects are assigned simple CLEVR-like materials and colors
while the background receives a textured material at random from our material catalog. PLAINBG
and VARBG fall in-between CLEVR and CLEVRTEX in terms of visual complexity. In PLAINBG,
intra-object appearance is more complex, but each object clearly stands out from the plain background.
On the other hand, VARBG maintains uniformly colored objects but introduces background texture,
effectively making the background more diverse than the foreground. PLAINBG and VARBG can
be used to analyze the importance of background vs. object reconstruction. Furthermore, we create
GRASSBG, which contains scenes with the same mossy grass material as the background, while
foreground objects receive materials at random. This variant is thus comparable to CLEVRTEX in
terms of visual complexity. However, consistency in the background allows for testing memorization
vs. reconstruction effects.

In addition, we propose the following two test sets to serve as an extra check for the limitations of
CLEVRTEX.

CAMO contains scenes with “camouflaged” objects. To simulate this, every scene is made of
a single, randomly sampled material that is used on all objects and the background. CAMO is
created to challenge the internal-vs-external consistency and the efficiency hypothesis that underpins
compositional methods. The only visual cues here are lighting, shadows, and perspective. It should
enable probing models to see if they rely on such context to identify objects. Although we release
CAMO with training, validation and test splits, in our experiments it is only used as a testbed for
models trained on CLEVRTEX.

Finally, we also provide a separate OOD (out-of-distribution) dataset to evaluate model generalization
on novel scenes. This dataset is designed exclusively as a test set and thus only contains 10 000
images. OOD is generated the same way as CLEVRTEX, but exclusively uses 25 new (unseen)
materials — i.e. different from the 60 already used in other variants — and four new shapes (cone,
torus, icosahedron, and a teapot) that are not part of CLEVRTEX.

4 Models

In recent years, there has been a surge of methods that aim to decompose a scene into objects in an
unsupervised manner and, at the same time, learn object-centric representations. Following [38], we
categorize these methods as follows.

Pixel-Space Approaches (�) A common way to frame the problem of unsupervised scene decom-
position into objects is to assign each pixel to one of a usually fixed number of scene components,
inferring per-pixel membership maps [6, 14, 22–24, 58]. While these methods are probabilistic in
nature, they do not lend themselves to generating new images. For this reason, several generative
methods have been proposed, where images can be sampled from the learned distributions [15, 16].
Finally, Locatello et al. [40] introduce a discriminative approach using an iterative clustering-like slot
attention mechanism.

Here, we benchmark MONet [6] and IODINE [24] as examples of earlier approaches that handle 3D
colored scenes. We also evaluate the improved efficient MORL (eMORL) [14], Genesis-v2 [16] as a
generative model, and Slot Attention [40] which is representative for discriminative models.

Glimpse-Based Methods ( ⇤⇤) An alternative to predicting components for each pixel is to extract
patches of the input—named glimpses—that contain objects. A dense segmentation can be derived in
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this reduced space. These glimpses are arranged on top of an explicit background to reconstruct the
image. Glimpse-based methods [12, 13, 17, 30, 38] tend to offer computational advantages due to
smaller regions, however also require deciding, extracting and composing patches.

Table 2: Computational resources for different mod-
els. ⇥ indicates number of GPUs needed. Measured
on NVIDIA P40 24GB GPUs, with original batch
sizes and 128⇥ 128 input. Train. time refers to time
required to train the models for the recommended
number of iterations, measured in total GPU hours.
Inf. time measures the mean inference time required
for a single batch, shown ±� over 7 passes.

Model Train. Time Inf. Time Peak GPU
(GPU h) (ms±�) Mem (GB)

⇤⇤ GNM [30] 54 258 ±9 4
⇤⇤ SPACE [38] 64 191 ±2 8
⇤⇤ SPAIR* [12] 77 213 ±2 11
|⇤ DTI [44] 198 2530 ±5 11
|⇤ MN [51] — — 11
� IODINE [24] 4⇥ 202 1360 ±2 4⇥ 23
� SA [40] 290 818 ±1 17
� MONet [6] 3⇥ 106 544 ±1 3⇥ 17
� eMORL [14] 4⇥ 158 217 ±1 4⇥ 17
� GenV2 [16] 194 452 ±1 15

From the glimpse-based methods, we bench-
mark SPAIR [12], which models glimpses
auto-regressively, using a truncated geomet-
ric prior. Since it cannot handle non-black
backgrounds, we modify the model to include
a VAE for background prediction (SPAIR*).
We also evaluate SPACE [38] due to its use
of the pixel-space approach for processing the
background, and GNM [30], which uses scene-
level priors.

Sprite-Based Methods ( |⇤) Recently, sev-
eral methods [44, 51] propose to decompose
images into a learned dictionary of RGBA
sprites instead of learning a generative model.
From the alpha masks of each sprite, the scene
segmentation can be recovered. We bench-
mark MarioNette [51] and DTISprites [44] to
investigate the differences of two sprite-based
( |⇤) approaches.

The aforementioned models have highly vary-
ing computational requirements. We offer a side-by-side comparison in Table 2, where computational
advantages to glimpse-based methods can be immediately seen, with methods such as GNM and
SPACE taking a fraction of time and memory required by even single-GPU pixel-space methods. All
implementation details, hyper-parameters, and model changes are reported in Appendix C.3.

5 Experiments

Datasets We benchmark a wide spectrum of methods using CLEVRTEX and its variants. To test
generalization, we evaluate models trained on CLEVRTEX using OOD and CAMO. In addition to our
CLEVRTEX and its variants, we conduct experiments on CLEVR to provide a complete side-by-side
comparison of methods and the new challenges in CLEVRTEX. All implementation details and
preprocessing are reported in Appendix C.1.

Metrics The majority of previous work has used the adjusted Rand index on foreground pixels
(ARI-FG) only as an evaluation metric. We share concerns with [15, 44] that this metric does not
reflect how well objects are localized by the model and whether they are considered part of the
background. Thus, we report mean intersection over union (mIoU) instead, as it considers the
background. Further discussion and a side-by-side comparison of ARI-FG and mIoU can be found in
Appendix C.2. Furthermore, we judge the quality of the reconstruction output of the models using
the mean squared error (MSE). For the models trained on CLEVR and CLEVRTEX, we report results
on three random seeds, including their standard deviation.

5.1 Benchmark

The results for the benchmark are detailed in Table 3 and in Fig. 3. Next, we discuss our findings
regarding the ability of models to separate foreground and background, to handle textured scenes, as
well as their training stability and generalizability to new scenes.

Background Segmentation Pixel-space methods (�) show impressive performance on CLEVR
compared against glimpse-based approaches ( ⇤⇤) on the foreground (see Fig. 3). However, if we
consider the ability to segment the background (mIoU in Table 3), their performance advantage
disappears, with SPAIR* performing the best. We attribute this to the tendency of pixel-space
models to assign parts of the background to nearby objects. In glimpse-based methods, however, the
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Figure 3: Comparison of various models’ reconstruction and segmentation outputs on CLEVR,
CLEVRTEX and our test sets. Best viewed digitally. More results in the Appendix, Fig. 5.

Table 3: Benchmark results on CLEVR and CLEVRTEX and the generalization test sets CAMO, and
OOD. Results shown ±� calculated over 3 runs. † updated eMORL: after CLEVRTEX was released,
the authors of [14] have updated their codebase to include CLEVRTEX training and evaluation and
shared their trained models with improved performance (single seed on CLEVR).

Model CLEVR CLEVRTEX OOD CAMO
"mIoU (%) #MSE "mIoU (%) #MSE "mIoU (%) #MSE "mIoU (%) #MSE

⇤⇤ SPAIR* [12] 65.95± 4.02 55± 10 0.0 ± 0.0 1101± 2 0.0 ± 0.0 1166± 5 0.0 ± 0.0 668± 3
⇤⇤ SPACE [38] 26.31±12.93 63± 3 9.14± 3.46 298± 80 6.87± 3.32 387± 66 8.67± 3.50 251± 61
⇤⇤ GNM [30] 59.92± 3.72 43± 3 42.25± 0.18 383± 2 40.84± 0.30 626± 5 17.56± 0.74 353± 1
|⇤ MN [51] 56.81± 0.40 75± 1 10.46± 0.10 335± 1 12.13± 0.19 409± 3 8.79± 0.15 265± 1
|⇤ DTI [44] 48.74± 2.17 77± 12 33.79± 1.30 438± 22 32.55± 1.08 590± 4 27.54± 1.55 377± 17
� GenV2 [16] 9.48± 0.55 158± 2 7.93± 1.53 315±106 8.74± 1.64 539±147 7.49± 1.67 278± 75
� eMORL [14] 50.19±22.56 33± 8 12.58± 2.39 318± 43 13.17± 2.58 471± 51 11.56± 2.09 269± 31
� eMORL† [14] 21.98 26 30.17± 2.60 347± 20 25.03± 1.99 546± 4 19.13± 4.88 315± 21
� MONet [6] 30.66±14.87 58± 12 19.78± 1.02 146± 7 19.30± 0.37 231± 7 10.52± 0.38 112± 7
� SA [40] 36.61±24.83 23± 3 22.58± 2.07 254± 8 20.98± 1.59 487± 16 19.83± 1.41 215± 7
� IODINE [24] 45.14±17.85 44± 9 29.16± 0.75 340± 3 26.28± 0.85 504± 3 17.52± 0.75 315± 3

formation of glimpses forces the objects to be spatially compact, which offers an advantage when
separating the objects from the background.

Textured Scenes When training on CLEVRTEX, all models struggle. The foreground segmentation
performance reduces, indicating that models fail to assign whole objects to a single component, likely
due to the tendency to overfit consistent color regions. The overall segmentation performance is worse
as well. MSE is much higher than on CLEVR, with models producing blurry or flat reconstructions,
failing to capture much of the rich variation in the input data. SPAIR*, which showed the best
overall performance on CLEVR, fails to recognize any objects and instead simply predicts the
background. We conjecture that SPAIR’s autoregressive handling of objects paired with the use of
spatial transformers might make the learning signal too noisy.
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Sprite-based models ( |⇤) also perform worse, as the greater variation in appearances is not sufficiently
captured by their limited dictionary. While the dictionary size can be increased, the lack of an internal
compression mechanism to represent varied appearances will always be a limiting factor in natural
world settings. Interestingly, when unable to capture individual objects, MN learns to tile the image
with possible color blobs, representing low-frequency information in the image instead. In our tests,
similar tiling behavior tends to occur also in glimpse-based models whenever they cannot learn to
reconstruct the foreground (see the Appendix, Fig. 6, for examples in other models). Since DTI
includes a set of internal transformations, it performs comparatively better on CLEVRTEX.

GNM, a generative glimpse-based approach, has overall the best performance on CLEVRTEX, which
we attribute to spatial-locality constraints imposed through the glimpse-based formulation and limited
background reconstruction ability due to a simpler background model; i.e. comparing to other methods
less capacity is spent on the background. Interestingly, GNM shows one of the largest reconstruction
errors, despite being the best at scene segmentation, suggesting that ignoring confounding aspects of
the scene rather than representing them might aid in the overall task.

Out of the our benchmarked pixel-space methods (�), IODINE performs the best in terms of the
overall segmentation performance. Our qualitative investigation shows that pixel-space methods that
can segment textured scenes largely capture consistent color regions, which occasionally align with
objects on scenes with simpler materials. Large patterns in the background or changes in object
appearance, often due to lighting result in oversegmentation.

Stability Due to inherent stochasticity in initialization and optimization, one can expect a degree
of variation between different model training runs. Many benchmarked models in this study also
rely on internal randomness, primarily due to the sampling procedures involved. This influences
the learning signal and the configuration the models can learn. Pixel-based approaches and SPACE
(which has pixel-space model for background) show higher variance in the performance metrics.
Similar to [14, 38, 40], we observe that these methods occasionally fail to use separate components,
which causes high fluctuation between different seeds. Glimpse-based methods are more stable with
respect to seeds but tend to exhibit higher sensitivity to hyperparameter settings.

Generalisation In addition to benchmarking existing approaches in their ability to learn and handle
textured scenes, we are also interested in the degree to which different approaches might rely on
specific factors of CLEVRTEX. To this end, we evaluate the models trained on the CLEVRTEX on
two additional test sets: CAMO to see whether models rely on the difference of object appearances
present in a scene, and OOD to see whether a degree of memorization (e.g. of shapes and materials)
plays a role in recognition and whether the methods could generalize to unseen patterns.

Interestingly, some of the better performing approaches on CLEVRTEX maintain much of their
segmentation ability on out-of-distribution (OOD) data. GNM, for example, attempts to reconstruct
the input using memorized training data materials and shapes, which leads to reduced but still
comparable object segmentation. Other sprite- ( |⇤) and glimpse-based ( ⇤⇤) methods either do not
perform well or show similar reliance on the appearances from the training distribution. Pixel-space
models (�) show a better ability to reconstruct the input but also tend to reconstruct based on
consistent color regions rather than objects, a tendency only exacerbated by the out-of-distribution
setting.

When considering the challenging CAMO setting, none of the approaches perform satisfactory
segmentation. Methods that somewhat work on CLEVRTEX tend to use different components to
represent lighter and darker parts of the scene, highlighting the tendency of all current models to
overfit the scene appearance.

5.2 Variants

As discussed above, many of the models that perform well on CLEVR, either do not work on CLEVR-
TEX or lose much of their performance. To further probe which aspects of the scene composition are
challenging, we use the variants of CLEVRTEX.

Textured Objects When applied to PLAINBG, where materials are only seen on objects, and the
background is gray, all of the methods still perform worse than on CLEVR, with a significant drop in
segmentation performance, especially prevalent in pixel-space approaches (�). Since all methods
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Figure 4: Comparison of various models’ reconstruction and segmentation outputs on PLAINBG,
VARBG and GRASSBG variants. Best viewed digitally.

Table 4: Model results on PLAINBG,VARBG, and GRASSBG variants.

Model PLAINBG VARBG GRASSBG
"mIoU (%) #MSE "mIoU (%) #MSE "mIoU (%) #MSE

⇤⇤ SPAIR* [12] 39.32 134 0.00 1246 0.00 728
⇤⇤ SPACE [38] 31.96 120 16.10 311 33.85 196
⇤⇤ GNM [30] 26.49 96 49.78 438 53.15 254
|⇤ MN [51] 10.16 167 11.51 441 34.80 266
|⇤ DTI [44] 36.03 210 38.82 498 37.65 215
� GenV2 [16] 24.39 98 14.40 298 2.88 306
� eMORL [14] 29.39 96 22.92 385 19.38 199
� MONet [6] 38.72 83 23.73 212 21.29 165
� SA [40] 39.32 134 62.57 257 12.88 116
� IODINE [24] 23.83 128 39.86 364 25.76 225

have been designed with simpler datasets and uniformly colored objects, the more realistic nature
of the materials in CLEVRTEX poses a difficult challenge. Glimpse-based models ( ⇤⇤) also show
reduced segmentation quality over CLEVR. MN (sprite-based) struggles as the increased diversity
in foreground objects overwhelms the spite dictionary. Finally, the models’ inability to capture the
fine-grained details of the more complex object appearance causes the increase in reconstruction
error.

Textured Background VARBG contains simple mono-colored objects arranged on top of a diverse
set of textured backgrounds. Certain models, like SPAIR*, SPACE, and GenV2, struggle to handle
diverse backgrounds. Other methods, however, seem to benefit from simpler objects, showing im-
provements in segmentation performance over both PLAINBG and CLEVRTEX scenarios, indicating
that these models rely on simpler, more consistent objects.

Consistent Background GRASSBG has the same complex forest grass background in all scenes.
The background is richer and more complex than in PLAINBG. As glimpse-space methods ( ⇤⇤) tend to
model the background explicitly, we observe that contrasting consistent background aids these models
greatly. Pixel-space methods (�) also perform slightly better in this setting than on CLEVRTEX
where the background varies. However, the effect is not as pronounced as for glimpse-based ( ⇤⇤)
approaches, with the overall performance roughly matching what was observed on CLEVRTEX.

6 Conclusions

Unsupervised object learning and scene segmentation is a challenging task. Interestingly, given the
existing metrics and commonly used datasets (e.g., CLEVR), current approaches show impressive
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performance, yet we have shown that they are easily challenged when visual complexity increases.
To this end, we present CLEVRTEX, a new benchmark that aims to increase visual scene complexity,
which contains richer textures, materials, and shapes, to encourage progress towards methods
applicable to real images in the wild.

In our experiments, GNM [30] and IODINE [24] perform the best out of glimpse-based and pixel-
space models, respectively, with GNM showing the best segmentation performance overall. However,
almost all methods struggle to handle multiple textured scenes, resulting in a significant performance
gap with respect to the closest current benchmark, CLEVR. Our findings suggest that pixel-space
methods tend to be more prone to overfitting consistent color regions and smooth gradients. On the
other hand, sprite- and glimpse-based approaches tend to memorize small repeated patterns, which
offers an advantage on CLEVRTEX. Further testing, however, shows that these models reconstruct
smooth backgrounds and recognize sharp changes as objects. As such, even the approaches that show
some ability to handle textured environments focus largely on scene appearance, failing to learn and
exploit global context clues that might align with semantic objects.

We believe that textures pose a challenge to current pixel-space and glimpse-based methods as they
are built to exploit simple visual elements and uniform appearance that is present in previous datasets,
partly due to the reconstruction objectives. We find evidence for this in our experiments with the
dataset variants: consistency within objects, as seen in our VARBG variant, and consistency in
backgrounds (PLAINBG and GRASSBG) helps to learn better models than the full CLEVRTEX where
there is no simple intra- and inter-appearance consistency. Only on simpler scenes (Fig. 3) the best
performing methods succeed at segmenting some objects.

Thus, CLEVRTEX offers new challenges for unsupervised multi-object segmentation, especially for
evaluating generalization. Furthermore, the three variants and two additional test sets can serve as
a diagnostic tool for developing new methods, and the extensive evaluation acts as a standardized
benchmark for current and future methods.

Limitations The proposed dataset contains a limited number of primitive shapes and a catalog of
60 materials. Although future models might exploit the non-exhaustive nature of object appearance,
e.g., memorizing object reconstructions than learning generalizable scene decompositions, we have
shown that current methods are, in fact, faced with a significant challenge, even at a slight increase of
data complexity (e.g., on PLAINBG). To further address this limitation, we have created the OOD
dataset, which should serve as an additional test for the generalization ability of models outside the
training distribution. Overall, CLEVRTEX is still a synthetic dataset and does not fully close the gap
to real-world data. However, until methods can solve CLEVRTEX, generalization to real images is
likely out of reach.

Broader Impact The work presented here critically evaluates current approaches for unsupervised
multi-object segmentation. The introduced datasets are fully simulated renderings of 3D primitives
and do not contain any people or personal information. Our benchmark aims to establish and
standardize evaluation practices, provide new challenges for current algorithms, and help future
research compare with prior work. While CLEVRTEX is highly important for current research, its
impact outside of the research community is low as current methods can not yet properly deal with
real images.
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