
Appendix: Pervasive Label Errors in Test Sets
Destabilize Machine Learning Benchmarks

A Datasets

For our study, we select 10 of the most-cited, open-source datasets created in the last 20 years from the
Wikipedia List of ML Research Datasets [26], with preference for diversity across computer vision,
NLP, sentiment analysis, and audio modalities. Citation counts were obtained via the Microsoft
Cognitive API. In total, we evaluate six visual datasets: MNIST, CIFAR-10, CIFAR-100, Caltech-256,
ImageNet, and QuickDraw; three text datasets: 20news, IMDB, and Amazon Reviews; and one audio
dataset: AudioSet.

A.1 Dataset details

For each of the datasets we investigate, we summarize the original data collection and labeling
procedure as they pertain to potential label errors.

MNIST [22]. MNIST is a database of binary images of handwritten digits. The dataset was
constructed from Handwriting Sample Forms distributed to Census Bureau employees and high
school students; the ground-truth labels were determined by matching digits to the instructions of the
task to copy a particular set of digits [11]. Label errors may arise from failure to follow instructions
or from handwriting ambiguities.

CIFAR-10 / CIFAR-100 [21]. The CIFAR-10 and CIFAR-100 datasets are collections of small
32⇥ 32 images and labels from a set of 10 or 100 classes, respectively. The images were collected
by searching the internet for the class label. Human labelers were instructed to select images that
matched their class label (query term) by filtering out mislabeled images. Images were intended to
only have one prominent instance of the object, but could be partially occluded as long as it was
identifiable to the labeler.

Caltech-256 [10]. Caltech-256 is a database of images sorted into 256 classes, plus an extra class
called “clutter”. Images were scraped from image search engines. Four human labelers were
instructed to rate the images into “good,” “bad,” and “not applicable,” eliminating the images that
were confusing, occluded, cluttered, artistic, or not an example of the object category from the dataset.
Because no explicit test set is provided, we study label errors in the entire dataset to ensure coverage
of any test set split used by practitioners. Modifications: In our study, we ignore data with the
ambiguous “clutter” label (class 257) and consider only the images labeled class 1 to class 256.

ImageNet [6]. ImageNet is a database of images belonging to one of 1,000 classes. Images were
scraped by querying words from WordNet “synonym sets” (synsets) on several image search engines.
The images were labeled by Amazon Mechanical Turk workers who were asked whether each image
contains objects of a particular given synset. Workers were instructed to select images that contain
objects of a given subset regardless of occlusions, number of objects, and clutter to “ensure diversity”
in the dataset’s images.

QuickDraw [12]. The Quick, Draw! dataset contains more than 1 billion doodles collected from
users of an experimental game to benchmark image classification models. Users were instructed to
draw pictures corresponding to a given label, but the drawings may be “incomplete or may not match
the label.” Because no explicit test set is provided, we study label errors in the entire dataset to ensure
coverage of any test set split used by practitioners.

20news [30]. The 20 Newsgroups dataset is a collection of articles posted to Usenet newsgroups used
to benchmark text classification and clustering models. The label for each example is the newsgroup
it was originally posted in (e.g. “misc.forsale”), so it is obtained during the overall data collection
procedure.

IMDB [27]. The IMDB Large Movie Review Dataset is a collection of movie reviews to benchmark
binary sentiment classification. The labels were determined by the user’s review: a score 4 out of
10 is considered negative; � 7 out of 10 is considered positive.

14

https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

Amazon Reviews [29]. The Amazon Reviews dataset is a collection of textual reviews and 5-star
ratings from Amazon customers used to benchmark sentiment analysis models. We use the 5-core
(9.9 GB) variant of the dataset. Modifications: In our study, 2-star and 4-star reviews are removed
due to ambiguity with 1-star and 5-star reviews, respectively. If these reviews were left in the dataset,
they could inflate error counts. Because no explicit test set is provided, we study label errors in the
entire dataset to ensure coverage of any test set split used by practitioners.

AudioSet [8]. AudioSet is a collection of 10-second sound clips drawn from YouTube videos and
multiple labels describing the sounds that are present in the clip. Three human labelers independently
rated the presence of one or more labels (as “present,” “not present,” and “unsure”), and majority
agreement was required to assign a label. The authors note that spot checking revealed some label
errors due to “confusing labels, human error, and difference in detection of faint/non-salient audio
events.”

15

B Mechanical Turk details

Mechanical Turk budget Mechanical Turk workers were paid an hourly rate of $7.20 (based on an
estimated evaluation time of 5 seconds per image). In total, we spent $1623.29 on human verification
experiments on Mechanical Turk. Results would likely improve with a larger budget.

Figure S1: Mechanical Turk worker interface showing an example from ImageNet (with given label
“southern black window”). For each data point algorithmically identified as a potential label error, the
interface presents the data point, along with examples belonging to the given class. The interface
also shows data points belonging to the confidently predicted class (in this case, “scorpion”). Either
the given label is shown as option (a) and the predicted label is shown as option (b), or vice versa
(chosen randomly). The worker is asked whether the image belongs to class (a), (b), both, or neither.

16

Figure S2: An example from https://labelerrors.com that Mechanical Turk workers got wrong.
The image clearly doesn’t match the ImageNet given label “tick,” but upon close inspection, it does
not match the predicted label “scorpion” either. The insect shown is in fact an arachnid of the order
Solifugae, commonly known as camel spiders or wind scorpions. Despite the common name, this
animal is not a true scorpion.

17

https://labelerrors.com

C Details of confident learning (CL) for finding label errors

Here we summarize CL joint estimation and how it is used to algorithmically flag candidates
with likely label errors for subsequent human review. An unnormalized representation of the joint
distribution between observed and true label, called the confident joint and denoted Cỹ,y⇤ , is estimated
by counting all the examples with noisy label ỹ = i, with high probability of actually belonging to
label y⇤ = j. This binning can be expressed as:

Cỹ,y⇤ = |{x 2 Xỹ=i : p̂(ỹ = j;x,✓) � tj}|

where x is a data example (e.g. an image), Xỹ=i is the set of examples with noisy label ỹ = i,
p̂(ỹ = j;x,✓) is the out-of-sample predicted probability that example x actually belongs to noisy
class ỹ = j (even though its given label ỹ = i) for a given model ✓. Finally, tj is a per-class threshold
that, in comparison to other confusion matrix approaches, provides robustness to heterogeneity in
class distributions and class distributions, defined as:

tj =
1

|Xỹ=j |
X

x2Xỹ=j

p̂(ỹ = j;x,✓) (1)

A caveat occurs when an example is confidently counted into more than one bin. When this occurs,
the example is only counted in the argmaxl2[m] p̂(ỹ = l;x,✓) bin.

Qỹ,y⇤ is estimated by normalizing Cỹ,y⇤ , as follows:

Q̂ỹ=i,y⇤=j =

Cỹ=i,y⇤=jP
j2[m] Cỹ=i,y⇤=j

· |Xỹ=i|
P

i2[m],j2[m]

⇣
Cỹ=i,y⇤=jP

j2[m] Cỹ=i,y⇤=j
· |Xỹ=i|

⌘ (2)

The numerator calibrates
P

j Q̂ỹ=i,y⇤=j = |Xi|/
P

i2[m]|Xi|, 8i2[m] so that row-sums match the
observed prior over noisy labels. The denominator makes the distribution sum to 1.

18

D Failure modes of confident learning

Confident learning can fail to exactly estimate Xỹ=i,y⇤=j (the set of examples with noisy label i and
actual label j) when either:

• Case 1: p̂(ỹ=j;x,✓) < tj �! x 62 X̂ỹ=i,y⇤=j , or

• Case 2: p̂(ỹ=k;x,✓) � tk �! x 2 X̂ỹ=i,y⇤=k, for some k 6= j

where tj is the per-class average threshold (Eqn. 1 above, in Appendix C). In the real-world datasets
we study, the predicted probabilities are noisy such that p̂x,ỹ=j = p⇤x,ỹ=j + ✏x,ỹ=j , where p̂x,ỹ=j is
shorthand for p̂(ỹ=j;x,✓); p⇤x,ỹ=j is the ideal/non-noisy predicted probability; and ✏x,ỹ=j 2 R is
the error/deviation from ideal. Unlike learning with perfect labels, p⇤x,ỹ=j is not always 0 or 1 because
in our setting some classes are mislabeled as other classes some fraction of the time. Expressing the
two failure cases in terms of error, we have:

• Case 1: ✏x,ỹ=j < tj � p⇤x,ỹ=j �! x 62 X̂ỹ=i,y⇤=j , or

• Case 2: ✏x,ỹ=k � tk � p⇤x,ỹ=k �! x 2 X̂ỹ=i,y⇤=k, for some k 6= j

Case 1 bounds the error of p̂(ỹ=j;x,✓) (in the limit to �1) and Case 2 bound the error of
p̂(ỹ=j;x,✓) (in the limit to 1) such that when either occurs, 9(i, j)2[m]⇥[m], s.t. X̂ỹ=i,y⇤=j 6=
Xỹ=i,y⇤=j , i.e., we imperfectly estimate the label errors prior to human validation. Figure 2 shows
uniquely challenging examples (with excessively erroneous p̂(ỹ=j;x,✓)) when these failure mode
cases potentially occur.

19

E Reproducibility and computational requirements

For all 10 datasets, label errors were found using a Linux 18.04 LTS server compris-
ing 128GB of memory, an Intel Core i9-9820X Skylake X 10-Core 3.3GHz, and one
RTX 2080 TI GPU. We open-source a single script to reproduce the label errors for
every dataset at https://github.com/cleanlab/label-errors/blob/main/examples/Tutorial%

20-%20How%20To%20Find%20Label%20Errors%20With%20CleanLab.ipynb. Reproducing the label er-
rors for all 10 datasets using this tutorial takes about 5 minutes on a modern consumer-grade laptop
(e.g., a 2021 Apple M1 MacBook Air).

20

https://github.com/cleanlab/label-errors/blob/main/examples/Tutorial%20-%20How%20To%20Find%20Label%20Errors%20With%20CleanLab.ipynb
https://github.com/cleanlab/label-errors/blob/main/examples/Tutorial%20-%20How%20To%20Find%20Label%20Errors%20With%20CleanLab.ipynb

F Additional findings on implications of label errors in test data

Here we provide some additional details/results to complement Section 5 from the main text. Figure
3 depicts how the benchmarking rankings on the correctable subset of ImageNet examples change
significantly for an agreement threshold = 5, meaning 5 of 5 human raters need to independently
select the same alternative label for that data point and a new label to be included in the accuracy
evaluation. To ascertain that the results of this figure are not due to the setting of the agreement
threshold, the results for all three settings of the agreement threshold are shown in Sub-figure S3b.
Observe the negative correlation (for top-1 accuracy) occurs in all three settings. Furthermore,
observe that this negative correlation no longer holds when top-5 accuracy is used (shown in S3a),
likely because many of these models use a loss which maximizes (and overfits to noise) based on
top-1 accuracy, not top-5 accuracy. Regardless of whether top-1 or top-5 accuracy is used, model
benchmark rankings change significantly on the correctable set in comparison to the original test set
(see Table S1).

5% 12% 20%
Top-1 Acc on Correctable Set (original labels)

60%

70%

80%

T
op

-1
A

cc
on

C
or

re
ct

ab
le

Se
t

(c
or

re
ct

ed
la

b
el

s)

Nasnet

ResNet-18

Nasnet

ResNet-18

Nasnet

ResNet-18
Agreement
Threshold

3 of 5

4 of 5

5 of 5

(a) Top-1 Accuracy.

60% 70% 80%
Top-5 Acc on Correctable Set (original labels)

90%

95%

100%

T
op

-5
A

cc
on

C
or

re
ct

ab
le

Se
t

(c
or

re
ct

ed
la

b
el

s)

Nasnet

ResNet-18

Nasnet

ResNet-18

Nasnet
ResNet-18

Agreement
Threshold

3 of 5

4 of 5

5 of 5

(b) Top-5 Accuracy.

Figure S3: Benchmark ranking comparison of 34 pre-trained models on the ImageNet val set (used as
test data here) for various settings of the agreement threshold. Top-5 benchmarks are unchanged by
removing label errors (a), but change drastically on the correctable subset with original (erroneous)
labels versus corrected labels. Corrected test set sizes: 1428 (N), 960 (•), 468 (?).

1.0% 25.0% 50.0%

40%

60%

80%

Im
ag

en
et

T
op

-1
T
es

t
A

cc
ur

ac
y

(o
ri

g
in

a
l
la

b
el

s)

22
%

Platform & Model
————————

Keras 2.2.4 densenet169

Keras 2.2.4 nasnetlarge

Keras 2.2.4 resnet50

PyTorch 1.0 alexnet

PyTorch 1.0 resnet18

PyTorch 1.0 resnet50

PyTorch 1.0 vgg11

1.0% 25.0% 50.0%
Noise Prevalence (% of test set with correctable labels)

60%

70%

80%

Im
ag

en
et

T
op

-1
T
es

t
A

cc
ur

ac
y

(c
o
rr

ec
te

d
la

b
el

s)

8% 42
%

45
%

48
%

* Noise prevalance of 50% indicates the correctable set comprises half of the test set.

Figure S4: ImageNet top-1 original accuracy (top panel) and top-1 corrected accuracy (bottom panel)
vs Noise Prevalence with agreement threshold = 5 (instead of threshold = 3, c.f., Figure 4).

The dramatic changes in ranking shown in Table S1 may be explained by overfitting to the validation
set when these models are trained, which can occur inadvertently during hyper-parameter tuning, or by
overfitting to the noise in the training set. These results also suggest that keeping some correct labels
on a secret correctable set of label errors may provide a useful framework for detecting overfitting
on test sets toward a more reliable approach for benchmarking generalization accuracy across ML
models.

21

Table S1: Individual accuracy scores for Sub-figure 3b with agreement threshold = 3 of 5. Acc@1
stands for the (top-1 validation) original accuracy on the correctable set, in terms of original ImageNet
examples and labels. cAcc@1 stands for the (top-1 validation) corrected accuracy on the correctable
set of ImageNet examples with correct labels. To be corrected, at least 3 of 5 Mechanical Turk
raters had to independently agree on a new label, proposed by us using the class with the argmax
probability for the example.

Platform Model Acc@1 cAcc@1 Acc@5 cAcc@5 Rank@1 cRank@1 Rank@5 cRank@5

PyTorch 1.0 resnet18 6.51 82.42 73.81 99.58 34 1 30 1
PyTorch 1.0 resnet50 13.52 73.74 79.97 98.46 20 2 11 2
PyTorch 1.0 vgg19_bn 13.03 73.39 79.97 97.97 23 3 10 9
PyTorch 1.0 vgg11_bn 11.13 72.97 76.26 97.55 30 4 22 15
PyTorch 1.0 resnet34 13.24 72.62 77.80 98.11 21 5 18 6
PyTorch 1.0 densenet169 14.15 72.55 79.62 98.32 16 6 12 3
PyTorch 1.0 densenet121 14.29 72.48 78.64 97.97 14 7 16 11
PyTorch 1.0 vgg19 13.03 72.34 79.34 98.04 22 8 13 8
PyTorch 1.0 resnet101 14.64 71.99 81.16 98.25 11 9 5 4
PyTorch 1.0 vgg16 12.39 71.43 77.52 97.20 28 10 19 19
PyTorch 1.0 densenet201 14.71 71.22 80.81 97.97 10 11 6 10
PyTorch 1.0 vgg16_bn 13.59 71.15 77.87 97.41 19 12 17 17
Keras 2.2.4 densenet169 13.94 70.87 78.85 98.18 17 13 15 5
PyTorch 1.0 densenet161 15.13 70.73 80.11 98.04 7 14 8 7
Keras 2.2.4 densenet121 13.94 70.59 76.40 97.48 18 15 20 16
PyTorch 1.0 resnet152 15.27 70.45 81.79 97.83 5 16 4 12
PyTorch 1.0 vgg11 12.96 70.38 75.49 97.27 25 17 27 18
PyTorch 1.0 vgg13_bn 12.68 69.89 75.84 96.99 27 18 25 20
PyTorch 1.0 vgg13 13.03 69.47 76.40 96.78 24 19 21 24
Keras 2.2.4 nasnetmobile 14.15 69.40 79.27 96.85 15 20 14 21
Keras 2.2.4 densenet201 15.20 69.19 80.11 97.76 6 21 9 13
Keras 2.2.4 mobilenetV2 14.57 68.63 75.84 96.57 12 22 24 26
Keras 2.2.4 inceptionresnetv2 17.23 68.42 83.40 96.85 3 23 2 22
Keras 2.2.4 xception 17.65 68.28 82.07 97.62 2 24 3 14
Keras 2.2.4 inceptionv3 16.11 68.28 80.25 96.78 4 25 7 23
Keras 2.2.4 vgg19 11.83 68.07 73.95 95.52 29 26 29 30
Keras 2.2.4 mobilenet 14.36 67.58 73.60 96.08 13 27 31 27
Keras 2.2.4 resnet50 14.85 66.81 76.12 95.73 9 28 23 28
Keras 2.2.4 nasnetlarge 19.61 66.32 84.24 96.57 1 29 1 25
Keras 2.2.4 vgg16 12.82 66.11 74.09 95.66 26 30 28 29
PyTorch 1.0 inception_v3 14.92 65.62 75.56 95.38 8 31 26 31
PyTorch 1.0 squeezenet1_0 9.66 63.66 60.50 91.88 32 32 34 33
PyTorch 1.0 squeezenet1_1 9.38 62.54 61.97 92.30 33 33 33 32
PyTorch 1.0 alexnet 11.06 58.96 62.61 89.29 31 34 32 34

The benchmarking experiment was replicated on CIFAR-10 in addition to ImageNet. The individual
accuracies for CIFAR-10 are reported in Table S2. Similar to ImageNet, lower capacity models
tend to outperform higher capacity models when benchmarked using corrected labels (instead of the
original, erroneous labels).

Whereas traditional notions of benchmarking generalization accuracy assume the train and test
distributions are the same, this is nonsensical in the case of noisy training data — the test dataset
should never contain noise because in real-world applications, we want a trained model to predict
the error-free outputs on unseen examples, and benchmarking should measure as such. In two
independent experiments in ImageNet and CIFAR-10, we observe that models, pre-trained on the
original (noisy) datasets, with less expressibility (e.g., ResNet-18) tend to outperform higher capacity
models (e.g., NASNet) on the corrected test set labels.

22

Table S2: Individual CIFAR-10 accuracy scores for Sub-figure 3c with agreement threshold = 3 of 5.
Acc@1 stands for the top-1 validation accuracy on the correctable set (n = 18) of original CIFAR-10
examples and labels. See Table S1 caption for more details. Discretization of accuracies occurs due
to the limited number of corrected examples on the CIFAR-10 test set.

Platform Model Acc@1 cAcc@1 Acc@5 cAcc@5 Rank@1 cRank@1 Rank@5 cRank@5

PyTorch 1.0 googlenet 55.56 38.89 94.44 94.44 1 10 13 13
PyTorch 1.0 vgg19_bn 50.00 38.89 100.00 100.00 2 11 7 7
PyTorch 1.0 densenet169 44.44 50.00 100.00 100.00 5 4 2 2
PyTorch 1.0 vgg16_bn 44.44 44.44 100.00 100.00 3 8 5 5
PyTorch 1.0 inception_v3 44.44 33.33 100.00 100.00 6 12 8 8
PyTorch 1.0 resnet18 44.44 55.56 94.44 100.00 4 2 10 10
PyTorch 1.0 densenet121 38.89 50.00 100.00 100.00 8 5 3 3
PyTorch 1.0 densenet161 38.89 50.00 100.00 100.00 9 6 4 4
PyTorch 1.0 resnet50 38.89 44.44 100.00 100.00 7 9 6 6
PyTorch 1.0 mobilenet_v2 38.89 27.78 100.00 100.00 10 13 9 9
PyTorch 1.0 vgg11_bn 27.78 66.67 100.00 100.00 11 1 1 1
PyTorch 1.0 resnet34 27.78 55.56 94.44 100.00 13 3 11 11
PyTorch 1.0 vgg13_bn 27.78 50.00 94.44 100.00 12 7 12 12

23

G Expert label review details

To mitigate possible bias in our expert reviewing process, we did not show reviewers whether a
particular image was CL-flagged or not, and we randomized whether a CL-flagged or non CL-flagged
image was shown first for each ImageNet class. We also randomized whether the given or predicted
label was the first or second choice offered to the reviewer. We did not however randomize the class
order as reviewing was much more efficient when the classes were presented in order (required less
drastic context switching) and helped reviewers to learn while reviewing, especially for taxonomies
with many related classes (e.g., dog breeds). The three authors of this paper, aided by an experienced
data labeler, served as these expert reviewers, spending around 67 seconds in total on average to
review each image label (14x more time than MTurk workers) and around 109 seconds on average to
review the images where a second phase was required for the expert reviewers to come to consensus
due to disagreement (28x more time than MTurk workers).

There were 66 ImageNet classes (out of the 1000) that had no CL-flagged image in the validation set.
For these classes, the experts could not review a CL-flagged image, but experts still reviewed a non
CL-flagged image. Thus, 1934 images were reviewed by experts (934 CL-flagged and 1000 non-CL
flagged). These images were assigned into 3 non-disjoint evenly-sized partitions (one for each expert
to review) such that each image was reviewed by at least 2 experts. Expert reviewer 1 was assigned
images from classes 1-666. Expert reviewer 2 was assigned classes 1-333 and 667-1000. Expert
reviewer 3 was assigned classes 334-1000. After independently reviewing the images (spending
54 seconds per image, on average), experts disagreed on 438 images. The experts subsequently
discussed each of these images to reach a consensus decision (spending 55 seconds on average in
discussions to come to consensus on a choice for each label). Table S3 counts the different types
of label issues identified by experts in the CL-flagged and non-CL flagged images, from which we
computed the percentages reported in Table 3.

The time spent for expert review in Table 3 is computed as: (1934 / 1934) * 54 seconds + (438 /
1934) * 55 seconds = 67 seconds (i.e., time spent on average for all 1934 images for independent
expert review + additional time spent on the 438 images requiring experts to discuss their choices and
come to agreement).

In some cases, experts agreed that neither the given nor the predicted label was appropriate, but
Mechanical Turk workers chose the predicted label. These were tricky cases which often required
careful scrutiny to identify the true class of the given image. Figure S2 shows an example of such a
case, where the image clearly doesn’t match the ImageNet given label, and upon close inspection,
doesn’t match the predicted label either.

Table S3: Counts of various types of label issues identified by experts in CL-flagged examples vs
non-CL flagged examples from ImageNet (see Section 6). Here, count(errors) = count(correctable) +
count(multi-label) + count(neither) + count(non-agreement). Also, count(total) = count(non-errors) +
count(errors). After independently making decisions about each label, experts were subsequently
required to resolve any non-agreement by reaching a consensus via group deliberation. There were
66 ImageNet classes which did not have a CL-flagged error, thus only 934 CL-flagged examples were
reviewed instead of 1000 (1 example for every class).

total non-errors errors correctable multi-label neither non-agreement

CL (MTurk) 934 481 453 205 92 53 103
CL (expert) 934 548 386 165 122 99 0
non-CL (expert) 1000 840 160 32 91 37 0

24

