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Abstract

Rapid progress in text-to-image generation has been often measured by Frećhet
Inception Distance (FID) to capture how realistic the generated images are, or by
R-Precision to assess if they are well conditioned on the given textual descrip-
tions. However, a systematic study on how well the text-to-image synthesis models
generalize to novel word compositions is missing. In this work, we focus on
assessing how true the generated images are to the input texts in this particularly
challenging scenario of novel compositions. We present the first systematic study of
text-to-image generation on zero-shot compositional splits targeting two scenarios,
unseen object-color (e.g. “blue petal”) and object-shape (e.g. “long beak”) phrases.
We create new benchmarks building on the existing CUB and Oxford Flowers
datasets. We also propose a new metric, based on a powerful vision-and-language
CLIP model, which we leverage to compute R-Precision. This is in contrast to the
common approach where the same retrieval model is used during training and eval-
uation, potentially leading to biased behavior. We experiment with several recent
text-to-image generation methods. Our automatic and human evaluation confirm
that there is indeed a gap in performance when encountering previously unseen
phrases. We show that the image correctness rather than purely perceptual quality
is especially impacted. Finally, our CLIP-R-Precision metric demonstrates better
correlation with human judgments than the commonly used metric. Dataset and
evaluation code at: https://github.com/Seth-Park/comp-t2i-dataset.

1 Introduction
Text-to-image synthesis, which aims at generating an image based on an input textual description,
has made large advances over the last few years [4, 37, 55]. While most text-to-image synthesis
methods focus on improving the perceptual quality of synthesized images, it remains unclear whether
these models have the ability to synthesize novel images or whether they simply e.g. memorize the
training set. Compositionality is a key feature of visual intelligence, and it has been explored in
visual perception [28] and image captioning [31] before. However, to the best of our knowledge,
it has never been systematically studied for text-to-image synthesis. Humans who previously saw
concepts “blue” and “flower”, can easily imagine “a blue flower” even if they have not seen that
specific combination before. But can the text-to-image synthesis models generalize to such novel
compositions of concepts? Figure 1 showcases two examples, where the model fails to synthesize
novel compositions such as “purple bill” and “black tips” correctly. Moreover, we also often observe
some unintended changes of the background, pose, and other attributes when introducing the novel
compositions, indicating some amount of entanglement between all these characteristics.

In this work, we provide the first systematic study of generalization to novel compositions for state-of-
the-art text-to-image generation methods. We observe that there are relatively few novel compositions
in the conventional test splits of commonly used text-to-image synthesis datasets, and no existing splits
specifically targeting this scenario. Thus, we propose new benchmarks for evaluating compositional
text-to-image synthesis, based on the Caltech-UCSD Birds (CUB) dataset [54] and Oxford-102
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the bird has a black bill, yellow 
crown, and yellow wingbar.

the bird has a purple bill, yellow 
crown, and orange wingbar.

this flower has petals that are 
red and has yellow tips.

this flower has petals that are 
red and has black tips.

Figure 1: Seen adjective-noun pairs (illustrated in green) are swapped with unseen adjective-noun
pairs (illustrated in red). All images are synthesized by DMGAN [63] given a caption and a fixed
noise vector as input. The swapped attributes are not accurately depicted in the output images.

(Flowers) dataset [32], augmented with human-generated captions [40], which are commonly used
in the text-to-image synthesis literature. Concretely, in both cases, the test set is composed of Seen
image-caption pairs (with adjective-noun pairs that have appeared in the training set), Unseen pairs
(with adjective-noun pairs that have not appeared in the training set), and Swapped pairs (generated
from the Seen pairs by swapping seen adjective-noun pairs with unseen ones). Motivated by recent
work which shows that some object properties (e.g. texture) are “easier” to learn than others (e.g.
shape) [7], we propose two compositional scenarios, one targeting object-color compositions (e.g.
“blue petal”), another targeting novel object-shape compositions (e.g. “long beak”). We denote the
proposed compositional benchmarks as C-CUB Color/Shape and C-Flowers Color/Shape.

There are two types of evaluation metrics typically used in text-to-image synthesis, some measure
image fidelity (perceptual quality) and others measure image correctness. Frećhet Inception Distance
(FID) [9] is commonly adopted for evaluating the quality and diversity of the synthesized images.
For evaluating the correctness of the synthesized images, previous works use R-Precision which
measures whether based on the generated image we can retrieve the original description from a set of
distractors. One caveat is that the text-to-image retrieval model used for computing the R-Precision is
often the same model as used for training the text-to-image synthesis network. As a result, model
bias is inevitably introduced during training. To mitigate this problem, we propose a new evaluation
metric, named CLIP-R-Precision, which performs text-to-image retrieval based on the large-scale
pretrained multimodal CLIP model [38]. Our human evaluation indicates that our proposed metric is
more consistent with human judgments than the metric used in prior work.

Finally, we benchmark three representative recent text-to-image synthesis methods, DM-GAN [63],
ControlGAN [19], and DF-GAN [48], on our proposed compositional data splits and CLIP-R-
Precision evaluation metric. We perform both automatic and human evaluations. Our results
demonstrate that the novel compositions indeed lead to a drop in performance. In fact, there is higher
degradation in image correctness than image perceptual quality. We provide a qualitative analysis,
shedding light onto feature entanglement as a possible cause of poor compositional generalization.

To sum up, in this work we establish the first benchmark for evaluating and analyzing how well
text-to-image synthesis methods generalize to novel compositions of concepts. Our contributions
are three-fold: We create new data splits with the Unseen and Swapped test samples, which are
specifically designed for evaluating and analyzing how well the model can generalize to unseen
compositions of concepts, such as object-color and object-shape. We propose a new evaluation metric
for text-to-image synthesis, named CLIP-R-Precision, which better correlates with human judgement
and overcomes the model bias introduced during training for the commonly used R-Precision. We
benchmark and analyze three representative text-to-image synthesis methods with our proposed data
splits and evaluation metrics, and demonstrate performance degradation in all unseen scenarios.

2 Related Work

Text-to-image synthesis Text-to-image synthesis has made great progress in the recent years,
in particular leveraging generative adversarial networks (GANs) [8]. GAN-INT-CLS [41] and
GAWWN [42] were the first attempts on GAN-based text-to-image synthesis. StackGAN [60] and
several others [61, 62, 6, 15] improved the quality of synthesized images by using stacked generator
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structures to sythesize images in a coarse-to-fine scheme. A prominent method, AttnGAN [55],
incorporated attention-driven, multi-stage refinement for fine-grained text-to-image generation;
it became a basis for many future works [13]. DM-GAN [63] introduced dynamic memory to
progressively refine the generated images. ControlGAN [19] introduced word-level spatial and
channel attention for the generator, along with the word-level discriminator and perceptual loss. DF-
GAN [48] introduced a one-stage text-to-image backbone with a novel fusion module for the generator
and a target-aware discriminator. Other approaches explored introducing memory mechanisms [63,
24], cycle-consistency constraint [37, 17], siamese networks [57, 47], and prior knowledge [36, 4]
to improve the text-to-image synthesis performance. For synthesizing images with complex scenes,
some works decompose the scene into multiple objects, and use the object layout or semantic layout
as a bridge to synthesize the whole image [11, 21, 10], or generate different objects sequentially [46].
Scene graph-to-image synthesis [16] is related to this line of work, as they both consider an image
as a composition of multiple objects (and object relationships). However, as opposed to the natural
language description inputs, the structured information and the layout for image synthesis is directly
provided by the scene graph input. Recent works explored a transformer-based vision-language
representation model [5], cross-modal constrastive learning [59], and transformer and discrete
VAE [39] for text-to-image synthesis.

Evaluation metrics Most of the prior attempts on text-to-image synthesis are evaluated using
Inception Score (IS) [45] and Frećhet Inception Distance (FID) [9] for image fidelity. Precision
and recall [44, 18] are alternative evaluation metrics to evaluate image quality and diversity for
unconditional and conditional image synthesis. For text-to-image synthesis evaluation, R-precision
is adopted to evaluate how well the generated image aligns with the text. In this work, we analyze
the drawbacks of the previous evaluation metrics, and propose our new benchmark and evaluation
metric to measure the compositionality of text-to-image synthesis models. We experiment with
DM-GAN [63], ControlGAN [19] and DF-GAN [48], three representative approaches discussed
above.

Compositionality in visual systems Compositionality is one of key properties of intelligent visual
systems. Exploring the compositionality of visual systems is important for generalization of neural
networks, few-shot learning, and overcoming dataset bias. A typical example is: given images of a
“young tiger” and an “old car”, is the model able to recognize an “old tiger”? In visual recognition,
researchers explored the compositionality of objects and attributes so that the model can generalize
to unseen combinations of visual concepts [28, 29, 53, 50, 35, 30, 23, 56, 26]. Compositionality
has also been explored in visual relationship detection [34, 1] and action recognition [27]. Most
related to our work is compositionality in image captioning and image synthesis. Previous work has
explored the ability of generating novel image captions for unseen composition of concepts [31]. For
image synthesis, a few works aim at object-level compositionality such as adding a pair of sunglasses
to a face [51, 3, 58]. Another line of work explores disentanglement of different factors for image
synthesis [2, 25, 14, 43]. MixNMatch [22] disentangled multiple factors including background, pose,
shape and texture by decomposing image synthesis into multiple steps. However, the compositionality
for text-to-image synthesis has never been explored in previous works. Here, we establish a new
benchmark for compositional text-to-image synthesis and analyze the compositionality of several
existing text-to-image synthesis models.

3 Constructing Compositional Splits for Text-to-Image Synthesis

In this section, we introduce a task that requires compositional understanding of adjective and object
concepts when synthesizing images from input texts. To systematically analyze the performance of
text-to-image models in generalizing to unseen composition of concepts, we propose multiple new
compositional splits built from two datasets commonly used for text-to-image synthesis.

3.1 Problem Definition

Here, we define the compositional text-to-image synthesis task in which the goal is to mea-
sure how well a model generalizes to text inputs that contain unseen combinations of con-
cepts. We assume a dataset D containing N images each described by K captions: D =
{(x1, s11, . . . , s

1
K), . . . , (xN , sN1 , . . . , sNK)}. Within each caption, we identify a set of concept pairs,
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Table 1: Dataset statistics for C-CUB (left) and C-Flowers (right) datasets. Num Imgs, Num Caps,
and Avg Cap Len denote the total number of images, total number of captions, and average caption
length, respectively. The number in parentheses is the number of heldout adjective-noun pairs.

Type Split Num
Imgs

Num
Caps

Avg
Cap Len

Color
(29)

Train 9,010 84,709 15.21
Test Seen 1,389 13,022 15.28
Test Unseen 1,389 13,074 15.59
Test Swapped 1,389 8,991 15.73

Shape
(34)

Train 8,918 83,806 15.25
Test Seen 1,435 13,451 15.21
Test Unseen 1,435 13,548 15.40
Test Swapped 1,435 6,208 15.70

Type Split Num
Imgs

Num
Caps

Avg
Cap Len

Color
(18)

Train 6,637 59,111 13.36
Test Seen 776 6,919 13.40
Test Unseen 776 6,927 13.69
Test Swapped 776 6,789 13.38

Shape
(17)

Train 6,458 22,235 13.88
Test Seen 718 2,558 13.86
Test Unseen 718 3,045 13.79
Test Swapped 718 2,463 13.83

specifically we consider adjective-noun pairs in this work. Although each individual concept, i.e. an
adjective or a noun, is observed during training, some concept compositions are held out from the
training set. For instance, the training captions may contain individual colors (e.g. black, purple),
individual body parts (e.g. bill), and a subset of their compositions (e.g. black bill) while missing
some other compositions (e.g. purple bill). Images and captions containing the held-out compositions
are reserved for evaluation. We design three different test splits to measure (1) how well the model
performs on the seen adjective-noun combinations observed during training (Test Seen), (2) how
well the model generalizes to the unseen concept pairs reserved from training (Test Unseen), and
(3) how well the model handles input texts in which seen concept pairs are swapped to become
unseen (Test Swapped). The motivation for the third split is to prevent any other factors besides novel
adjective-noun compositions from affecting the model’s generalization performance. To achieve this,
we introduce minimal changes to Seen split by swapping adjectives to form unseen compositions. For
instance, a test seen caption is “This is a bird with red beak which is curvy and thick” where “red beak”
is a seen composition. While a test unseen caption is “This is a magnificent bird with brown crown,
striking yellow cape, orange upper wings, and blue beak”. If the quality of the synthesized image
from the unseen caption is not good, it is hard to tell whether it is because of the unseen composition
(blue beak) or because the input caption is longer and more complicated. In order to control the
various factors and analyze the effect of novel compositions, we introduce the test swapped caption,
“This is a bird with blue beak which is curvy and thick” where it adopts the identical sentence structure
and vocabularies with the seen caption, and only the unseen combination of “blue beak” is introduced.

3.2 Compositional Split Generation

In order to create the aforementioned compositional splits, we first identify representative sets of
nouns and adjectives present in the dataset, and curate a list of synonyms for each word to account
for the variations in how they manifest in the captions. When selecting adjectives, we first determine
the 60 most frequent adjectives that appear in the dataset. Then we filter out ones that are either color-
related or shape-related. Then, we find 100 most frequent adjective-noun pairs that are associated
with the selected adjectives and extract all the nouns. We use Spacy [12] to tag, lemmatize, and parse
the captions.

Once the nouns and adjectives are determined, we select the “novel” adjective-noun pairs that will
constitute the evaluation set. Specifically, we calculate the frequencies of all the adjective-noun pairs
and sort them from the most to the least frequent. Then, 10% of the unique adjective-noun pairs are
withheld to become unseen; they are randomly sampled from between the 25th and 75th percentiles
of the sorted list. (Sampling heldout pairs from the top of the list, i.e. most frequent ones, results in
significant shrinkage of the training dataset and limits the variations in nouns present in the evaluation
splits as there exists certain nouns that appear more frequently across pairs, while sampling from
the long-tail results in a small test set.) Finally, based on the withheld pairs the dataset is split into
Dtrain, Dtest seen, and Dtest unseen. When generating Dtest swapped from Dtest seen, we keep the nouns and
only modify the adjectives so that they form unseen pairs. Given the limited number of adjectives
available in the heldout set, such swapping process can lead to certain heldout pairs dominating the
split. To address this, we identify these dominant pairs and try to avoid introducing them if there are
other candidates in the caption that can be swapped. Even with such measure, the frequencies of
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heldout pairs can still be imbalanced, so during the computation of automatic metrics, we make sure
that the dominant pairs do not overwhelm the score computation.

Following this procedure, we construct four different benchmarks from two commonly used datasets
for text-to-image synthesis: Caltech-UCSD Birds (CUB) [52], a collection of 200 bird species, and
Oxford-102 (Flowers) [33] which consists of 102 flower categories. The captions for both datasets
are obtained from [40], who collected 10 human descriptions for each image. The license details of
each dataset are in the respective papers. We denote the four different benchmarks as C-CUB Color,
C-CUB Shape, C-Flowers Color, C-Flowers Shape, and their respective statistics can be found in
Table 1. For more details on the proposed benchmarks, please refer to the Supplemental.

4 Evaluation for Text-to-Image Synthesis

Here, we review the commonly used evaluation metrics, discuss their limitations, and propose a new
metric, CLIP-R-Precision, for measuring generated image correctness for the given input description.

Frećhet Inception Distance. A common metric to evaluate the performance of GANs in terms of
quality and diversity of the synthesized samples specially in unconditional image synthesis is Frećhet
Inception Distance (FID) [9]. It calculates the Frećhet distance between the embedding of real images
extracted from a pre-trained Inception network and that of synthesized images. In the conditional
text-to-image synthesis problem, while this metric evaluates the perceptual quality of the generated
samples, it does not capture whether these images are well conditioned on the input text. Instead,
R-Precision is used to evaluate the correctness of the generated images with respect to the given
caption. In the following, we review R-Precision and shed some lights on its limitations, which we
address with our new proposed metric, CLIP-R-Precision, discussed thereafter.

R-Precision. R-Precision calculates the top-R retrieval accuracy when retrieving the matching text
from 100 text candidates using the generated image as a query. Typically R = 1, meaning that
we calculate the top-1 retrieval accuracy. The text-image similarity score for retrieval is calculated
using the Deep Attentional Multimodal Similarity Model (DAMSM) [55] consisting of an image
encoder and a text encoder to map each sub-region of an image and its corresponding word in the
sentence to a joint embedding space. This model is pre-trained on the real image-text pairs from the
training data, and measures the fine-grained image-text similarity for retrieval. While the purpose
of R-Precision is to measure how well the generated images align with the text inputs, we find
that majority of the text-to-image synthesis models directly optimize the DAMSM module used in
computing R-Precision [63, 19]. This results in text-to-image generation systems that are optimized
specifically for DAMSM-based evaluation metric, making the R-precision metric model-specific.
The issue with such a metric is that models that are not specifically tuned on DAMSM modules will
likely perform worse on the metric, thereby making the metric less objective and necessitating model
designs to include DAMSM modules which may not always be desirable.

CLIP-R-Precision. To address this, we propose a new evaluation metric, named CLIP-R-Precision.
We adopt the recent multimodal CLIP model [38] instead of the standard DAMSM to calculate the
R-Precision scores. CLIP is trained on a large corpus on Web-based image-caption pairs. It learns
to bring the two embeddings (visual and textual) together via a contrastive objective. We finetune
the pretrained CLIP model on the entire CUB and Oxford-102 dataset, respectively. Compared to
DAMSM, CLIP obtains higher image-text retrieval performance on the standard test splits of the CUB
and Flowers datasets: 26.20 vs. 22.1 and 20.0 vs. 18.44, respectively (with real images). Overall,
our proposed CLIP-R-Precision is a stronger model-agnostic (i.e. disassociated in model training)
evaluation metric compared to the standard R-Precision. We further validate this claim by analyzing
correlation between human judgments, regular R-Precision and CLIP-R-Precision in Section 5.2.

5 Experiments

In this section, we study the performance of the existing text-to-image synthesis models in generalizing
to the unseen composition of concepts that are introduced by our compositional data splits.

Text-to-Image Synthesis Models. We benchmark three text-to-image synthesis methods. DMGAN
(Dynamic Memory GAN) [63] first generates an initial image and refines it iteratively with a Dynamic
Memory based Image Refinement module. ControlGAN[19] aims at the user-controllable text-to-
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Table 2: Benchmarking on the C-CUB Color and C-CUB Shape datasets.

Type Model Split FID↓ R-Precicion (R=1)↑ CLIP
R-Precision (R=1)↑

Color

DMGAN
Seen 14.38 64.59 ± 1.33 53.52 ± 0.93
Unseen 15.92 58.82 ± 1.83 50.71 ± 0.84
Swapped 14.31 56.22 ± 1.47 42.10 ± 0.78

ControlGAN
Seen 16.58 56.35 ± 1.30 39.48 ± 0.68
Unseen 19.65 51.00 ± 1.38 36.71 ± 1.13
Swapped 16.60 48.26 ± 0.80 29.84 ± 1.65

DF-GAN
Seen 16.61 32.83 ± 1.03 29.12 ± 0.78
Unseen 17.12 30.50 ± 1.65 27.74 ± 1.22
Swapped 17.19 29.34 ± 2.73 21.76 ± 1.16

Shape

DMGAN
Seen 13.34 65.52 ± 1.52 56.77 ± 1.48
Unseen 13.26 60.90 ± 1.35 49.89 ± 1.06
Swapped 15.15 58.69 ± 2.90 50.00 ± 2.20

ControlGAN
Seen 15.80 56.07 ± 1.21 38.08 ± 0.85
Unseen 16.94 55.63 ± 1.24 34.69 ± 1.22
Swapped 16.76 53.57 ± 2.56 36.68 ± 2.42

DF-GAN
Seen 17.59 28.67 ± 1.13 26.32 ± 0.78
Unseen 19.71 27.82 ± 0.80 23.84 ± 1.02
Swapped 19.99 25.56 ± 1.04 27.41 ± 1.79

image synthesis by a word-level spatial and channel-wise attention-driven generator, a word-level
discriminator, and a perceptual loss. DF-GAN (Deep Fusion GAN) [48] proposes a deep text-
image fusion block for the generator, and the Matching-Aware Gradient Penalty (MA-GP) for the
discriminator. We follow the code released by the authors [64, 20, 49] to train their models on our
compositional splits. We use the same training strategy as described in their original papers.

Evaluation. We adopt the two commonly used evaluation metrics for text-to-image synthesis, FID
and R-Precision, and our newly proposed CLIP-R-Precision metric described in Section 4. We use
around 10,000 and 5000 samples to compute FID scores of the C-CUB and C-Flowers test splits,
respectively2. To compute R-Precision and Clip-R-Precision, we use 11,000 and 7,000 images for
C-CUB and C-Flowers datasets, respectively. Moreover, we conduct a human evaluation on Amazon
Mechanical Turk to evaluate the quality and correctness of the synthesized images (see Section 5.2).

5.1 Automatic Evaluation

We report automatic evaluation scores on the proposed compositional splits of the C-CUB and
C-Flowers datasets in Table 2 and 3. We summarize our findings below.

Overall, we observe degradation in most cases in both image quality (indicated by FID) and image cor-
rectness (indicated by R-Precision and CLIP-R-Precision) for the unseen and swapped compositions,
which verifies our hypothesis that the model cannot generalize well to novel compositions of concepts.
In general, degradation is much worse for image correctness (R-Precision and CLIP-R-Precision)
than image quality (FID) for both Shape and Color on both datasets, and for both Test Unseen and
Test Swapped splits. In other words, the model is able to generate perceptually convincing images,
but they do not closely match the input captions.

With a few exceptions, models generally perform worse on the Swapped split than on the Unseen
split in C-CUB while the trend is reversed in C-Flowers. We speculate that such difference comes
from how much contextual information is inherent in the captions for each dataset. More concretely,
even if there are unseen compositions, models may still be able to infer the class/type of the bird or
flower based on other descriptions in the caption, thereby allowing the model to generate reasonably
correct images without necessarily understanding the novel compositions. In C-CUB, the contextual
cues might be stronger which makes Swapped split more confusing while in C-Flowers, the context
of the sentence might not be strongly indicative of the flower type, thus showing better performance
on the Swapped split.

The trends for different methods (DMGAN, ControlGAN, and DF-GAN) are mostly consistent.
For both DMGAN and ControlGAN, the scores of CLIP-R-Precision are significantly lower than

2We do not report the Inception Score [45], as it is superseded by the FID metric.
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Table 3: Benchmarking on the C-Flowers Color and C-Flowers Shape datasets.

Type Model Split FID↓ R-Precicion (R=1)↑ CLIP
R-Precision (R=1)↑

Color

DMGAN
Seen 28.76 63.42 ± 0.85 52.03 ± 2.36
Unseen 31.30 48.49 ± 1.83 38.46 ± 1.62
Swapped 28.48 51.71 ± 2.38 44.68 ± 3.15

ControlGAN
Seen 36.88 49.90 ± 0.87 39.28 ± 1.83
Unseen 38.02 36.46 ± 0.58 26.12 ± 1.24
Swapped 37.35 40.32 ± 3.44 35.41 ± 3.28

DF-GAN
Seen 35.05 42.92 ± 1.80 40.90 ± 1.79
Unseen 38.24 35.63 ± 1.59 32.62 ± 1.68
Swapped 39.28 34.82 ± 4.02 38.31 ± 4.28

Shape

DMGAN
Seen 28.25 61.19 ± 2.10 49.07 ± 1.46
Unseen 29.26 47.82 ± 1.54 34.80 ± 1.78
Swapped 26.64 52.05 ± 3.47 38.16 ± 1.98

ControlGAN
Seen 36.32 56.06 ± 1.07 33.18 ± 1.57
Unseen 36.99 38.10 ± 1.46 25.27 ± 1.33
Swapped 35.97 40.29 ± 2.81 27.47 ± 2.50

DF-GAN
Seen 34.04 41.52 ± 1.96 43.54 ± 1.17
Unseen 35.28 33.75 ± 1.59 33.60 ± 0.98
Swapped 34.68 35.43 ± 2.76 34.33 ± 2.40

R-Precision, which is because DAMSM is used for both training the models and evaluating the
R-Precision. In contrast, DF-GAN does not use DAMSM loss for training, so R-Precision and
CLIP-R-Precision results are comparable but lower. Thus, optimizing with DAMSM loss generally
improves the retrieval-based evaluation metrics, but makes the model biased towards R-Precision. Our
proposed CLIP-R-Precision is a more objective and unbiased metric for evaluating image correctness.

When comparing the Color and Shape splits, the trends are overall similar. On C-CUB, DMGAN and
ControlGAN tend to do slightly better on Shape, while DF-GAN does slightly worse. On C-Flowers,
the results are mixed. We do not see that either Color or Shape is consistently more challenging.

5.2 Human Evaluation

Next we study whether the findings from the automatic metrics are confirmed by a human evaluation.
We focus on the Seen and Swapped splits to reduce any additional confounding factors. All images
are generated by the DMGAN model, the best performing of the three methods. We separately assess
perceptual quality and correctness of the generated images using Amazon Mechanical Turk.

Perceptual Evaluation. We sample 100 caption-image pairs from each of the following splits:
C-CUB Color Seen/Swapped, C-CUB Shape Seen/Swapped, C-Flowers Color Seen/Swapped, C-
Flowers Shape Seen/Swapped. We design our tasks by pairing images from the Seen and Swapped
splits that correspond to an original caption and its swapped variant. (The captions are not used
during the evaluation.) We ask the workers “Which image looks more realistic?” with the candidate
answers being Image 1, Image 2 or About the same. For each task we ask 5 workers to provide their
judgment. The results are presented in Table 4. We report two metrics: “All” is calculated over all
500 tasks independently3; “Majority” is calculated over 100 image pairs, where an image “wins” if at
least 3 out of 5 judges agreed on it. Interestingly, we see that for the Color splits the images generated
from the Seen captions get higher scores, while the opposite is true for the Shape splits. We posit that
the “Swapped” generated images may look realistic despite not being accurate.

Correctness Evaluation. Now, we aim to answer the key question in this paper, do the images
generated based on the captions with unseen phrases correctly depict the input descriptions? We rely
on the same data as described above. Here, each task includes two captions (Seen and Swapped) and
one image. An image may be generated either based on a Seen or a Swapped caption. Here, we ask
the workers: “Which caption better matches the image?” with the answer choices Caption 1, Caption
2 or About the same. The intuition is that if the image was generated correctly (w.r.t. the caption)
it should be possible to match it to its caption (and not to a distractor caption). For each task we
collect judgments from 5 workers. Table 5 reports the accuracy with which the “Seen” and “Swapped”

3We have 500 tasks since there are 100 image pairs and 5 judges for each.
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Table 4: Perceptual quality evaluation with
humans on the C-CUB and C-Flowers dataset.
“Maj.” stands for Majority vote.

Type Model Split All Maj.

C-CUB dataset

Color DMGAN
Seen is better 55.8 55.0
Swapped is better 42.0 39.0

Shape DMGAN
Seen is better 45.2 39.0
Swapped is better 49.0 49.0

C-Flowers dataset

Color DMGAN
Seen is better 48.6 50.0
Swapped is better 48.8 47.0

Shape DMGAN
Seen is better 41.4 40.0
Swapped is better 55.0 58.0

Table 5: Correctness evaluation with humans on
the C-CUB and C-Flowers dataset. “Maj.” stands
for Majority vote.

Type Model Split All Maj.

C-CUB dataset

Color DMGAN
Seen accuracy 81.6 88.0
Swapped accuracy 64.2 65.0

Shape DMGAN
Seen accuracy 59.6 68.0
Swapped accuracy 47.8 45.0

C-Flowers dataset

Color DMGAN
Seen accuracy 86.2 93.0
Swapped accuracy 45.6 41.0

Shape DMGAN
Seen accuracy 67.8 71.0
Swapped accuracy 44.6 39.0

images were matched to their corresponding captions. “All” is calculated over 500 tasks (100×5) per
split; for “Majority” an image accuracy is 1 if at least 3 out of 5 judges matched it to its own caption,
and 0 otherwise (100 tasks per split). Here we clearly see that the “Swapped” images are less true to
their captions, as evident by significantly lower accuracy than that of the “Seen” images. We note,
that even the Shape Swapped samples, which have better perceptual quality according to the human
judges, still significantly lag behind the respective Shape Seen samples in terms of image correctness.

Overall, the correctness evaluation clearly shows degradation in quality, while the perceptual evalua-
tion is less telling. Compared to the automatic evaluation results in the previous section, again, the
correctness results are consistent, while the perceptual quality results are less so.

Correlation between Automatic and Human Scores. Here we assess how well the DAMSM and
CLIP embeddings, used to compute R-Precision and CLIP-R-Precision in our automatic evaluation,
align with the human scores in the correctness evaluation. Given an image and two captions, each
caption gets scored with the ratio m/5 if it was selected by m out of 5 human judges. Next,
we compute the corresponding scores based on the DAMSM and CLIP embeddings. Finally, we
compute Pearson correlation and Spearman correlation between the human scores and DAMSM /
CLIP. Pearson correlation is a measure of linear correlation between two sets of data, and Spearman
correlation is a measure of monotonic correlation. Our results are presented in Table 6 and Table 7.
The Pearson correlation scores in Table 6 are low because the correlation between CLIP/DAMSM
similarity scores and human evaluation scores are expected to be monotonic but not necessarily
linear. In addition, we also compute the binary decision consensus between human evaluators and
the model in Table 8. For each paired seen and swapped caption, and an image generated from
either the seen caption or the swapped caption, the binary choice (i.e., “the seen caption matches
the image better than the swapped caption” or “ the swapped caption matches the image better than
seen caption”) is made by both human evaluators and the models. We compute the percentage that
the human evaluators and the model reach a consensus in the binary decision. We also report the
consistency between human evaluators. At each time, we hold out one human evaluator among the
five evaluators, and compute the Pearson/Spearman correlation coefficients and the binary decision
consensus between the “held out evaluator” and the average scores of the other four evaluators. The
five correlation scores, each taking one evaluator as the “held out evaluator”, are averaged to obtain
the final score. Based on the correlation and consensus analysis, we conclude that the CLIP-based
scores have higher correlation with human scores than the DAMSM-based scores. We are aware
that both of those evaluation metrics are far from perfect, which is indicated by the relatively low
correlation scores. However, our work offers a potential direction to look for an improvement for
evaluating the correctness of text-to-image synthesis models.
5.3 Qualitative Analysis

In Figure 2, we illustrate the images synthesized by DMGAN given the text inputs containing seen
adjective-noun pairs versus their swapped variants (with a fixed latent code). Each row corresponds to
the DMGAN model trained on C-CUB Color/Shape or C-Flowers Color/Shape data split. The images
synthesized from the Seen captions are in the 1st, 3rd, and 5th columns; for the Swapped captions,
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Table 6: Pearson Correlation Coefficient be-
tween human eval scores and similarity scores
computed from DAMSM and CLIP embed-
dings. Higher is better.

C-CUB dataset C-Flowers dataset

Model Color Shape Color Shape

DAMSM 0.0503 0.1229 -0.0457 -0.0435
CLIP 0.0752 0.0878 0.2818 0.0920
Human 0.5949 0.3949 0.5891 0.3721

Table 7: Spearman Correlation Coefficient be-
tween human eval scores and similarity scores
computed from DAMSM and CLIP embed-
dings. Higher is better.

C-CUB dataset C-Flowers dataset

Model Color Shape Color Shape

DAMSM 0.1224 0.0170 0.0456 0.0876
CLIP 0.1263 0.0806 0.3151 0.0702
Human 0.5890 0.4007 0.5870 0.3698

Table 8: Binary decision consensus between human eval scores and similarity scores computed from
DAMSM and CLIP embeddings. Higher is better.

C-CUB dataset C-Flowers dataset

Model Color Shape Color Shape

DAMSM 0.5487 0.5269 0.5233 0.4796
CLIP 0.5641 0.5215 0.6528 0.5204
Human 0.8171 0.6997 0.8048 0.6879

the images are in the 2nd, 4th, and 6th columns. (More examples are provided in the Supplemental.)
In many cases, images generated from swapped captions do not accurately depict their captions.
In some cases, an unseen swapped adjective-noun pair in the caption is not only misrepresented
in its own corresponding sub-region in the output image, but it also degrades the correctness of
other sub-regions. For instance, in the first example from C-CUB Color (top row), “blue eye” in the
description has results in the color of the “bill” and the “head” to be “blue” as well. This could be
due to the entanglements between different attributes or body parts learned by the model, shedding
light onto the cause of poor compositional generalization.

To further investigate this issue, we look at a DMGAN model trained on the original (non-
compositional) training split of the CUB dataset [52]. We generate images from multiple input
descriptions where all adjective-noun pairs are seen during training. We then manually swap one
or two attributes in the input caption and generate an image from the same latent code, shown in
Figure 3. Note that all adjective-noun pairs in the swapped captions are also seen during training.
Here, we observe an entanglement between the background, body shape, color, pose, etc (e.g. “long
neck” often results in the image of a “waterbird”, “a white bird with gray wings” usually appears
on a “beach”, while a “yellow bird” sits on a “branch”). This reveals that even a non-compositional
scenario exhibits entanglement issues. We hypothesize that an efficient disentanglement approach
could help address both the entanglement and compositionality of the text-to-image synthesis models.

6 Discussion and Broader Impact

In this work, we establish a benchmark for evaluating and analyzing the generalization ability of text-
to-image synthesis methods w.r.t. the novel compositions of concepts. We create new data splits for
CUB and Oxford-102 datasets (C-CUB and C-Flowers), which are specifically designed for evaluating
and diagnosing how well the models can generalize to novel compositions. We also propose a new
evaluation metric, named CLIP-R-Precision, which offers a more objective measurement of image
correctness. We evaluate three state-of-the-art approaches, DMGAN, ControlGAN, and DF-GAN, on
the proposed compositional data splits and evaluation metrics.

One limitation of our work is that we only include three text-to-image synthesis methods in our
benchmarking study4. Future work should consider more approaches which might lead to more
interesting analysis and findings. It is also worth studying other types of compositions besides color
and shape, such as novel compositions of objects and novel compositions of object relationships.

This is the first work that establishes a benchmark for compositional text-to-image synthesis. We
hope that it will inspire future work on improving compositionality in text-to-image generation. A

4We have considered including several other methods, but have discovered that in many cases the code was
either not released or not complete.
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a bird with a flat orange bill, red 
eye, black head, long neck, and 
white throat.

a bird with a flat purple bill, blue 
eye, tan head, long neck, and 
white throat.

pudgy bird with a white belly 
and small stouts orange beak 
and long black tail.

pudgy bird with a purple belly 
and small stouts orange beak 
and long red tail.

this bird has a long pointed bill 
with the lower bill pointed 
down, a long neck, and a 
brown head & body.

this bird has a fat pointed bill 
with the lower bill pointed 
down, a thin neck, and a 
brown head & body.

a small bird with a gray breast 
and belly, light brown and 
black wings, black eyes, and 
a short yellow bill.

a small bird with a gray breast 
and belly, light brown and 
black wings, black eyes, and 
a fat yellow bill.

this flower has many long 
slender petals of white 
surrounding a yellow pompom 
center.

this flower has many long 
slender petals of white 
surrounding a blue pompom 
center.

this flower has petals that are 
white and has pink edges

this flower has petals that are 
white and has black edges

this flower has a large number 
of white elongated petals with 
yellow stamen at the center.

this flower has a large number 
of white short petals with 
yellow stamen at the center.

this flower has long purple 
petals which are shaped like 
thin ovals.

this flower has short purple 
petals which are shaped like 
thin ovals.

C-CUB Color

C-CUB Shape

C-Flowers Color

C-Flowers Shape

this bird has a white abdomen, 
belly, and neck with gray crown, 
nape, wings, and tail.

this bird has a blue abdomen, 
belly, and neck with red crown, 
nape, wings, and tail.

a small brown bird with a small 
head, dark brown crown and 
white belly.

a small brown bird with a round 
head, dark brown crown and 
white belly.

this particular flower has petals 
that are purple and a yellow 
center

this particular flower has petals 
that are purple and a blue 
center

the flower has many golden 
stamen surrounded by thin 
yellow petals.

the flower has many golden 
stamen surrounded by short 
yellow petals.

Figure 2: Seen adjective-noun pairs (illustrated in green; 1st, 3rd, and 5th columns) are swapped with
unseen adjective-noun pairs (illustrated in red; 2nd, 4th, and 6th columns). A DMGAN model has
been trained on our two compositional datasets on the two color and shape splits.

this is a large winged and 
tailed white bird with black 
on its head.

this is a large winged and 
tailed tan bird with red on its 
head.

a medium sized white bird, 
with grey wings, a black 
crown, and a sharp bill.

a medium sized yellow bird, 
with grey wings, a black 
crown, and a sharp bill.

this bird has a dark orange 
bill, with a long neck.

this bird has a dark orange 
bill, with a thick neck.

this bird has a dark purple 
bill, with a short neck.

Figure 3: Entanglement between background, shape, color, and pose. All adjective-noun pairs are
seen at training time. Images are generated by a DMGAN model trained on the original CUB dataset.

model that performs well on novel compositions would also be more user-controllable and less biased.
Such models have the potential to be used for automatic artistic design and image editing. However,
image synthesis techniques should be used carefully as they might pose a threat if used for generating
fake images that might mislead people. Novel composition of objects, attributes, actions, and scenes
while generating an image from an input text could result in fake news in which a fraudulent story
matches perfectly with a realistic-looking synthesized image. For instance, one could claim the
discovery of an extra-terrestrial on the earth or could attack the reputation of a person by publishing
a malicious image of him/her doing an action that never had happened in reality. In this paper, we
have studied the novel composition of objects and attributes in the context of birds and flowers, but
this study could be extended to other types of composition and other data sets and contexts. We urge
the researchers and users to be aware of such consequences. Finally, we use a large-scale web-based
CLIP model [38] as part of our metric, which may have encoded some inappropriate biases that could
propagate to our metric. We would caution the researchers adopting our CLIP-based metric to more
sensitive domains to make sure that no harmful/offensive biases get propagated via the proposed
metric.
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