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Abstract

Hyperparameter optimization (HPO) is a core problem for the machine learning
community and remains largely unsolved due to the significant computational re-
sources required to evaluate hyperparameter configurations. As a result, a series of
recent related works have focused on the direction of transfer learning for quickly
fine-tuning hyperparameters on a dataset. Unfortunately, the community does
not have a common large-scale benchmark for comparing HPO algorithms. In-
stead, the de facto practice consists of empirical protocols on arbitrary small-scale
meta-datasets that vary inconsistently across publications, making reproducibility
a challenge. To resolve this major bottleneck and enable a fair and fast comparison
of black-box HPO methods on a level playing field, we propose HPO-B, a new
large-scale benchmark in the form of a collection of meta-datasets. Our benchmark
is assembled and preprocessed from the OpenML repository and consists of 176
search spaces (algorithms) evaluated sparsely on 196 datasets with a total of 6.4
million hyperparameter evaluations. For ensuring reproducibility on our bench-
mark, we detail explicit experimental protocols, splits, and evaluation measures for
comparing methods for both non-transfer, as well as, transfer learning HPO.

1 Introduction

Hyperparameter Optimization (HPO) is arguably the major open challenge for the machine learning
community due to the expensive computational resources demanded to evaluate configurations.
As a result, HPO and its broader umbrella research area, AutoML, have drawn particular interest
over the past decade [2, 18, 30, 31]. Black-box HPO is a specific sub-problem that focuses on
the case where the function to be optimized (e.g. the generalization performance of an algorithm)
is unknown, non-differentiable with respect to the hyperparameters, and intermediate evaluation
proxies are not computable (opposed to gray-box HPO [23] which accesses intermediate performance
measurements).

Although black-box HPO is a core problem, existing solutions based on parametric surrogate models
for estimating the performance of a configuration overfit the limited number of evaluated configu-
rations. As a result, the AutoML community has recently invested efforts in resolving the sample-
inefficiency of parametric surrogates via meta- and transfer-learning [13, 19, 27, 28, 33, 35, 38].
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Unfortunately, despite the promising potential of transfer-learning in black-box HPO, the impact of
such algorithms is hindered by their poor experimental reproducibility. Our personal prior research
experience, as well as the feedback from the community, highlight that reproducing and generalizing
the results of transfer-learning HPO methods is challenging. In essence, the problem arises when the
results of a well-performing method in the experimental protocol of a publication either can not be
replicated; or when the method underperforms in a slightly different empirical protocol. We believe
that a way of resolving this negative impasse is to propose a new public large-scale benchmark for
comparing HPO methods, where the exact training/validation/test splits of the meta-datasets, the
exact evaluation protocol, and the performance measures are well-specified. The strategy of adopting
benchmarks is a trend in related areas, such as in computer vision [8], or NAS [9, 40].

In this perspective, we present HPO-B3, the largest public benchmark of meta-datasets for black-box
HPO containing 6.4M hyperparameter evaluations across 176 search spaces (algorithms) and on 196
datasets in total. The collection is derived from the raw data of OpenML [32], but underwent an
extensive process of cleaning, preprocessing and organization (Section 5). Additionally, we offer
off-the-shelf ready variants of the benchmark that are adapted for both non-transfer, as well as transfer
HPO experiments, together with the respective evaluation protocols (Section 6). This large, diverse,
yet plug-and-play benchmark can significantly boost future research in black-box HPO.

2 Terminology

To help the reader navigate through our paper, we present the compact thesaurus of Table 1 for
defining the vernacular of the HPO community.

Term Definition
Configuration Specific settings/values of hyperparameters
Search space The domain of a configuration: scale and range of each hyperparameter’s values
Response The performance of an algorithm given a configuration and dataset
Surrogate A (typically parametric) function that approximates the response
Seed Set of initial configurations used to fit the initial surrogate model
Black-box The response is an unknown and non-differentiable function of a configuration
Task An HPO problem given a search space and a dataset
Evaluation The measured response of a configuration on a dataset
Trial An evaluation on a task during the HPO procedure
Meta-dataset Collection of recorded evaluations from different tasks on a search space
Meta-instance An evaluation in the meta-dataset for one of the tasks
Meta-feature Descriptive attributes of a dataset
Source tasks In a meta- or transfer-learning setup refers to the known tasks we train from
Target tasks In a meta- or transfer-learning setup refers to the new tasks we test on
Benchmark New definition: Collection of meta-datasets from different search spaces

Table 1: A thesaurus of the common HPO terminology used throughout this paper

3 Related Work

Non-transfer black-box HPO: The mainstream paradigm in HPO relies on surrogates to estimate the
performance of hyperparameter configurations. For example, [2] were the first to propose Gaussian
Processes (GP) as surrogates. The same authors also propose a Tree Parzen Estimator (TPE) for
computing the non-parametric densities of the hyperparameters given the observed performances.
Both approaches achieve a considerable lift over random [3] and manual search. To address the cubic
run-time complexity of GPs concerning the number of evaluated configurations, DNGO [30] trains
neural networks for generating adaptive basis functions of hyperparameters, in combination with a
Bayesian linear regressor that models uncertainty. Alternatively, SMAC [18] represents the surrogate
as a random forest, and BOHAMIANN [31] employs Bayesian Neural Networks instead of plain
neural networks to estimate the uncertainty of a configuration’s performance. For an extensive study

3The benchmark is publicly available at https://github.com/releaunifreiburg/HPO-B
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on non-transfer Bayesian Optimization techniques for HPO, we refer the readers to [6, 29] that study
the impact of the underlying assumptions associated with black-box HPO algorithms.

Transfer black-box HPO: To expedite HPO, it is important to leverage information from existing
evaluations of configurations from prior tasks. A common approach is to capture the similarity
between datasets using meta-features (i.e. descriptive dataset characteristics). Meta-features have
been used as a warm-start initialization technique [14, 20], or as part of the surrogate directly [1].
Transfer learning is also explored through the weighted combination of surrogates, such as in TST-
R [38], RGPE [13], and TAF-R [39]. Another direction is learning a shared surrogate across tasks.
ABLR optimizes a shared hyperparameter embedding with separate Bayesian linear regressors per
task [24], while GCP [27] maps the hyperparameter response to a shared distribution with a Gaussian
Copula process. Furthermore, FSBO [35] meta-learns a deep-kernel Gaussian Process surrogate,
whereas DMFBS incorporates the dataset context through end-to-end meta-feature networks [20].

Meta-datasets: The work by Wistuba et al. [37] popularised the usage of meta-dataset benchmarks
with pre-computed evaluations for the hyperparameters of SVM (288 configurations) and Adaboost
(108 configurations) on 50 datasets; a benchmark that inspired multiple follow-up works [13, 34].
Existing attempts to provide HPO benchmarks deal only with the non-transfer black-box HPO
setup [10], or the gray-box HPO setup [12]. As they contain results for one or very few datasets per
search space, they cannot be used for the evaluation of transfer black-box HPO methods. Nevertheless,
there is a trend in using evaluations of search spaces from the OpenML repository [15], which contains
evaluations reported by an open community, as well as large-scale experiments contributed by specific
research labs [4, 22]. However, the choice of OpenML search spaces in publications is ad-hoc: one
related work uses SVM and XGBoost [24], a second uses GLMNet and SVM [35], while a third
paper uses XGBoost, Random Forest and SVM [25]. We assess that the community (i) inconsistently
cherry-picks (assuming bona fides) search spaces, with (ii) arbitrary train/validation/test splits of the
tasks within the meta-dataset, and (iii) inconsistent preprocessing of hyperparameters and responses.
In our experiments, we observed that existing methods do not generalize well on new meta-datasets.

Our Novelty: As a remedy, we propose a novel benchmark derived from OpenML [15], that resolves
the existing reproducibility issues of existing non-transfer and transfer black-box HPO methods, by
ensuring a fairly-reproducible empirical protocol. The contributions of our benchmark are multi-fold.
First of all, we remove the confounding factors induced by different meta-dataset preprocessing
pipelines (e.g. hyperparameter scaling and transformations, missing value imputations, one-hot
encodings, etc.). Secondly, we provide a specified collection of search spaces, with specified datasets
and evaluations. Furthermore, for transfer learning HPO methods, we also provide pre-defined
training/validation/testing splits of tasks. For experiments on the test tasks, we additionally provide
5 seeds (i.e. 5 sets of initial hyperparameters to fit the initial surrogate) with 5 hyperparameter
configurations, each. We also highlight recommended empirical measures for comparing HPO
methods and assessing their statistical significance in Section 6. In that manner, the results of different
papers that use our benchmark can be compared directly without fearing the confounding factors.
Table 2 presents a summary of the descriptive statistics of meta-datasets from prior literature. To the
best of our awareness, the proposed benchmark is also richer (in the number of search spaces and
their dimensionality) and larger (in the number of evaluations) than all the prior protocols.

Paper Venue/Year # Search Spaces # Datasets # HPs # Evals.
[1] ICML ’13 1 29 2 3K
[37] DSAA ’15 2 50 2, 4 20K
[14] AAAI ’15 3 57 4, 5 93K
[36] ECML-PKDD ’15 17 59 1-7 1.3M
[24] NeurIPS ’18 2 30 4, 10 655K
[27] ICML ’20 4 26 6, 9 343K
[20] DMKD ’21 1 120 7 414K
[35] ICLR ’21 3 80 2, 4 864K

Our HPO-B-v1 - 176 196 1-53 6.39M
Our HPO-B-v2/-v3 - 16 101 2-18 6.34M

Table 2: Summary statistics for various meta-datasets considered in prior works.
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4 A Brief Explanation of Bayesian Optimization Concepts

As we often refer to HPO methods, in this section we present a brief coverage of Bayesian Opti-
mization as the most popular HPO method for black-box optimization. HPO aims at minimizing the
function f : X → R which maps each hyperparameter configuration x ∈ X to the validation loss
obtained when training the machine learning model using x. Bayesian Optimization keeps track of
all evaluated hyperparameter configurations in a history D = {(xi, yi)}i, where yi ∼ N (f(xi), σ

2
n)

is the (noisy) response which can be heteroscedastic [17] in real-world problems [6]. A probabilistic
model, the so-called surrogate model, is used to approximate the behavior of the response function.
Gaussian Processes are a common choice for the surrogate model [26, 29]. Bayesian Optimization
is an iterative process that alternates between updating the surrogate model as described above and
selecting the next hyperparameter configuration. The latter is done by finding the configuration which
maximizes an acquisition function, which scores each feasible hyperparameter configuration using
the surrogate model by finding a trade-off between exploration and exploitation. Arguably, the most
popular acquisition function is the Expected Improvement [21]. The efficiency of Bayesian Optimiza-
tion depends on the surrogate model’s ability to approximate the response function. However, this
is a challenging task since every optimization starts with no or little knowledge about the response
function. To overcome this cold-start problem, transfer methods have been proposed, which leverage
information from other tasks of the same search space.

5 Benchmark Description

The benchmark HPO-B is a collection of meta-datasets collected from OpenML [15] with a diverse
set of search spaces. We present three different versions of the benchmark, as follows:

• HPO-B-v1: The raw benchmark of all 176 search spaces;

• HPO-B-v2: Subset of 16 search-spaces with the biggest amount of evaluations;

• HPO-B-v3: Split of HPO-B-v2 into training, validation and testing.

When assembling the benchmark HPO-B-v1 we noticed that most of the evaluations are reported
for a handful of popular search spaces, in particular, we noticed that 9% of the top meta-datasets
include 99.3% of the evaluations. As a result, we created a second version HPO-B-v2 that includes
only the frequent meta-datasets that have at least 10 datasets with at least 100 evaluations per dataset
(Section 5.1). Furthermore, as we clarified in Section 3 a major reproducibility issue of the related
work on transfer HPO is the lack of clear training, validation, and test splits for the meta-datasets. To
resolve this issue, we additionally created HPO-B-v3 as a derivation of HPO-B-v2 with pre-defined
splits of the training, validation, and testing tasks for every meta-dataset, in addition to providing
initial configurations (seeds) for the test tasks. The three versions were designed to fulfill concrete
purposes with regards to different types of HPO methods. For non-transfer black-box HPO methods,
we recommend using HPO-B-v2 which offers a large pool of HPO tasks. Naturally, for transfer HPO
tasks we recommend using HPO-B-v3 where meta-datasets are split into training, validation, and
testing. We still are releasing the large HPO-B-v1 benchmark to anticipate next-generation methods
for heterogeneous transfer learning techniques that meta-learn surrogates across different search
spaces, where all 176 meta-datasets might be useful despite most of them having few evaluations.

Concretely, HPO-B-v3 contains the set of filtered search spaces of HPO-B-v2, which are specially
split into four sets: meta-train, meta-validation. meta-test and an augmented version of the meta-train
dataset. Every split contains different datasets from the same search space. We distributed the datasets
per search space as 80% of the datasets to meta-train, 10% to meta-validation, and 10% to meta-test,
respectively. A special, augmented version of the meta-train is created by adding all other search
space evaluations from HPO-B-v1 that are not part of HPO-B-v3. On the other hand, in HPO-B-v3
we also provide seeds for initializing the HPO. They are presented as five different sets of five initial
configurations to be used by a particular HPO method. By providing five different seeds we decrease
the random effect of the specific initial configurations. To ease the comparison among HPO methods,
we suggest using the recommended initial configurations for testing. Although, we admit that some
algorithms proposing novel warm-starting strategies might need to bypass the recommended initial
configurations.
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5.1 Benchmark summary

The created benchmark contains 6,394,555 total evaluations across 176 search spaces that are sparsely
evaluated on 196 datasets. By accounting for the search spaces that comply with our filtering criteria
(at least 10 datasets with 100 evaluations), we obtain HPO-B-v2 with 16 different search spaces and
6,347,916 evaluations on 101 datasets. Notice that the benchmark does not include evaluations for
all datasets in every search space. The number of dimensions, datasets, and evaluations per search
space is listed in Table 3. An additional description of the rest of all the search spaces in HPO-B-v1
is presented in the Appendix. In addition, Table 3 shows the description of the meta-dataset splits
according to the HPO-B-v3.

Search Space ID #HPs Meta-Train Meta-Validation Meta-Test
#Evals. #DS #Evals. #DS #Evals. #DS

rpart.preproc (16) 4796 3 10694 36 1198 4 1200 4
svm (6) 5527 8 385115 51 196213 6 354316 6
rpart (29) 5636 6 503439 54 184204 7 339301 6
rpart (31) 5859 6 58809 56 17248 7 21060 6
glmnet (4) 5860 2 3100 27 598 3 857 3
svm (7) 5891 8 44091 51 13008 6 17293 6
xgboost (4) 5906 16 2289 24 584 3 513 2
ranger (9) 5965 10 414678 60 73006 7 83597 7
ranger (5) 5970 2 68300 55 18511 7 19023 6
xgboost (6) 5971 16 44401 52 11492 6 19637 6
glmnet (11) 6766 2 599056 51 210298 6 310114 6
xgboost (9) 6767 18 491497 52 211498 7 299709 6
ranger (13) 6794 10 591831 52 230100 6 406145 6
ranger (15) 7607 9 18686 58 4203 7 5028 7
ranger (16) 7609 9 41631 59 8215 7 9689 7
ranger (7) 5889 6 1433 20 410 2 598 2

Table 3: Description of the search spaces in HPO-B-v3; "#HPs" stands for the number of hyperpa-
rameters, "#Evals." for the number of evaluations in a search space, while "#DS" for the number of
datasets across which the evaluations are collected. The search spaces are named with the respective
OpenML version number (in parenthesis), and their original names are preceded by mlr.classif.

5.2 Preprocessing

The OpenML-Python API [16] was used to download the experiment data from
OpenML [15]. We have collected all evaluations (referred to as runs in OpenML) tagged
with Verified_Supervised_Classification available until April 15, 2021.

While the hyperparameter configuration was directly available for many evaluations, some
of them had to be parsed from WEKA arguments (e.g. weka.filters.unsupervised.
attribute.RandomProjection -P 16.0 -R 42 -D Sparse1). A small percentage (<0.001%)
of these were too complex in structure to be automatically parsed, so they were discarded. Duplicate
responses for the same hyperparameter configuration have been resolved by keeping only one random
response. Finally, all tasks with less than five observations were also discarded.

All categorical hyperparameters were one-hot encoded, taking into account all categories that occur
in the different datasets for a search space. Missing values have been replaced with zeros and the
corresponding missing indicator (a new feature) has been set to one. Hyperparameters that had
the same value for all configurations in a search space were dropped. We manually decided which
hyperparameters required log-scaling by inspecting the distributions of each hyperparameter in each
space (considerable manual effort). Finally, the hyperparameter ranges were scaled to [0, 1]. Further
details on the pre-processing are explained in Appendix G.
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5.3 Benchmark JSON schema

The benchmark is offered as easily accessible JSON files. The first-level key of each JSON schema
corresponds to the search space ID, whereas the second-level key specifies the dataset ID. By
accessing the JSON schema with the search space s and the dataset t, we obtain the meta-dataset
D(s,t) = {(x(s,t)

i , y
(s,t)
i )}i, x(s,t)

i ∈ X (s). The meta-dataset exhibits the following structure, where
N denotes the number of evaluations available for the specific task:

{search_space_ID: {dataset_ID:{X:[[x1],. . . ,[xN]], y:[[y1],. . . ,[yN]]}}}

The initialization seeds are similarly provided as a JSON schema, where the third-level subschema
has 5 keys whose values are the indices of the samples to use as initial configurations.

5.4 An additional continuous variant of HPO-B

OpenML [15] offers only discrete evaluations of hyperparameter configurations. Continuous HPO
search methods are not applicable out-of-the-box on the discrete meta-datasets of HPO-B, because
evaluations are not present for every possible configuration in a continuous space. To overcome this
limitation, we release an additional continuous version of HPO-B based on task-specific surrogates.
For every task, we fit an XGBoost [5] regression model with a maximum depth of 6 ańd two cross-
validated hyper-hyperparameters, concretely the learning rate and the number of rounds. We train
the surrogates to approximate the observed response values of the evaluated configurations on each
task. As a result, for any arbitrary configuration in the continuous space, the approximate evaluation
of a configuration’s response is computed through the estimation of the respective task’s surrogate.
Furthermore, a download link to the trained surrogate models is also provided in the repository 4.

6 Recommended Experimental Protocol

One of the primary purposes of HPO-B is to standardize and facilitate the comparison between HPO
techniques on a level playing field. In this section, we provide two specific recommendations: which
benchmark to use for a type of algorithm and what metrics to use for comparing results.

Evaluation Metrics We define the average normalized regret at trial e (a.k.a. average distance
to the minimum) as min

x∈X (s,t)
e

(
f (s,t)(x)− y∗min

)
/ (y∗max − y∗min) with X (s,t)

e as the set of hyperpa-
rameters that have been selected by a HPO method up to trial e, with y∗min and y∗max as the best and
worst responses, respectively. The average rank represents the mean across tasks of the ranks of
competing methods computed using the test accuracies of the best configuration until the e-th trial.
Results across different search spaces are computed by a simple mean over the search-space-specific
results.

Non-Transfer Black-Box HPO Methods should be compared on all the tasks in HPO-B-v2 and
for each of the five initial configurations. The authors of future papers should report the normalized
regret and the mean ranks for all trials from 1 to 100 (excluding the seeds). We recommend that the
authors show both aggregated and per search-space (possibly moved to the appendix) mean regret
and mean rank curves for trials ranging from 1 to 100. In other words, as many runs as the number of
tasks for given space times the number of initialization seeds. To assess the statistical significance of
methods, we recommend that critical difference diagrams [7] be computed for the ranks of all runs
@25, @50, and @100 trials.

Transfer Black-Box HPO Methods should be compared on the meta-data splits contained in HPO-
B-v3. All competing methods should use exactly the evaluations of the provided meta-train datasets
for meta- and transfer-learning their method, and tune the hyper-hyperparameters on the evaluations
of the provided meta-validation datasets. In the end, the competing methods should be tested on the
provided evaluations of the meta-test tasks. As our benchmark does not have pre-computed responses
for all possible configurations in a space, the authors either (i) need to adapt their HPO acquisitions
and suggest the next configuration only from the set of the pre-computed configurations for each

4https://github.com/releaunifreiburg/HPO-B
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Figure 1: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the non-transfer HPO methods on HPO-B-v2

specific meta-test task, or (ii) use the continuous variant of HPO-B. Additionally, we recommend
that the authors present (see details in the paragraph above) regret and rank plots, besides the critical
difference diagrams @25, @50, and @100 trials. If a future transfer HPO method proposes a novel
strategy for initializing configurations, for the sake of reproducibility we still recommend showing
additional results with our initial configurations.

7 Experimental Results

The benchmark is intended to serve as a new standard for evaluating non-transfer and transfer
black-box HPO methods. In the following, we will compare different methods according to our
recommended protocol described in Section 6. This is intended to demonstrate the usefulness of our
benchmark, while at the same time serving as an example for the aforementioned recommendations
on comparing baselines and presenting results.

Figure 2: Aggregated comparisons of different surrogates and acquisition functions for non-transfer
HPO tree-based methods on HPO-B-v2; BT stands for Boosted Trees, RF for Random Forests, EI for
Expected Improvement, UCB for Upper Confidence Bound, and PI for Probabiliy of Improvement.

7.1 Non-transfer Black-Box HPO

First, we compare Random Search, DNGO, BOHAMIANN, Gaussian Process (GP) with Matérn 3/2
kernel, and Deep Gaussian Process (FSBO [35] without pre-training) on HPO-B-v2 in the non-transfer
scenario. As recommended by us earlier, in Figure 10 we report aggregated results for normalized
regret, average rank, and critical difference plots. In addition, we report in Figure 1 the aggregated
normalized regret per search space. The values in the figures for the number of trials equal to 0
correspond to the result after the five initialization steps. According to Figure 1, BOHAMIANN and
Deep GP achieve comparable aggregated normalized regret across all search spaces, which suggests
that both methods are equally well-suited for the tasks. The average rank and the critical difference

7



plot paint a different picture, in which Deep GP and DNGO achieve better results. This discrepancy
arises because each metric measures different performance aspects on different tasks, so it’s important
to report both. As can be seen in Figure 11, Deep GP achieves better results than the GP in most
of the tasks, which leads to a better average ranking. However, as we can see in Figure 10, the
regrets are observed at heterogeneous scales that can skew the overall averages. In some cases where
BOHAMIANN outperforms Deep GP (e.g. search spaces 5527, 5859, and 5636), the difference
in normalized regret is evident, due to the nature of the search space, whereas in cases where it is
the other way around, however, the difference is only slightly less evident (e.g. search spaces 4796,
5906, and 7609). An important aspect of HPO is the choice of the surrogate function and acquisition.
Figure 2 presents an ablation of typical combinations and shows the accuracy of the Boosted Tree as
a surrogate.

Figure 3: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the transfer learning HPO methods on HPO-B-v3

7.2 Transfer Black-Box HPO

Finally, we compare RGPE [13], ABLR [24], TST-R [38], TAF-R [39], and FSBO [35] on HPO-B-v3
in the transfer scenario. All hyper-hyperparameters were optimized on the meta-validation datasets
and we report results aggregated across all test search spaces in terms of normalized regret and
average rank in Figure 3. The results per search space for normalized regret and average rank are
given in Figure 9 and Figure 12, respectively. FSBO shows improvements over all the compared
methods for the normalized regret metric and average rank metric. On the other hand, RGPE is
seemingly performing similar to TST-R and TAF-R for the average regret, but performs significantly
better for the average rank metric. The explanation is the same as for our last experiment and can
mainly be traced back to the strong performance of RGPE in search spaces 5971 and 5906. Such
behaviors strengthen our recommendations of Section 6 for showing results in terms of both the ranks
and the normalized regrets, as well as the ranks’ statistical significance.

7.3 Comparing Non-Transfer vs. Transfer Black-Box HPO

We provide a cumulative comparison of both non-transfer and transfer black-box methods in Figure 4,
for demonstrating the benefit of transfer learning in HPO-B-v3. We see that the transfer methods
(FSBO, RGPE, TST-R, TAF-R) achieve significantly better performances than the non-transfer tech-
niques (GP, DNGO, BOHAMIANN, Deep Kernel GP). On the average rank plot and the associated
Critical Difference diagrams, we notice that FSBO [35] achieves significantly better results than all
baselines, followed by RGPE [13]. A detailed comparison of the ranks per search-space is presented
in the supplementary material. In particular, the direct gain of transfer learning can be observed by
the dominance that FSBO has over Deep Kernel GP, considering that both use exactly the same
surrogate model and the same acquisition function. In comparison, the deep kernel parameters in
FSBO are initialized from the solution of a meta-learning optimization conducted on the meta-train
tasks of HPO-B-v3 (transfer), while the parameters of Deep Kernel GP are initialized randomly (no
transfer).
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Figure 4: Comparisons of normalized regret and mean ranks across all search spaces for the transfer
learning and non-transfer HPO methods on HPO-B-v3

7.4 Validating the Continuous HPO-B Benchmark

We further show that the surrogate-based continuous variant of HPO-B (Section 5.4) provides a
benchmark where HPO methods achieve similar performances compared to the discrete HPO-B. We
present the results of three typical non-transfer HPO methods (Gaussian Process (GP), Deep Kernel
GP, and Random Search) on the continuous benchmark in Figure 5. The cumulative performance on
the continuous surrogate tasks matches well with the performance of these methods on the discrete
tasks (Figure 2). In particular, we highlight a similar comparative trend of Deep Kernel GP being
marginally better than GP after many trials but significantly superior to Random Search.

Figure 5: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
three typical non-transfer HPO methods on the continuous search spaces of HPO-B-v3

8 Limitations of HPO-B

A limitation of HPO-B is that it only covers black-box HPO tasks, instead of other HPO problems,
such as grey-box/multi-fidelity HPO, online HPO, or pipeline optimization for AutoML libraries.
In addition, HPO-B is restricted by the nature of search spaces found in OpenML, which contains
evaluations for well-established machine learning algorithms for tabular data, but lacks state-of-
the-art deep learning methods, or tasks involving feature-rich data modalities (image, audio, text,
etc.). An additional limitation is the structured bias and noise produced by relying on a surrogate for
constructing continuous search spaces. However, it has been found that tree-based models are able to
model the performance of several machine learning algorithms and produce surrogates that resemble
real-world problems [11]. Other sources of bias and noise might come from the user-oriented data
generation process for the evaluation on discrete search spaces, which might potentially incur in
wrong values or hyperparameters within ranges reflecting prior knowledge or typical human choices.
These risks can be reduced by benchmarking on a large number of search spaces, as we suggested
throughout the paper.
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9 Conclusions

Recent HPO and transfer-learning HPO papers inconsistently use different meta-datasets, arbitrary
train/validation/test splits, as well as ad-hoc preprocessing, which makes it hard to reproduce the
published results. To resolve this bottleneck, we propose HPO-B, a novel benchmark based on the
OpenML repository, that contains meta-datasets from 176 search spaces, 196 datasets, and a total of
6.4 million evaluations. For promoting reproducibility at a level playing field we also provide initial
configuration seeds, as well as predefined training, validation and testing splits. Our benchmark
contains pre-processed meta-datasets and a clear set of HPO tasks and exact splits, therefore, it
enables future benchmark results to be directly comparable. We believe our benchmark has the
potential to become the de facto standard for experimentation in the realm of black-box HPO.
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