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Abstract

When deploying person re-identification (ReID) model in safety-critical applica-
tions, it is pivotal to understanding the robustness of the model against a diverse
array of image corruptions. However, current evaluations of person ReID only
consider the performance on clean datasets and ignore images in various corrupted
scenarios. In this work, we comprehensively establish five ReID benchmarks for
learning corruption invariant representation. In the field of ReID, we are the first
to conduct an exhaustive study on corruption invariant learning in single- and
cross-modality datasets, including Market-1501, CUHK03, MSMT17, RegDB,
SYSU-MM01. After reproducing and examining the robustness performance of 21
recent ReID methods, we have some observations: 1) transformer-based models
are more robust towards corrupted images, compared with CNN-based models,
2) increasing the probability of random erasing (a commonly used augmentation
method) hurts model corruption robustness, 3) cross-dataset generalization im-
proves with corruption robustness increases. By analyzing the above observations,
we propose a strong baseline on both single- and cross-modality ReID datasets
which achieves improved robustness against diverse corruptions. Our codes are
available on https://github.com/MinghuiChen43/CIL-ReID.

1 Introduction

Person re-identification (ReID) is regarded as a fine-grained instance retrieval problem. Unlike
image classification tasks, the goal of person ReID is to match and rank pedestrian images across
multiple non-overlapping cameras [50]. Due to its vast applications for intelligent security and video
surveillance, person ReID has become a hot topic in computer vision. However, there are still many
problems in deploying current person ReID models to the real world. Unlike object classification and
detection, ReID is a instance-level recognition and ranking problem that relies on extracting robust
and detailed information. Unfortunately, current neural networks are easily confused by various forms
of corruptions such as noise, blurring and snow [16]. Therefore, learning invariant representation
towards corrupted images in this task is challenging and merits extra investigations.

To comprehensively study the corruption invariant learning of models in various scenarios, we
make the first attempt to establish the corruption invariant ReID benchmarks on both single- and
cross-modality datasets, including Market-1501 [53], CUHK-03 [23], MSMT17 [46], RegDB [30],
and SYSU-MM01 [47]. The statistics of these datasets are shown in Tab. 1. We re-construct these
five datasets by applying 20 types of corruption that commonly occur in the real world. Meanwhile,
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(a) Clean dataset (b) Corrupted dataset

Figure 1: Large scale evaluation on ReID methods in recent years. (a) The performance of the clean
test set (Market-1501) is shown on the left, demonstrating the increasing trend in mAP for various
methods over the last few years. (b) The performance of the corrupted test set (corrupted query
and gallery) is shown on the right. The overall mAP is significantly lower, and recent methods (e.g.
LUPerson) are even less robust than PCB (proposed in 2017). Refer to the appendix for corresponding
literature of above methods and performance on other datasets.

each corruption type contains five levels of severity. The benchmark datasets are constructed based
on agnostic corruption types that are not encountered in model training. Since corruption types
in the real world are numerous and unpredictable, it will be more practical to learn a corruption
generalized model without additional training and adaptation. To measure the corruption robustness
comprehensively, we present robustness performance in three evaluation settings: 1) corrupted query,
2) corrupted gallery, and 3) corrupted query and gallery.

Based on the corruption invariant learning benchmark, we reproduce 21 advanced ReID methods in
recent years and conduct large-scale evaluations on the corruption robustness of various state-of-the-
art CNN-based and transformer-based models. While the performance of ReID methods on the clean
test set has shown an upward trend in recent years (see Fig. 1), the performance on the corrupted
test set is significantly lower, with plenty of room for improvements. Specifically, we have some
main findings based on robustness evaluation: 1) transformer-based models [7, 14] excel in corrupted
test set comparing with CNN-based models. This demonstrates that the transformer-based models
are capable of mining rich structured patterns, which is especially important when dealing with
corrupted data. 2) In contrary to the clean test set, increasing the probability of the random erasing
[57], a frequently used augmentation technique, impairs model performance on the corrupted test set.
We argue that random erasing method hinders models from mining rich discriminative information
from corrupted images. 3) Interestingly, the cross-dataset generalization tends to improve with the
corruption robustness. This clearly refutes that robustness towards synthetic corruption do not help
with robustness on naturally occurring distribution shifts [39].

From the above investigations, we introduce a strong baseline on the corruption invariant learning
benchmarks in person ReID. In summary, our contributions are as follows:

• We propose benchmarks for corruption invariant Person ReID, including both single- and
cross-modality datasets Market-1501, CUHK-03, MSMT17, RegDB, and SYSU-MM01.

• We reproduce 21 advanced ReID methods and have some interesting findings on learning
corruption invariant representation in terms of network architectures and data augmentation.

• We are the first to reveal that cross-dataset generalization tends to increases with corruption
robustness. This intriguing finding demonstrates the practical utility of learning a corruption
invariant model towards real-world distribution shift, which has been overlooked by previous
research on corruption robustness.

• We establish a strong baseline for corruption invariant person ReID, improving random
erasing, BNNeck and identity loss.
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2 Related Work

2.1 Person ReID

Existing person ReID techniques fall into two main categories: closed-world and open-world settings.
With the performance saturation under closed-world setting, the research focus on person Re-ID
has recently shifted to the open-world setting, facing more challenging issues [50]. A feature of the
open-world settings is that pedestrian data might be heterogeneous data, including infrared images
[30, 47], cross-resolution images [24, 45] and even text descriptions [22]. Corrupted images can be
regarded as heterogeneous data for clean images, and our corruption-invariant ReID benchmarks
as an open-world ReID setting defined in [50]. Current person ReID system contains three main
components: feature representation learning, deep metric learning and ranking optimization [50].
The goal of feature representation learning is to efficiently extract discriminative features. This is
accomplished through the use of attention mechanisms [3, 2, 4], the capture of multi-scale features
[58, 19, 48], and the mining of local features [38, 42, 52, 32, 37, 27, 51]. In ReID, deep metric
learning entails developing a reasonable loss function [54, 18] and devising an appropriate sampling
strategy [25]. The purpose of rank optimization is to improve retrieval performance during the
inference stage. The most frequently used strategy is to optimize the ranking list by leveraging
gallery-to-gallery similarity [56].

2.2 Corruption Robustness

The human visual system is not easily fooled by a wide range of image corruptions, such as noise,
blurring and pixelation or their combination. In contrast, current deep neural networks suffer from
severe performance degradation towards corrupted images [16]. Study on corruption robustness has a
long history in computer vision [36, 1, 6] and has recently received more attention due to the release of
corruption benchmarks for image recognition, such as CIFAR-10-C, CIFAR-100-C and ImageNet-C
[16]. Since then, similar benchmarks on common corruption have also been proposed in the field
of object detection [29], semantic segmentation [21] and pose estimation [43]. These benchmarks
reveal that the generalization ability of advanced models under corrupted input still needs to be
further improved [16, 17, 15]. For improving the corruption robustness, various data augmentation
techniques have been proposed recently. For example, AugMix [17] utilizes a formulation to mix
multiple augmented images and obtains significant improvement on ImageNet-C. Rusak et al. [35]
design a data augmentation algorithm based on adversarial framework for defending against common
corruptions.

3 Corruption Invariant ReID Benchmark

3.1 Evaluation Metrics

To evaluate the performance of a ReID system, mAP (mean average precision) [53] and CMC-k
(cumulative matching characteristics, a.k.a, Rank-k matching accuracy) [44] are two widely used
measurements. Besides common used metrics mAP and CMC-k, we also present mINP (mean inverse
negative penalty) to evaluate the ability to retrieve the hardest correct match [50]. For a robust Re-ID
system, the correct matches should have low rank values. The mINP is represented by

mINP =
1

n

∑
i
(1−NPi) =

1

n

∑
i
(1− Rhard

i − |Gi|
Rhard

i

) =
1

n

∑
i

|Gi|
Rhard

i

, (1)

where Rhard
i indicates the rank position of the hardest match, |Gi| represents the total number of

correct matches for query i, and NP represents negative penalty. The INP (the highest, the better) is
inverse of NP, which is a computationally efficient metric.

3.2 Benchmark Datasets

Our robust person ReID benchmarks are composed of five datasets: Market-1501, CUHK-03,
MSMT17, RegDB, and SYSU-MM01. The detailed information and statics of these datasets are
shown in Tab. 1. We employ 15 image corruptions from ImageNet-C dataset and 4 image corruptions
from Extra ImageNet-C [16]. In addition, we introduce a rain corruption type, which is a common
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Table 1: Statistics of our benchmarking datasets for single- and cross-modality person ReID.
Single-modality datasets

Dataset Time Total ID Train ID Test ID Total image Train set Query Gallery Cam.
CUHK03-detected 2014 1,467 767 700 14,097 7,365 1,400 5,332 2
Market-1501 2015 1,501 751 750 36,036 12,936 3,368 19,732 6
MSMT17 2018 4,101 1,041 3,060 126,441 32,621 11,659 82,161 15

Cross-modality datasets
Dataset Time Total ID Train ID Test ID Total image Train set Query Gallery Cam.
RegDB 2017 412 206 206 8,240 4,120 2,060 2,060 -
SYSU-MM01 2017 491 395 96 303,420 34,167 3,803 301 6

type of weather condition, but it is missed by the original corruption benchmark (for specific parameter
settings and implementation, see our appendix). These corruptions consist of Noise: Gaussian, shot,
impulse, and speckle; Blur: defocus, frosted glass, motion, zoom, and Gaussian; Weather: snow, frost,
fog, brightness, spatter, and rain; Digital: contrast, elastic, pixel, JPEG compression, and saturate.
Each corruption has five severity levels, resulting in 100 distinct corruptions.

In contrast to object classification [16] and detection [29], the ReID task is an image pair matching
problem with a query and gallery as a test set. To assess the robustness on a broad scale, we present
three evaluation settings: both the query and gallery are corrupted, the query is corrupted alone, and
the gallery is corrupted alone. For the cross-modality datasets RegDB and SYSU-MM01, only RGB
images from the gallery are corrupted. Additionally, considering that the size of the ReID test set has
a great impact on performance indicators, we do not directly add all corruption types and all severity
levels to the test set. We randomly select one corruption type and one severity level from each image
in the test set to create the query or gallery. We repeat the preceding evaluation ten times with the
same query and gallery size as the clean test set (three times for large scale datasets MSMT17).

3.3 Evaluation Models

Our standard backbone is the widely used ResNet50 [12]. We follow a standard training pipeline,
which includes initialization with an ImageNet pre-trained model and modification of the dimension
of the fully connected layer to N [26]. N is the number of identities in the training set. In the early
training epochs, we adopt a learning warmup strategy. Additionally, the transformer-based models
[41] (e.g. ViT [7], DeiT [40]) for object ReID are based on TransReID proposed by He et al. [14].

3.4 A Strong Baseline

Based on our findings from corruption robustness evaluation, we design a new robust baseline for
person ReID, which achieves competitive performance on both single- and cross-modality ReID
tasks. Our baseline contains the following key components.

Local-based augmentation. Random erasing [57] is an augmentation method that randomly selects
a rectangle region in an image and erases its pixel with a random value (see Fig. 2). If no special
statement is present, we utilize random cropping, horizontal flipping, and 0.5-probabilistic random
erasing as default data augmentations. Random erasing yields consistent improvement on various
person ReID datasets, but we find that the performance on corrupted datasets decreases with increasing
erasing probability (see Fig. 4 right part). Additionally, we observe that an augmentation method
called RandomPatch [58] also degrades the corruption robustness. RandomPatch works by first
creating a patch pool of randomly extracted image patches and then pasting a random patch from
the patch pool onto an input image at a random position. We believe that these two augmentation
methods, which heavily occlude images and introduce additional perturbation information, will
impair the models’ ability to mine salient local information, which is critical for retrieving corrupted
images. To compensate for the loss of discriminative information caused by strong erasing, we
propose a data augmentation technique called soft random erasing, in which the erased area is not
completely replaced with random pixels but retains a proportion of the original pixels, as shown in Fig.
2 (a). To alleviate the strong perturbation introduced by RandomPatch, we propose a mixing-based
augmentation technique called self patch mixing (SelfPatch). As illustrated in Fig. 2 (b), SelfPatch
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works by randomly cutting a block from the original image and then remixing it with another random
position.

Consistent identity loss. The classical identity (ID) loss [55] is computed by the cross-entropy

Lid = − 1

n

∑n

i=1
log(p(yi|xi)). (2)

Given an input image xi with label yi, the predicted probability of xi being recognized as class yi
is encoded with a softmax function, represented by p(yi|xi). The identity loss is then computed by
the cross-entropy, where n represents the number of training samples within each batch [50]. The
previous ID loss only calculates the loss of a single augmented sample per image. To enforce model
response smoother for different augmented variants, we utilize the Jensen-Shannon divergence among
the posterior distribution of the original sample xorig and its augmented variants [17]. That is, for
porig = p̂(y | xorig), paug1 = p̂(y | xaug1), paug2 = p̂(y|xaug2). The self identity loss can be computed
by first obtaining M = (porig + paug1 + paug2)/3 and then computing

Lcid(porig; paug1; paug2) =
1

3

(
KL[porig∥M ] + KL[paug1∥M ] + KL[paug2∥M ]

)
. (3)

The gain of training with consistent ID loss is obvious when combining with global data augmentation
(e.g. AugMix).

(a) Local-based data augmentation (b) Visualization of activation map

Figure 2: Visualization of our augmented examples and activation maps. (a) Left are four different
data augmentation methods. As can be seen, random erasing and random patch mixing introduce
severe occlusion compared with soft random erasing and self patch mixing. (b) Right are activation
maps of models trained with different augmentations. From left to right of each are input images,
activation maps from the (1) standard model, a model trained with (2) AugMix, (3) random erasing,
(4) soft random erasing, (5) random patch mixing and (6) self patch mixing. Models trained with our
proposed augmentations (soft random erasing and random patch mixing) capture more discriminative
parts.

Inference before BNNeck. BNNeck [26] is a batch normalization (BN) [20] layer after features
for triplet loss and before classifier fully-connected layers in ReID tasks. The motivation of BNNeck
is to make features gaussianly distribute near the surface of the hypersphere and make the ID loss
easier to converge [26]. However, we discover that the corruption robustness of models will decrease
when using features after BNNeck (see appendix). One reasonable explanation for this is that the BN
layer will memorize the statistical information of the train set, while the statistical information of the
corrupted test set and the clean train set are quite different.

4 Experiments

4.1 Benchmarking SOTA Methods

In this part, we evaluate the corruption robustness of 21 ReID methods, including AGW [50], BoT
[26], ABD-Net [3], OS-Net [58], DG-Net [55], MHN [2], BDB [5], TransReID [14], LGPR [10],
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(a) Clean dataset (b) Corrupted dataset

Figure 3: Performance evaluations of the person ReID methods in recent years. The x-axis, y-axis,
and bubble size indicate Rank-1, mAP, and mINP, respectively. (a) Evaluations on clean Market-1501
test dataset. (b) Evaluations on Market-1501-C (corrupted query and gallery). In general, performance
on the clean test set is not positively correlated with performance on the corrupted test set, and there
is considerable room for improvement on corruption robustness.

F-LGPR [11], TDB [33], LUPerson [8], LightMBN [19], PLR-OSNet [48], CaceNet [51], PCB [38],
Pyramid [52], AlignedReID++ [27], RRID [32], VPM [37], and MGN [42] (see our appendix for
specific parameter settings of models). Fig. 3 illustrates the Rank-1, mAP, and mINP performance
indicators of 21 ReID methods in recent years for both the clean test set and the corrupted dataset
(the corrupted query and gallery). The bubble size indicates the relative level of mINP indicator (see
the appendix for more details). In general, existing methods perform poorly on the corrupted test set,
and there is vast room for improvement. In Fig. 3, there is no obvious trade-off or positive correlation
between the model performance on the clean test set and the corrupted test set.

TransReID [14] significantly outperforms other methods in terms of indicators (most notably the
mINP) of corrupted test sets. It is worth noting that the mINP index measures the ability to retrieve
difficult samples, which makes it an appropriate indicator of the ReID model corruption robustness.
From Fig. 1 and 3, we can observe that part-level based ReID methods perform well on clean and
corrupted test sets. This demonstrates that learning local features is still critical for the corrupted
images, and it can also make the model more robust to corruption variation. On the corrupted test
set, the performance of the vanilla PCB [38] is still competitive, even surpassing some methods that
perform excellently on the clean dataset.

Some of the above reproduced ReID methods were proposed to learn a noise-robust model. These
sample noises include heavy occlusion (e.g. VPM [37]), inaccurate bounding boxes caused by
sampling errors (e.g. Pyramid [52]), illumination variation (e.g. BDB [5]), style changing (e.g.
DG-Net [55]), and adversarial perturbations (e.g. F-LGPR [11]). But unfortunately, the corruption
robustness of the above methods is not particularly strong. Therefore, we argue that the corruption
invariant ReID is complementary to the previous research on noise-robust ReID and merits special
investigation.

4.2 Connection with Generalizable Person ReID

In the previous corruption robustness research, it is less clear how a robust model generalizes across
different datasets. For image classification, Taori et al. [39] found that current robustness measures
for synthetic distribution shift are at most weakly predictive for robustness on the natural distribution
shifts presently available. However, we found that corruption robustness measures are predictive
for robustness on the natural distribution shifts on person ReID. As illustrated in Fig. 4, extensive
experiments with various methods and data enhancements reveal that the ability to generalize across
datasets increases as corruption robustness increases. The cross-dataset generalization ability refers
to the performance of the model trained on the Market-1501 dataset and tested on another dataset
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Figure 4: Cross-dataset generalization (Market-1501 to MSMT17) improves as corruption robustness
increases. In contrast, the cross-dataset generalization has little correlation with performance on the
clean samples. The histogram represents performance on the clean Market-1501 test set, the blue line
depicts performance on the Market-1501-C (corrupted query and gallery), and the green line depicts
performance when transferring directly to the MSMT17 dataset. On the left are the results of various
methods, while on the right are the results of the same model trained with different augmentations.
For different augmentations, the green histograms represent the random (left half) and soft random
erasing (right half), respectively. The value on the x-axis represents the probability of erasure. See
our appendix for more experiment results.

(e.g. CUHK-03 and MSMT17). The histogram represents the performance on the clean Market-1501,
and the mAP is the value on the left y-axis. The blue and green lines respectively reflect the trend of
the corruption robustness and the cross-dataset generalization, and the mAP is the value on the right
y-axis. As illustrated in the left panel of Fig. 4, the cross-dataset generalization exhibits a consistent
upward trend with the corruption robustness (correlation coefficient ρ = 0.97). However, there is no
obvious correlation between cross-dataset generalization and clean sample performance (correlation
coefficient ρ = 0.22).

4.3 Benchmarking Network Architecture

To further analyze the corruption robustness of the TransReID method, we compare CNN-based
models and transformer-based models in this part. The number of parameters (Params) and multi-adds
(MACs) of evaluated models are presented. To begin, the performance of TransReID illustrated in Fig.
1 is identical to that of Trans-Vit-base in Fig. 3. Although it outperforms other models, it requires more
memory and computation time. Additionally, we present the robustness performance in two settings,
one in which only the query is corrupted and one in which only the gallery is corrupted. In general,
a corrupted query makes models more difficult to sort simple samples correctly (Rank-1 is low),
whereas a corrupted gallery makes models more difficult to retrieve difficult samples (mINP is low).
When memory and computational overhead are considered, we discover that the ViT architecture
is still superior in terms of corruption robustness. On the corrupted test set (corrupted query and
gallery setting), ViT-S and DeiT-S outperform all CNN-based models except for ResNeXt-101-ibn
[49]. Additionally, we discover that when ResNet-50 is combined with an IBN [31] module, the
corruption robustness of ResNet-50 is significantly improved. This is consistent with their findings
[31] that instance normalization (IN) learns features that are invariant to changes in appearance,
such as colors and styles. In summary, incorporating attention modules and judicious use of IN into
network architecture can significantly improve the corruption robustness.

4.4 Benchmarking Data Augmentation

Data augmentation is vital to improve the corruption robustness. From Tab. 3, we find that the
AugMix is significantly more effective in boosting robustness than other augmentation methods,
which is consistent with previous research [17]. As depicted in the right part of Fig. 4, corruption
robust decreases with increasing erasing probability. Besides, soft random erasing are more effective
for improving corruption robustness and less sensitive to the tuning of erasing probability compared
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Table 2: Comparisons of transformer-based models and CNN-based models. All the models are
trained with 256 × 128 inputs. Trans- denotes the TransReID method. Compared to the original ViT,
the TransReID includes SIE and JPM modules. While ViT-based models generally outperform the
CNN-based models in terms of corruption robustness, the advantage of the ViT over CNN-based
models with an attention mechanism is not obvious.

Network
MACs Params Clean Eval. Corrupted Eval. Corrupted Query Corrupted Gallery

(G) (M) mINP mAP R-1 mINP mAP R-1 mINP mAP R-1 mINP mAP R-1

ResNet-50 4.06 23.51 59.30 85.06 93.38 0.21 8.50 27.30 14.34 26.42 30.52 0.39 27.00 77.15

ResNet-50-ibn 4.06 23.51 67.79 86.55 94.36 0.33 13.90 37.75 20.45 36.77 43.39 0.85 35.78 83.34

ResNeSt-50 4.68 25.44 65.49 87.97 95.28 0.26 9.82 30.57 18.26 31.71 37.65 0.51 31.79 82.93

ResNet-101-ibn 6.49 42.50 65.27 87.90 95.22 0.37 13.96 37.35 21.99 37.35 43.42 0.90 36.61 84.09

SE-ResNet-101-ibn 6.50 47.25 67.75 89.08 95.49 0.69 16.99 43.14 27.87 45.28 51.48 2.60 47.39 88.32

ResNeXt-101-ibn 6.51 42.13 67.81 89.05 95.04 1.34 21.65 48.25 31.38 50.49 56.59 3.78 50.30 88.48

DeiT-S 2.78 22.31 56.36 83.90 93.23 1.07 19.30 44.38 23.41 43.30 51.49 2.57 43.98 83.73

ViT-S 6.16 47.81 53.34 82.42 92.79 1.02 18.06 42.47 22.76 43.94 53.39 2.68 43.64 82.83

ViT-S + SIE 6.16 47.81 55.99 83.70 93.35 0.82 16.88 40.26 22.54 42.34 50.76 2.29 43.07 82.96

ViT-S + JPM 6.94 53.72 55.42 83.40 92.70 1.10 19.33 43.62 23.85 43.84 51.91 2.55 43.87 82.86

ViT-B 11.03 85.61 64.08 87.11 94.60 1.82 25.84 51.31 31.41 51.54 59.44 4.40 52.00 87.60

Trans-ViT-S 11.33 53.72 57.01 84.46 93.74 1.02 18.23 42.57 23.65 43.19 50.71 2.48 43.29 83.47

Trans-DeiT-B 19.55 92.70 67.16 88.54 95.07 1.70 24.71 51.67 32.39 50.79 57.12 3.84 50.03 87.65

Trans-ViT-B 19.55 92.70 69.31 88.97 95.10 1.93 27.10 52.77 34.52 52.30 57.96 4.18 52.19 88.60

Table 3: Comparisons of various data augmentations. The upper part compares the global augmenta-
tion methods (Random affine transformation, AutoAugment and AugMix). The bottom part compares
the local-based augmentation methods when combined with the AugMix. REA stands for random
erasing, S-REA stands for soft random erasing, R-PATCH stands for random patch mixing, and
S-PATCH stands for self patch mixing augmentation.

Augmentation
Clean Eval. Corrupted Eval. Corrupted Query Corrupted Gallery

mINP mAP R-1 R-5 R-10 mINP mAP R-1 R-5 R-10 mINP mAP R-1 R-5 mINP mAP R-1 R-5

Standard 45.70 77.76 91.69 96.44 97.83 0.43 14.31 37.31 53.36 59.99 16.79 34.45 42.99 53.06 0.90 33.54 77.74 90.28

R-Affine 59.34 85.69 93.88 98.16 98.93 0.27 8.01 27.46 39.70 45.20 16.28 30.69 36.34 45.04 0.83 33.02 81.29 92.12

AutoAug 46.39 80.18 92.34 97.60 98.57 0.37 10.55 30.40 42.71 48.41 14.39 31.87 40.23 49.24 1.12 35.22 80.64 91.86

AugMix 45.92 77.16 91.03 96.88 98.13 1.05 22.47 48.06 65.07 71.27 21.79 43.46 53.93 65.58 1.95 41.32 80.25 92.21

+ REA 57.10 83.40 93.08 97.83 98.43 1.49 24.32 49.80 66.82 72.68 26.86 48.08 57.33 68.92 3.30 47.46 84.71 94.45

+ S-REA 57.34 83.48 92.99 97.57 98.43 2.19 26.66 52.60 69.64 75.52 28.75 50.33 56.69 71.49 4.44 49.54 85.27 94.58

+ R-PATCH 47.37 77.78 90.97 96.53 98.10 1.00 22.05 47.49 64.35 70.42 21.97 43.20 53.60 64.84 1.74 41.19 80.85 92.45

+ S-PATCH 54.30 81.86 92.55 97.48 98.49 1.17 22.72 47.99 64.84 70.73 25.19 45.78 55.02 66.49 2.45 44.60 83.18 93.83

with random erasing. In Tab. 3, we have a similar observation that soft random benefits more for
improving corruption robustness. Meanwhile, the SelfPatch augmentation method outperforms the
RandomPatch augmentation method on clean and corrupted test sets.

4.5 A Strong Baseline on Corruption Invariant ReID

On the basis of the foregoing investigation, we propose three general and simple techniques for
enhancing corruption robustness (detailed ablations see the appendix). The first is the consistent ID
loss that enforces a smoother network response [17]. The second technique is inference with features
before BNNeck, in case the feature is too domain-specific. The third one is the proposed local-based
augmentation techniques, soft random erasing and self patch mixing. Our baseline is CIL (Consistent
identity loss, Inference before BNNeck and Local-based augmentation). In single-modality datasets
(see Tab. 4), our proposed baseline CIL achieves competitive performance on the clean test set and
outstanding results on three corrupted situations. We also evaluate the corruption robustness of the
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Table 4: Corruption invariant person ReID benchmarks on single-modality datasets. SBS [13]
represents a stronger baseline on top of BoT. In single-modality datasets, our proposed baseline CIL
achieves competitive performance on the clean test set and remarkable results on three corrupted
scenarios.

Dataset Method
Clean Eval. Corrupted Eval. Corrupted Query Corrupted Gallery

mINP mAP R-1 R-5 mINP mAP R-1 R-5 mINP mAP R-1 R-5 mINP mAP R-1 R-5

Market-1501

BoT 59.30 85.06 93.38 97.71 0.20 8.42 27.05 40.28 14.56 26.89 31.92 40.24 0.39 26.82 76.78 89.57

AGW 64.03 86.51 94.00 98.01 0.35 12.13 31.90 46.54 19.44 31.75 35.25 44.09 0.67 33.38 80.45 91.90

SBS 60.03 88.33 95.90 98.49 0.29 11.54 34.13 47.28 18.47 35.33 42.06 51.21 0.53 32.65 83.11 92.87

CIL 57.90 84.04 93.38 97.95 1.76 28.03 55.57 72.34 29.99 52.53 62.29 73.34 3.45 48.95 85.52 94.76

MSMT17

BoT 9.91 48.34 73.53 85.29 0.07 5.28 20.20 31.11 2.75 15.78 25.92 35.50 0.09 16.10 59.06 76.48

AGW 12.38 51.84 75.21 86.30 0.08 6.53 22.77 34.08 3.82 18.42 28.06 37.33 0.15 18.08 61.45 78.43

SBS 10.26 56.62 82.02 90.39 0.05 7.89 28.77 40.00 3.23 22.71 36.68 46.53 0.12 21.16 70.65 83.95

CIL 12.45 52.40 76.10 87.19 0.32 15.33 39.79 54.83 5.84 29.08 45.51 58.27 0.50 27.99 68.31 82.87

CUHK03
AGW 49.97 62.25 64.64 81.50 0.46 3.45 5.90 11.59 12.69 17.20 16.26 26.29 2.89 19.40 33.43 53.85

CIL 53.87 65.16 67.29 83.79 4.25 16.33 22.96 39.89 26.61 34.62 34.03 50.44 9.07 31.81 46.81 69.66

Table 5: Corruption invariant person ReID benchmarks on cross-modality datasets. For SYSU-
MM01 dataset, Mode A and Mode B mean all-search (including indoor and outdoor cameras) and
indoor-search experimental settings, respectively. For RegDB dataset, Mode A and Mode B represent
visible-to-thermal and thermal-to-visible experimental settings, respectively. Note that we only
corrupt RGB (visible) images in the corruption evaluation.

Dataset Method

Mode A Mode B

Clean Eval. Corrupted Eval. Clean Eval. Corrupted Eval.

mINP mAP R-1 R-5 mINP mAP R-1 R-5 mINP mAP R-1 R-5 mINP mAP R-1 R-5

SYSU-MM01
AGW 36.17 47.65 47.50 74.68 14.73 29.99 34.42 62.26 59.74 62.97 54.17 83.50 35.39 40.98 33.80 61.61

CIL 38.15 47.64 45.41 73.95 22.48 35.92 36.95 65.54 57.41 60.45 50.98 81.34 43.11 48.65 40.73 71.44

RegDB
AGW 54.10 68.82 75.78 85.24 32.88 43.09 45.44 55.26 52.40 68.15 75.29 83.74 6.00 41.37 67.54 81.23

CIL 55.68 69.75 74.96 84.71 38.66 49.76 52.25 65.83 55.50 69.21 74.95 86.12 11.94 47.90 67.17 83.25

CIL baseline using a two-stream architecture on the cross-modality visible-infrared ReID task. As
seen by the results in Tab. 5, our baseline CIL considerably improves corruption robustness while
compromising little performance on clean test sets.

We conduct ablation experiments on the components of our proposed baseline, as shown in Tab.
6. The standard ResNet-50 we use here is built on the AGW baseline, which deletes the non-local
block and adds the loss function used by the SBS baseline. It can be seen from Table 6 that our

Figure 5: Ablation study on different corruption types (corrupted query and gallery), including 20
types of algorithmically generated corruptions from noise, blur, weather, and digital categories.
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Table 6: Ablation study on CIL components, including pre-BNNeck inference, local-based augmenta-
tion (soft random erasing and self patch mixing) and consistent ID loss.

Component
Clean Eval. Corrupted Eval. Corrupted Query Corrupted Gallery

mINP mAP R-1 R-5 mINP mAP R-1 R-5 mINP mAP R-1 R-5 mINP mAP R-1 R-5

Standard ResNet-50 60.57 85.52 94.48 97.95 0.55 15.26 39.87 55.84 21.67 38.36 45.00 55.29 1.27 38.48 83.50 93.48

+ infer. before BNNeck 47.39 79.58 91.66 97.15 0.89 18.16 42.41 58.98 20.53 42.94 53.35 65.29 2.14 42.65 82.23 93.27

+ soft random erasing 59.57 84.74 93.26 98.07 1.37 25.98 53.89 70.92 29.44 50.96 60.11 71.89 2.67 46.82 85.68 94.86

+ self patch mixing 55.96 82.93 93.05 97.51 1.78 27.59 57.37 71.81 30.33 53.69 64.08 75.81 3.23 48.08 84.70 94.59

+ consistent ID loss 57.90 84.04 93.38 97.95 1.76 28.03 55.57 72.34 29.99 52.53 62.29 73.34 3.45 48.95 85.52 94.76

suggested pre-BNNeck inference and local data augmentation approaches can increase the corruption
robustness, and the consistency ID loss can effectively maintain the corruption robustness while
boosting the performance on clean samples. In addition, we also perform ablation experiments of
different corruption types on our CIL baseline to see the impacts of each individual corruption, as
shown in Fig. 5. Experimental results are also averaged after ten evaluations. We can see that the
model is more vulnerable to corruption types such as saturate, contrast, and fog that produce greater
color interference.

5 Conclusion

In this work, we present detailed, large-scale robustness evaluations of 21 advanced ReID meth-
ods. Based on the study, we have some interesting findings and build a strong baseline on robust
person ReID in the hope of extracting practical lessons for the broader community. First of all,
we demonstrated the transformer’s potential on ReID. Even when images are corrupted, they can
still extract rich structured patterns. Moreover, given the limitations of the existing commonly used
data augmentation, we design two new simple but effective data augmentation methods for mining
more robust local features. Additionally, we discover that cross-dataset generalization increases with
corruption robustness in ReID, which was overlooked by previous research on corruption robustness
and may serve as an inspiration for generalizable person ReID.

Limitations and broader impact. Compared with other baselines, the performance of our proposed
baseline on clean samples is slightly degraded. Additionally, we cannot establish a clear relationship
between corruption robustness and performance on clean images in ReID tasks. As for positive impact,
we demonstrate through extensive experiments that synthetic corruption robustness contributes to
performance on naturally occurring distribution shifts. Hence our synthetic corrupted datasets
can serve as useful proxies and have the potential to mitigate ethical concerns associated with the
collecting of vast volumes of pedestrian data.

However, when an object ReID system is used to identify pedestrians and vehicles in a surveillance
system, it may infringe people’s privacy. Because ReID system typically (not all) depends on
unauthorized surveillance data, which means that not all human subjects were known they were
being recorded. As a result, governments and officials must take considerable steps to develop
stringent regulations and legislation governing the use of ReID technology. Otherwise, malicious
agents may be able to monitor pedestrians or vehicles without their consent using multiple closed-
circuit television cameras [9]. Additionally, researchers should avoid using datasets that raise ethical
concerns. For instance, the DukeMTMC dataset [34] should no longer be used after it was shut
down for violating data collection restrictions. Also, our benchmarks have excluded evaluation on
DukeMTMC. Meanwhile, it is worth mentioning that the demographic composition of datasets does
not accurately reflect the general population. Current data-driven deep learning systems only learn
what is taught to them. Accuracy and fairness are jeopardized if they are not taught with diverse
datasets. Each of us expects the ReID system to perform equally well across different individuals or
populations. Therefore, the research community and developers need to be thoughtful about what
data they use for training. This is essential for developing artificial intelligence systems which can
help to make the world more fair [28].

Acknowledgments and disclosure of funding. This work is supported by the National Natural
Science Foundation of China under Grant No. 61972188 and No.62122035.
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