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Abstract
Learning multimodal representations involves integrating information from multi-
ple heterogeneous sources of data. It is a challenging yet crucial area with numer-
ous real-world applications in multimedia, affective computing, robotics, finance,
human-computer interaction, and healthcare. Unfortunately, multimodal research
has seen limited resources to study (1) generalization across domains and modali-
ties, (2) complexity during training and inference, and (3) robustness to noisy and
missing modalities. In order to accelerate progress towards understudied modali-
ties and tasks while ensuring real-world robustness, we release MULTIBENCH, a
systematic and unified large-scale benchmark for multimodal learning spanning 15
datasets, 10 modalities, 20 prediction tasks, and 6 research areas. MULTIBENCH
provides an automated end-to-end machine learning pipeline that simplifies and
standardizes data loading, experimental setup, and model evaluation. To enable
holistic evaluation, MULTIBENCH offers a comprehensive methodology to assess
(1) generalization, (2) time and space complexity, and (3) modality robustness.
MULTIBENCH introduces impactful challenges for future research, including scal-
ability to large-scale multimodal datasets and robustness to realistic imperfections.
To accompany this benchmark, we also provide a standardized implementation
of 20 core approaches in multimodal learning spanning innovations in fusion
paradigms, optimization objectives, and training approaches. Simply applying
methods proposed in different research areas can improve the state-of-the-art per-
formance on 9/15 datasets. Therefore, MULTIBENCH presents a milestone in
unifying disjoint efforts in multimodal machine learning research and paves the
way towards a better understanding of the capabilities and limitations of multi-
modal models, all the while ensuring ease of use, accessibility, and reproducibility.
MULTIBENCH, our standardized implementations, and leaderboards are publicly
available, will be regularly updated, and welcomes inputs from the community.

1 Introduction
Our perception of the natural world surrounding us involves multiple sensory modalities: we see
objects, hear audio signals, feel textures, smell fragrances, and taste flavors. A modality refers to a
way in which a signal exists or is experienced. Multiple modalities then refer to a combination of
multiple signals each expressed in heterogeneous manners [10]. Many real-world research problems
are inherently multimodal: from the early research on audio-visual speech recognition [48] to the
recent explosion of interest in language, vision, and video understanding [48] for applications such as
multimedia [102, 116], affective computing [101, 127], robotics [84, 91], finance [70], dialogue [126],
human-computer interaction [47, 117], and healthcare [51, 172]. The research field of multimodal
machine learning (ML) brings unique challenges for both computational and theoretical research
given the heterogeneity of various data sources [10]. At its core lies the learning of multimodal
representations that capture correspondences between modalities for prediction, and has emerged as
a vibrant interdisciplinary field of immense importance and with extraordinary potential.
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Figure 1: MULTIBENCH contains a diverse set of 15 datasets spanning 10 modalities and testing for more than
20 prediction tasks across 6 distinct research areas, thereby enabling standardized, reliable, and reproducible
large-scale benchmarking of multimodal models. To reflect real-world requirements, MULTIBENCH is designed
to holistically evaluate (1) performance across domains and modalities, (2) complexity during training and
inference, and (3) robustness to noisy and missing modalities.

Limitations of current multimodal datasets: Current multimodal research has led to impressive
advances in benchmarking and modeling for specific domains such as language and vision [4, 103,
105, 132]. However, other domains, modalities, and tasks are relatively understudied. Many of these
tasks are crucial for real-world intelligence such as improving accessibility to technology for diverse
populations [62], accelerating healthcare diagnosis to aid doctors [78], and building reliable robots
that can engage in human-AI interactions [16, 83, 137]. Furthermore, current benchmarks typically
focus on performance without quantifying the potential drawbacks involved with increased time and
space complexity [148], and the risk of decreased robustness from imperfect modalities [101, 123]. In
real-world deployment, a balance between performance, robustness, and complexity is often required.

MULTIBENCH: In order to accelerate research in building general-purpose multimodal models,
our main contribution is MULTIBENCH (Figure 1), a systematic and unified large-scale benchmark
that brings us closer to the requirements of real-world multimodal applications. MULTIBENCH
is designed to comprehensively evaluate 3 main components: generalization across domains and
modalities, complexity during training and inference, and robustness to noisy and missing modalities:
1. Generalization across domains and modalities: MULTIBENCH contains a diverse set of 15 datasets
spanning 10 modalities and testing for 20 prediction tasks across 6 distinct research areas. These
research areas include important tasks understudied from a multimodal learning perspective, such as
healthcare, finance, and HCI. Building upon extensive data-collection efforts by domain experts, we
worked with them to adapt datasets that reflect real-world relevance, present unique challenges to
multimodal learning, and enable opportunities in algorithm design and evaluation.
2. Complexity during training and inference: MULTIBENCH also quantifies potential drawbacks
involving increased time and space complexity of multimodal learning. Together, these metrics
summarize the tradeoffs of current models as a step towards efficiency in real-world settings [142].
3. Robustness to noisy and missing modalities: Different modalities often display different noise
topologies, and real-world multimodal signals possibly suffer from missing or noisy data in at least
one of the modalities [10]. MULTIBENCH provides a standardized way to assess the risk of decreased
robustness from imperfect modalities through a set of modality-specific and multimodal imperfections
that reflect real-world noise, thereby providing a benchmark towards safe and robust deployment.
Together, MULTIBENCH unifies efforts across separate research areas in multimodal learning to
enable quick and accurate benchmarking across a wide range of datasets and metrics.

To help the community accurately compare performance and ensure reproducibility, MULTIBENCH
includes an end-to-end pipeline including data preprocessing, dataset splits, multimodal algorithms,
evaluation metrics, and cross-validation protocols. This includes an implementation of 20 core multi-
modal approaches spanning innovations in fusion paradigms, optimization objectives, and training
approaches in a standard public toolkit called MULTIZOO. We perform a systematic evaluation
and show that directly applying these methods can improve the state-of-the-art performance on 9
out of the 15 datasets. Therefore, MULTIBENCH presents a step towards unifying disjoint efforts
in multimodal research and paves a way towards a deeper understanding of multimodal models.
Most importantly, our public zoo of multimodal benchmarks and models will ensure ease of use,
accessibility, and reproducibility. Finally, we outline our plans to ensure the continual availability,
maintenance, and expansion of MULTIBENCH, including using it as a theme for future workshops
and competitions and to support the multimodal learning courses taught around the world.
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Table 1: MULTIBENCH provides a comprehensive suite of 15 multimodal datasets to benchmark current and
proposed approaches in multimodal representation learning. It covers a diverse range of research areas, dataset
sizes, input modalities (in the form of `: language, i: image, v: video, a: audio, t: time-series, ta: tabular, f :
force sensor, p: proprioception sensor, s: set, o: optical flow), and prediction tasks. We provide a standardized
data loader for datasets in MULTIBENCH, along with a set of state-of-the-art multimodal models.

Research Area Size Dataset Modalities # Samples Prediction task

Affective Computing

S MUSTARD [24] {`, v, a} 690 sarcasm
M CMU-MOSI [181] {`, v, a} 2,199 sentiment
L UR-FUNNY [64] {`, v, a} 16,514 humor
L CMU-MOSEI [183] {`, v, a} 22,777 sentiment, emotions

Healthcare L MIMIC [78] {t, ta} 36,212 mortality, ICD-9 codes

Robotics M MUJOCO PUSH [90] {i, f, p} 37,990 object pose
L VISION&TOUCH [92] {i, f, p} 147,000 contact, robot pose

Finance
M STOCKS-F&B {t × 18} 5,218 stock price, volatility
M STOCKS-HEALTH {t × 63} 5,218 stock price, volatility
M STOCKS-TECH {t × 100} 5,218 stock price, volatility

HCI S ENRICO [93] {i, s} 1,460 design interface

Multimedia

S KINETICS400-S [80] {v, a, o} 2,624 human action
M MM-IMDB [8] {`, i} 25,959 movie genre
M AV-MNIST [161] {i, a} 70,000 digit
L KINETICS400-L [80] {v, a, o} 306,245 human action

2 MULTIBENCH: The MULTISCALE MULTIMODAL BENCHMARK

Background: We define a modality as a single particular mode in which a signal is expressed or
experienced. Multiple modalities then refer to a combination of multiple heterogeneous signals [10].
The first version of MULTIBENCH focuses on benchmarking algorithms for multimodal fusion, where
the main challenge is to join information from two or more modalities to perform a prediction
(e.g., classification, regression). Classic examples for multimodal fusion include audio-visual speech
recognition where visual lip motion is fused with speech signals to predict spoken words [48].
Multimodal fusion can be contrasted with multimodal translation where the goal is to generate a new
and different modality [162], grounding and question answering where one modality is used to query
information in another (e.g., visual question answering [4]), and unsupervised or self-supervised
multimodal representation learning [109, 143]. We plan future versions of MULTIBENCH to study
these important topics in multimodal research in Appendix I.
Each of the following 15 datasets in MULTIBENCH contributes a unique perspective to the various
technical challenges in multimodal learning involving learning and aligning complementary informa-
tion, scalability to a large number of modalities, and robustness to realistic real-world imperfections.

2.1 Datasets
Table 1 shows an overview of the datasets provided in MULTIBENCH. We provide a brief overview
of the modalities and tasks for each of these datasets and refer the reader to Appendix C for details.
Affective computing studies the perception of human affective states (emotions, sentiment, and per-
sonalities) from our natural display of multimodal signals spanning language (spoken words), visual
(facial expressions, gestures), and acoustic (prosody, speech tone) [124]. It has broad impacts towards
building emotionally intelligent computers, human behavior analysis, and AI-assisted education.
MULTIBENCH contains 4 datasets involving fusing language, video, and audio time-series data to pre-
dict sentiment (CMU-MOSI [181]), emotions (CMU-MOSEI [183]), humor (UR-FUNNY [64]),
and sarcasm (MUSTARD [24]). Complementary information may occurs at different moments,
requiring models to address the multimodal challenges of grounding and alignment.
Healthcare: Modern medical decision-making often involves integrating complementary information
and signals from several sources such as lab tests, imaging reports, and patient-doctor conversations.
Multimodal models can help doctors make sense of high-dimensional data and assist them in the
diagnosis process [5]. MULTIBENCH includes the large-scale MIMIC dataset [78] which records
ICU patient data including time-series data measured every hour and other demographic variables
(e.g., age, gender, ethnicity in the form of tabular numerical data). These are used to predict the
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disease ICD-9 code and mortality rate. MIMIC poses unique challenges in integrating time-varying
and static modalities, reinforcing the need of aligning multimodal information at correct granularities.
Robotics: Modern robot systems are equipped with multiple sensors to aid in their decision-making.
We include the large-scale MUJOCO PUSH [90] and VISION&TOUCH [92] datasets which record the
manipulation of simulated and real robotic arms equipped with visual (RGB and depth), force, and
proprioception sensors. In MUJOCO PUSH, the goal is to predict the pose of the object being pushed
by the robot end-effector. In VISION&TOUCH, the goal is to predict action-conditional learning
objectives that capture forward dynamics of the different modalities (contact prediction and robot
end-effector pose). Robustness is important due to the risk of real-world sensor failures [89].
Finance: We gathered historical stock data from the internet to create our own dataset for financial
time-series prediction across 3 groups of correlated stocks: STOCKS-F&B, STOCKS-HEALTH, and
STOCKS-TECH. Within each group, the previous stock prices of a set of stocks are used as multimodal
time-series inputs to predict the price and volatility of a related stock (e.g., using Apple, Google,
and Microsoft data to predict future Microsoft prices). Multimodal stock prediction [136] presents
scalability issues due to a large number of modalities (18/63/100 vs 2/3 in most datasets), as well as
robustness challenges arising from real-world data with an inherently low signal-to-noise ratio.
Human Computer Interaction (HCI) studies the design of computer technology and interactive
interfaces between humans and computers [43]. Many real-world problems involve multimodal inputs
such as language, visual, and audio interfaces. We use the ENRICO (Enhanced Rico) dataset [40, 93]
of Android app screens (consisting of an image as well as a set of apps and their locations) categorized
by their design motifs and collected for data-driven design applications such as design search, user
interface (UI) layout generation, UI code generation, and user interaction modeling.
Multimedia: A significant body of research in multimodal learning has been fueled by the large
availability of multimedia data (language, image, video, and audio) on the internet. MULTIBENCH
includes 3 popular large-scale multimedia datasets with varying sizes and levels of difficulty: (1)
AV-MNIST [161] is assembled from images of handwritten digits [88] and audio samples of spoken
digits [94], (2) MM-IMDB [8] uses movie titles, metadata, and movie posters to perform multi-label
classification of movie genres, and (3) KINETICS [80] contains video, audio, and optical flow of
306,245 video clips annotated for 400 human actions. To ease experimentation, we split KINETICS
into small and large partitions (see Appendix C).

2.2 Evaluation Protocol
MULTIBENCH contains evaluation scripts for the following holistic desiderata in multimodal learning:
Performance: We standardize evaluation using metrics designed for each dataset, including MSE
and MAE for regression to accuracy, micro & macro F1-score, and AUPRC for classification.
Complexity: Modern ML research unfortunately causes significant impacts to energy consump-
tion [142], a phenomenon often exacerbated in processing high-dimensional multimodal data. As
a step towards quantifying energy complexity and recommending lightweight multimodal models,
MULTIBENCH records the amount of information taken in bits (i.e., data size), number of model
parameters, as well as time and memory resources required during the entire training process. Real-
world models may also need to be small and compact to run on mobile devices [131] so we also
report inference time and memory on CPU and GPU (see Appendix D.2).
Robustness: Real-world multimodal data is often imperfect as a result of missing entries, noise
corruption, or missing modalities entirely, which calls for robust models that can still make accurate
predictions despite only having access to noisy and missing signals [101, 123]. To standardize
efforts in evaluating robustness, MULTIBENCH includes the following tests: (1) Modality-specific
imperfections are independently applied to each modality taking into account its unique noise
topologies (i.e., flips and crops of images, natural misspellings in text, abbreviations in spoken
audio). (2) Multimodal imperfections capture correlations in imperfections across modalities (e.g.,
missing modalities, or a chunk of time missing in multimodal time-series data). We use both qualitative
measures (performance-imperfection curve) and quantitative metrics [149] that summarize (1) relative
robustness measuring accuracy under imperfections and (2) effective robustness measuring the rate of
accuracy drops after equalizing for initial accuracy on clean test data (see Appendix D.3 for details).

3 MULTIZOO: A Zoo of Multimodal Algorithms
To complement MULTIBENCH, we release a comprehensive toolkit, MULTIZOO, as starter code for
multimodal algorithms which implements 20 methods spanning different methodological innova-
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Figure 2: MULTIZOO provides a standardized implementation of a suite of multimodal methods in a modular
fashion to enable accessibility for new researchers, compositionality of approaches, and reproducibility of results.

tions in (1) data preprocessing, (2) fusion paradigms, (3) optimization objectives, and (4) training
procedures (see Figure 2). To introduce these algorithms, we use the simple setting with 2 modalities
for notational convenience but refer the reader to Appendix E for detailed descriptions and imple-
mentations. We use x1,x2 for input modalities, z1,z2 for unimodal representations, zmm for the
multimodal representation, and ŷ for the predicted label.

3.1 Data Preprocessing

Temporal alignment [26] has been shown to help tackle the multimodal alignment problem for
time-series data. This approach assumes a temporal granularity of the modalities (e.g., at the level of
words for text) and aligns information from the remaining modalities to the same granularity. We call
this approach WORDALIGN [26] for temporal data where text is one of the modalities.

3.2 Fusion Paradigms

Early and late fusion: Early fusion performs concatenation of input data before using a model
(i.e., zmm = [x1,x2]) while late fusion applies suitable unimodal models to each modality to obtain
their feature representations, concatenates these features, and defines a classifier to the label (i.e.,
zmm = [z1,z2]) [10]. MULTIZOO includes their implementations denoted as EF and LF respectively.
Tensors are specifically designed to tackle the multimodal complementarity challenge by explicitly
capturing higher-order interactions across modalities [179]. Given unimodal representations z1,z2,

tensors are defined as zmm = [z1
1
]⊗ [z2

1
] where ⊗ denotes an outer product. However, computing

tensor products is expensive since their dimension scales exponentially with the number of modalities
so several efficient approximations have been proposed [71, 101, 106]. MULTIZOO includes Tensor
Fusion (TF) [179] as well as the approximate Low-rank Tensor Fusion (LRTF) [106].
Multiplicative Interactions (MI) generalize tensor products to include learnable parameters that
capture multimodal interactions [77]. In its most general form, MI defines a bilinear product
zmm = z1Wz2+z⊺1U+Vz2+b where W,U,Z, and b are trainable parameters. By appropriately con-
straining the rank and structure of these parameters, MI recovers HyperNetworks [61] (unconstrained
parameters resulting in a matrix output), Feature-wise linear modulation (FiLM) [120, 188] (diagonal
parameters resulting in vector output), and Sigmoid units [37] (scalar parameters resulting in scalar
output). MULTIZOO includes all 3 as MI-MATRIX, MI-VECTOR, and MI-SCALAR respectively.
Multimodal gated units learn representations that dynamically change for every input [25, 167, 171].
Its general form can be written as zmm = z1 ⊙ h(z2), where h represents a function with sigmoid
activation and ⊙ denotes element-wise product. h(z2) is commonly referred to as “attention weights”
learned from z2 to attend on z1. Attention is conceptually similar to MI-VECTOR but recent work
has explored more expressive forms of h such as using a Query-Key-Value mechanism [167] or
fully-connected layers [25]. We implement the Query-Key-Value mechanism as NL GATE [167].
Temporal attention models tackle the challenge of multimodal alignment and complementarity.
Transformer models [158] are useful for temporal data by automatically aligning and capturing
complementary features at different time-steps [154, 174]. We include the Multimodal Transformer
(MULT) [154] which applied a Crossmodal Transformer block using z1 to attend to z2 (and vice-versa)
to obtain a multimodal representation zmm = [z1→2,z2→1] = [CM(z1,z2),CM(z2,z1)].
Architecture search: Instead of hand-designing architectures, several approaches define a set of
atomic operations (e.g., linear transformation, activation, attention, etc.) and use architecture search
to learn the best order of these operations for a given task [122, 173], which we call MFAS.

5



Algorithm 1 PyTorch code integrating MULTIBENCH datasets and MULTIZOO models.

from datasets.get_data import get_dataloader
from unimodals.common_models import ResNet, Transformer
from fusions.common_fusions import MultInteractions
from training_structures.gradient_blend import train, test

# loading Multimodal IMDB dataset
traindata, validdata, testdata = get_dataloader(’multimodal_imdb’)
out_channels = 3
# defining ResNet and Transformer unimodal encoders
encoders = [ResNet(in_channels=1, out_channels, layers=5),

Transformer(in_channels=1, out_channels, layers=3)]
# defining a Multiplicative Interactions fusion layer
fusion = MultInteractions([out_channels*8, out_channels*32], out_channels*32, ’matrix’)
classifier = MLP(out_channels*32, 100, labels=23)
# training using Gradient Blend algorithm
model = train(encoders, fusion, classifier, traindata, validdata,

epochs=100, optimtype=torch.optim.SGD, lr=0.01, weight_decay=0.0001)
# testing
performance, complexity, robustness = test(model, testdata)

3.3 Optimization Objectives
In addition to the standard supervised losses (e.g., cross entropy for classification, MSE/MAE for
regression), several proposed methods have proposed new objective functions based on:
Prediction-level alignment objectives tackle the challenge of alignment by capturing a representa-
tions where semantically similar concepts from different modalities are close together [9, 33, 91, 151].
Alignment objectives have been applied at both prediction and feature levels. In the former, we
implement Canonical Correlation Analysis (CCA) [7, 145, 166], which maximizes correlation by
adding a loss term LCCA = −corr (g1(z1), g2(z2)) where g1, g2 are auxiliary classifiers mapping
each unimodal representation to the label.
Feature-level alignment: In the latter, contrastive learning has emerged as a popular approach to
bring similar concepts close in feature space and different concepts far away [33, 91, 151]. We include
REFNET [135] which uses a self-supervised contrastive loss between unimodal representations z1,z2
and the multimodal representation zmm, i.e., Lcontrast = 1 − cos(zmm, g1(z1)) + 1 − cos(zmm, g2(z2))
where g1, g2 is a layer mapping each modality’s representation into the joint multimodal space.
Reconstruction objectives based on generative-discriminative models (e.g., VAEs) aim to reconstruct
the input (or some part of the input) [91, 155]. These have been shown to better preserve task-relevant
information learned in the representation, especially in settings with sparse supervised signals such as
robotics [91] and long videos [155]. We include the Multimodal Factorized Model (MFM) [155] that
learns a representation zmm that can reconstruct input data x1,x2 while also predicting the label, i.e.,
adding an objective Lrec = ∥g1(zmm) − x1∥2 + ∥g2(zmm) − x2∥2 where g1, g2 are auxiliary decoders
mapping zmm to each raw input modality. MFM can be paired with any multimodal model from
section 3.2 (e.g., learning zmm via tensors and adding a term to reconstruct input data).
Improving robustness: These approaches modify the objective function to account for robustness
to noisy [101] or missing [89, 111, 123] modalities. MULTIZOO includes MCTN [123] which uses
cycle-consistent translation to predict the noisy/missing modality from present ones (i.e., a path
x1 → zmm → x̂2 → zmm → x̂1, with additional reconstruction losses Lrec = ∥x1 − x̂1∥2 + ∥x2 − x̂2∥2).
While MCTN is trained with multimodal data, it only takes in one modality x1 at test-time which
makes it robust to the remaining modalities.

3.4 Training Procedures
Improving generalization: Recent work has found that directly training a multimodal model is
sub-optimal since different modalities overfit and generalize at different rates. MULTIZOO includes
Gradient Blending (GRADBLEND), that computes generalization statistics for each modality to
determine their weights during fusion [167], and Regularization by Maximizing Functional Entropies
(RMFE), which uses functional entropy to balance the contribution of each modality to the result [53].

3.5 Putting Everything Together
In Algorithm 1, we show a sample code snippet in Python that loads a dataset from MULTIBENCH
(section C.2), defines the unimodal and multimodal architectures, optimization objective, and training
procedures (section 3), before running the evaluation protocol (section 2.2). Our MULTIZOO toolkit
is easy to use and trains entire multimodal models in less than 10 lines of code. By standardizing the
implementation of each module and disentangling the individual effects of models, optimizations,
and training, MULTIZOO ensures both accessibility and reproducibility of its algorithms.
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Table 2: Standardizing methods and datasets enables quick application of methods from different research
areas which achieves stronger performance on 9/15 datasets in MULTIBENCH, especially in healthcare, HCI,
robotics, and finance. In-domain refers to the best performance across methods previously proposed on that
dataset and out-domain shows best performance across remaining methods. ↑ indicates metrics where higher is
better (Acc, AUPRC), ↓ indicates lower is better (MSE).

Dataset MUSTARD ↑ CMU-MOSI ↑ UR-FUNNY ↑ CMU-MOSEI ↑ MIMIC ↑
Unimodal 68.6 ± 0.4 74.2 ± 0.5 58.3 ± 0.2 78.8 ± 1.5 76.7 ± 0.3
In-domain 66.3 ± 0.3 83.0 ± 0.1 62.9 ± 0.2 82.1 ± 0.5 77.9 ± 0.3
Out-domain 71.8 ± 0.3 75.5 ± 0.5 66.7 ± 0.3 78.1 ± 0.3 78.2 ± 0.2
Improvement 4.7% - 6.0% - 0.4%

Dataset MUJOCO PUSH ↓ V&T EE ↓ STOCKS-F&B ↓ STOCKS-HEALTH ↓ STOCKS-TECH ↓
Unimodal 0.334 ± 0.034 0.202 ± 0.022 1.856 ± 0.093 0.541 ± 0.010 0.125 ± 0.004
In-domain 0.290 ± 0.018 0.258 ± 0.011 1.856 ± 0.093 0.541 ± 0.010 0.125 ± 0.004
Out-domain 0.402 ± 0.026 0.185 ± 0.011 1.820 ± 0.138 0.526 ± 0.017 0.120 ± 0.008
Improvement - 8.4% 1.9% 2.8% 4.0%

Dataset ENRICO ↑ MM-IMDB ↑ AV-MNIST ↑ KINETICS-S ↑ KINETICS-L ↑
Unimodal 47.0 ± 1.6 45.6 ± 4.5 65.1 ± 0.2 56.5 72.6
In-domain 47.0 ± 1.6 49.8 ± 1.7 72.8 ± 0.2 56.1 74.7
Out-domain 51.0 ± 1.4 50.2 ± 0.9 72.3 ± 0.2 23.7 71.7
Improvement 8.5% 0.8% - - -

4 Experiments and Discussion

Setup: Using MULTIBENCH, we load each of the datasets and test the multimodal approaches
in MULTIZOO. We only vary the contributed method of interest and keep all other possibly con-
founding factors constant (i.e., using the exact same training loop when testing a new multimodal
fusion paradigm), a practice unfortunately not consistent in previous work. Our code is available
at https://github.com/pliang279/MultiBench. Please refer to Appendix G for experi-
mental details. MULTIBENCH allows for careful analysis of multimodal models and we summarize
the main take-away messages below (see Appendix H for full results and analysis).
Benefits of standardization: From Table 2, simply applying methods proposed outside of the same
research area can improve the state-of-the-art performance on 9 of the 15 MULTIBENCH datasets,
especially for relatively understudied domains and modalities (i.e., healthcare, finance, HCI).
Generalization across domains and modalities: MULTIBENCH offers an opportunity to analyze
algorithmic developments across a large suite of modalities, domains, and tasks. We summarize the
following observations regarding performance across datasets and tasks (see details in Appendix H.7):
1. Many multimodal methods show their strongest performance on in-domain datasets and do not
generalize across domains and modalities. For example, MFAS [122] works well on domains it
was designed for (AV-MNIST and MM-IMDB in multimedia) but does not generalize to other
domains such as healthcare (MIMIC). Similarly, MULT [154] performs extremely well on the affect
recognition datasets it was designed for but struggles on other multimodal time-series data in the
finance and robotics domains. Finally, GRADBLEND [167], an approach specifically designed to
improve generalization in multimodal learning and tested on video and audio datasets (e.g., Kinetics),
does not perform well on other datasets. In general, we observe high variance in the performance
of multimodal methods across datasets in MULTIBENCH. Therefore, there still does not exist a
one-size-fits-all model, especially for understudied modalities and tasks.
2. There are methods that are surprisingly generalizable across datasets. These are typically general
modality-agnostic methods such as LF. While simple, it is a strong method that balances simplicity,
performance, and low complexity. However, it does not achieve the best performance on any dataset.
3. Several methods such as MFAS and CCA are designed for only 2 modalities (usually image and
text), and TF and MI do not scale efficiently beyond 2/3 modalities. We encourage the community to
generalize these approaches across datasets and modalities on MULTIBENCH.

Tradeoffs between modalities: How far can we go with unimodal methods? Surprisingly far! From
Table 2, we observe that decent performance can be obtained with the best performing modality.
Further improvement via multimodal models may come at the expense of around 2−3× the parameters.
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Figure 3: Tradeoff between performance and complexity. Size of circles shows variance in performance
across (a) all datasets and (b) datasets on which we tested > 6 approaches. We plot a dotted blue line of best
quadratic fit to show the Pareto frontier. These strong tradeoffs should encourage future work in lightweight
multimodal models that generalize across datasets, as well as in adapting several possibly well-performing
methods (such as MFAS or MULT) to new datasets and domains.

Tradeoffs between performance and complexity: In Figure 3(a), we summarize the performance
of all methods in terms of performance and complexity. We find a strong tradeoff between these two
desiderata: simple fusion techniques (e.g., LF) are actually appealing choices which score high on
both metrics, especially when compared to complex (but slightly better performing) methods such as
architecture search (MFAS) or Multimodal Transformers (MULT). While LF is the easiest to adapt to
new datasets and domains, we encountered difficulties in adapting several possibly well-performing
methods (such as MFAS or MULT) to new datasets and domains. Therefore, while their average
performance is only slightly better than LF on all datasets (see Figure 3(a)), they perform much better
on well-studied datasets (see Figure 3(b)). We hope that the release of MULTIBENCH will greatly
accelerate research in adapting complex methods on new datasets (see full results in Appendix H.8).

Tradeoffs between performance and robustness: In Figure 4, we plot a similar tradeoff plot
between accuracy and (relative & effective) robustness. As a reminder, relative robustness directly
measures accuracy under imperfections while effective robustness measures the rate at which accuracy
drops after equalizing for initial accuracy on clean test data (see Appendix D.3 for details). We observe
a positive correlation between performance and relative robustness (see Figure 4(a)), implying that
models starting off with higher accuracy tend to stay above other models on the performance-
imperfection curve. However, we observe a negative best fit between performance and effective
robustness (see Figure 4(b)) because several well-performing methods such as MULT, CCA, and
MVAE tend to drop off faster after equalizing for initial accuracy on clean test data. Furthermore,
very few models currently achieve both positive relative and effective robustness, which is a crucial
area for future multimodal research (see full results in Appendix H.9).

5 Related Work
We review related work on standardizing datasets and methods in multimodal learning.
Comparisons with related benchmarks: To the best of our knowledge, MULTIBENCH is the first
multimodal benchmark with such a large number of datasets, modalities, and tasks. Most previous
multimodal benchmarks have focused on a single research area such as within affective comput-
ing [56], human multimodal language [177], language and vision-based question answering [50, 138],
text classification with external multimodal information [60], and multimodal learning for educa-
tion [65]. MULTIBENCH is specifically designed to go beyond the commonly studied language,
vision, and audio modalities to encourage the research community to explore relatively understudied
modalities (e.g., tabular data, time-series, sensors, graph and set data) and build general multimodal
methods that can handle a diverse set of modalities.
Our work is also inspired by recent progress in better evaluation benchmarks for a suite of important
tasks in ML such as language representation learning [163, 164], long-range sequence modeling [150],
multilingual representation learning [72], graph representation learning [74], and robustness to
distribution shift [85]. These well-crafted benchmarks have accelerated progress in new algorithms,
evaluation, and analysis in their respective research areas.
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Figure 4: Tradeoff between performance and robustness. Size of circles shows variance in robustness across
datasets. We show the line of best linear fit in dotted blue. While better performing methods show better relative
robustness (a), some suffer in effective robustness since performance drops off faster (b). Few models currently
achieve both relative and effective robustness, which suggests directions for future research.

Standardizing multimodal learning: There have also been several attempts to build a single model
that works well on a suite of multimodal tasks [95, 109, 143]. However, these are limited to the
language and vision space, and multimodal training is highly tailored for text and images. Transformer
architectures have emerged as a popular choice due to their suitability for both language and image
data [27, 73] and a recent public toolkit was released for incorporating multimodal data on top of
text-based Transformers for prediction tasks [60]. By going beyond Transformers and text data,
MULTIBENCH opens the door to important research questions involving a much more diverse set of
modalities and tasks while holistically evaluating performance, complexity, and robustness.
Analysis of multimodal representations: Recent work has begun to carefully analyze and challenge
long-standing assumptions in multimodal learning. They have shown that certain models do not
actually learn cross-modal interactions but rather rely on ensembles of unimodal statistics [68] and
that certain datasets and models are biased to the most dominant modality [22, 59], sometimes
ignoring others completely [3]. These observations are currently only conducted on specific datasets
and models without testing their generalization to others, a shortcoming we hope to solve using
MULTIBENCH which enables scalable analysis over modalities, tasks, and models.

6 Conclusion
Limitations: While MULTIBENCH can help to accelerate research in multimodal ML, we are aware
of the following possible limitations (see detailed future directions in Appendix I):
1. Tradeoffs between generality and specificity: While it is desirable to build models that work across
modalities and tasks, there is undoubtedly merit in building modality and task-specific models that
can often utilize domain knowledge to improve performance and interpretability (e.g., see neuro-
symbolic VQA [159], or syntax models for the language modality [31]). MULTIBENCH is not at
odds with research in this direction: in fact, by easing access to data, models, and evaluation, we
hope that MULTIBENCH will challenge researchers to design interpretable models leveraging domain
knowledge for many multimodal tasks. It remains an open question to define “interpretability” for
other modalities beyond image and text, a question we hope MULTIBENCH will drive research in.
2. Scale of datasets, models, and metrics: We plan for MULTIBENCH to be a continuously-growing
community effort with regular maintenance and expansion. While MULTIBENCH currently does not
include several important research areas outside of multimodal fusion (e.g., question answering [4, 63],
retrieval [187], grounding [32], and reinforcement learning [110]), and is also limited by the models
and metrics it supports, we outline our plan to expand in these directions in Appendix I.

Projected expansions of MULTIBENCH: In this subsection, we describe concrete ongoing and
future work towards expanding MULTIBENCH (see details in Appendix I).
1. Other multimodal research problems: We are genuinely committed to building a community around
these resources and continue improving it over time. While we chose to focus on multimodal fusion
by design for this first version to have a more coherent way to standardize and evaluate methods across
datasets, we acknowledge the breadth of multimodal learning and are looking forward to expanding
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it in other directions in collaboration with domain experts. We have already included 2 datasets in
captioning (and more generally for non-language outputs, retrieval): (1) Yummly-28K of paired
videos and text descriptions of food recipes [114], and (2) Clotho dataset for audio-captioning [45]
as well as a language-guided RL environment Read to Fight Monsters (RTFM) [188] and are also
working towards more datasets in QA, retrieval, and multimodal RL.
To help in scalable expansion, we plan for an open call to the community for suggestions and
feedback about domains, datasets, and metrics. As a step in this direction, we have concrete plans
to use MULTIBENCH as a theme for future workshops and competitions (building on top of the
multimodal workshops we have been organizing at NAACL 2021, ACL 2020, and ACL 2019, and in
multimodal learning courses (starting with the course taught annually at CMU). Since MULTIBENCH
is public and will be regularly maintained, the existing benchmark, code, evaluation, and experimental
protocols can greatly accelerate any dataset and modeling innovations added in the future. In our
public GitHub, we have included a section on contributing through task proposals or additions of
datasets and algorithms. The authors will regularly monitor new proposals through this channel.
2. New evaluation metrics: We also plan to include evaluation for distribution shift, uncertainty
estimation, tests for fairness and social biases, as well as labels/metrics for interpretable multimodal
learning. In the latter, we plan to include the EMAP score [68] as an interpretability metric assessing
whether cross-modal interactions improve performance.
3. Multimodal transfer learning and co-learning: Can training data in one dataset help learning on
other datasets? MULTIBENCH enables easy experimentation of such research questions: our initial
experiments on transfer learning found that pre-training on larger datasets in the same domain can
improve performance on smaller datasets when fine-tuned on a smaller dataset: performance on the
smaller CMU-MOSI dataset improved from 75.2 to 75.8 using the same late fusion model with
transfer learning from the larger UR-FUNNY and CMU-MOSEI datasets. Furthermore, recent work
has shown that multimodal training can help improve unimodal performance as well [140, 170, 180].
While previous experiments were on a small scale and limited to a single domain, we plan to expand
significantly on this phenomenon (multimodal co-learning) in future versions of MULTIBENCH.
4. Multitask learning across modalities: Multitask learning across multimodal tasks with a shared set
of input modalities is a promising direction that can enable statistical strength sharing across datasets
and efficiency in training a single model. Using MULTIBENCH, we also ran an extra experiment
on multi-dataset multitask learning. We used the 4 datasets in the affective computing domain and
trained a single model across all 4 of them with adjustable input embedding layers if the input features
were different and separate classification heads for each dataset’s task. We found promising initial
results with performance on the largest CMU-MOSEI dataset improving from 79.2 to 80.9 for a late
fusion model and from 82.1 to 82.9 using a multimodal transformer model, although performance on
the smaller CMU-MOSI dataset decreased from 75.2 to 70.8. We believe that these potential future
studies in co-learning, transfer learning, and multi-task learning are strengths of MULTIBENCH since
it shows the potential of interesting experiments and usage.

In conclusion, we present MULTIBENCH, a large-scale benchmark unifying previously disjoint
efforts in multimodal research with a focus on ease of use, accessibility, and reproducibility, thereby
paving the way towards a deeper understanding of multimodal models. Through its unprecedented
range of research areas, datasets, modalities, tasks, and evaluation metrics, MULTIBENCH highlights
several future directions in building more generalizable, lightweight, and robust multimodal models.
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