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A Broader Impact Statement

Multimodal data and models are ubiquitous in a range of real-world applications. MULTIBENCH
and MULTIZOO is our aim to systematically categorize the plethora of datasets and models currently
in use. While these contributions will accelerate research towards multimodal datasets and models
as well as their real-world deployment, we believe that special care must be taken in the following
regard to ensure that these models are safely deployed for real-world benefit:

Time & space complexity: Modern multimodal datasets and models are large, especially when
building on already large pretrained unimodal datasets and models such as BERT or ResNets. The
increasing time and space complexity of these models can cause financial impacts resulting from the
cost of hardware, electricity, and computation, as well as environmental impacts resulting from the
carbon footprint required to fuel modern hardware. Therefore, there has been much recent interest in
building lightweight machine learning models [142].

MULTIBENCH also provides several efforts in this direction:

1. Firstly, MULTIBENCH alleviates the need for separate research groups to repeat prepro-
cessing efforts when beginning to work on a new multimodal dataset, which often takes
significant time when large video & audio datasets and feature extractors are involved.

2. Secondly, our standardized implementation of core approaches in MULTIZOO prevents
duplicate efforts in adapting approaches to new datasets. We found that while many authors
of these multimodal methods released their code publicly on GitHub, there was still some
effort needed to adapt their code and tune their models to achieve the best performance on
our standardized implementation in MULTIZOO. By standardizing these experimentation
efforts, we can facilitate the sharing of code and trained models, ensure reproducibility
across implementations, and save time and effort in the future.

3. Finally, MULTIBENCH explicitly tests for complexity and encourages researchers to build
lightweight models. While this has been less studied in multimodal research, we hope that
our efforts will pave the way for greener multimodal learning.

Privacy and security: There may be privacy risks associated with making predictions from multi-
modal data of recorded human behaviors. The datasets potentially in question might include those in
affective computing (recorded video data labeled for sentiment, emotions, and personality attributes),
and healthcare (health data labeled for disease and mortality rate). Therefore, it is crucial to obtain
user consent before collecting device data. In our experiments with real-world data where people
are involved (i.e., healthcare and affective computing), the creators of these datasets have taken the
appropriate steps to only access public data which participants/content creators have consented for
released to the public (see details in Appendix C.2). We only use these datasets for research purposes.
All data was anonymized and stripped of all personal (e.g., personally identifiable information) and
protected attributes (e.g., race, gender).

To deploy these algorithms at scale in the real world, it is also important to keep data and features
private on each device without sending it to other locations using techniques such as federated
learning [96, 100], differential privacy [55], or encryption [35].

Social biases: We acknowledge that there is a risk of exposure bias due to imbalanced datasets, espe-
cially when human-centric data and possibly sensitive labels are involved. For example, will models
trained on imbalanced data disproportionately classify videos of a particular gender as displaying
a particular emotion? Models trained on biased data have been shown to amplify the underlying
social biases especially when they correlate with the prediction targets [108]. This leaves room for
future work in exploring methods tailored for specific scenarios such as mitigating social biases
in words [18], sentences [99], images [118], and other modalities. Future research in multimodal
models should also focus on quantifying the trade-offs between fairness and performance [186].
MULTIBENCH enables the large-scale study of these crucial research questions and we outline some
of our ongoing and future efforts in expanding the evaluation metrics in MULTIBENCH to take these
into account in Appendix I.

Possible biases within each dataset: In this section, we expand upon the previous two points
regarding privacy and social biases by describing the possible biases in each domain/dataset included
in MULTIBENCH.
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1. Affective computing: Analysis of sentiment, emotions, and personality might carry biases
if care is not taken to appropriately anonymize the video data used. In MULTIBENCH,
all models trained on affect recognition datasets use only pre-extracted non-invertible
features that rely on general visual or audio features such as the presence of a smile or
magnitude of voice. Therefore the features used in this paper cannot be used to identify the
speaker [181, 183]. Furthermore, videos within the datasets all follow the creative commons
license and follow fair use guidelines of YouTube. This license allows is the standard way
for content creators to grant someone else permission to use and redistribute their work. We
use no information regarding gender, ethnicity, identity, or video identifier in online sources.
We emphasize that the models trained to perform automated affect recognition should not in
any way be used to harm individuals and should only be used as a scientific study.
In addition to privacy issues, we also studied the videos collected in these affective computing
datasets and found no offensive content. While there are clearly expressions of highly
negative sentiment or strong displays of anger and disgust, there are no offensive words used
or personal attacks recorded in the video. All videos are related to movie or product reviews,
TED talks, and TV shows.

2. Healthcare: The MIMIC dataset [78] has been rigorously de-identified in accordance with
Health Insurance Portability and Accountability Act (HIPAA) such that all possible personal
information has been removed from the dataset. Removed personal information include
patient name, telephone number, address, and dates. Dates of birth for patients aged over 89
were shifted to obscure their true age. Please refer to Appendix C.2.2 for de-identification
details. Again, we emphasize that any multimodal models trained to perform prediction
should only be used for scientific study and should not in any way be used for real-world
prediction.

3. Finance: There is no personal/human data included and there is no risk of personally
identifiable information and offensive content.

4. Robotics: There is no personal/human data included and there is no risk of personally
identifiable information and offensive content.

5. HCI: There is no personal/human data included and there is no risk of personally identifiable
information and offensive content.

6. Multimedia: For MM-IMDb and AV-MNIST, there is no personal/human data included and
there is no risk of personally identifiable information and offensive content. For Kinetics, all
videos within the dataset are obtained from public YouTube videos that follow the creative
commons license which allows content creators to grant permission to use and redistribute
their work. We use no information regarding gender, ethnicity, identity, or video identifier in
online sources. We emphasize that the models trained to perform action recognition should
not in any way be used to harm individuals and should only be used as a scientific study.
We also checked to make sure that these videos do not contain offensive content. All videos
are related to human actions and do not contain any offensive words/audio.

Overall, MULTIBENCH offers opportunities to study these potential issues at scale across modalities,
tasks, datasets, and domains. We plan to continue expanding this benchmark to rigorously test for
these social impacts to improve the safety and reliability of multimodal models. For example, in
Appendix I.3.3, we describe some concrete extensions to include evaluations for fairness and privacy
of multimodal models trained on the datasets in MULTIBENCH. Our holistic evaluation metrics will
also encourage the research community to quantify the tradeoffs between performance, complexity,
robustness, fairness, and privacy in human-centric multimodal models.
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B Background: Multimodal Representation Learning
We first provide background focusing on multimodal representation learning and several core technical
challenges in this area.

B.1 Problem Statement
We define a modality as a single particular mode in which a signal is expressed or experienced.
Multiple modalities then refer to a combination of multiple signals each expressed or experienced in
heterogeneous manners [10]. We distinguish between the possible temporal resolution of modalities
that will impact the types of approaches used:
1. Static modalities include inputs without a time dimension such as images, tabular data (i.e., a table
of numerical data).
2. Temporal modalities include those coming in a sequence with a time-dimension such as language (a
sequence of tokens), video (a sequence of frames/audio features/optical flow features), or time-series
data (a sequence of data points indexed by time).

The first version of MULTIBENCH focuses on benchmarks and algorithms for multimodal fusion,
where the main challenge is to join information from two or more modalities to perform a prediction.
Classic examples include audio-visual speech recognition where visual lip motion is fused with
speech signals to predict spoken words [48]. Note that in fusion problems, it should be well-defined
to predict the label with a single modality only, which marks an important distinction to tasks in
question answering and grounding where one modality is used to query information in another (e.g.,
visual question answering [4] using a text question to query information in the image). We outline
our plans to extend future versions of MULTIBENCH to include more multimodal challenges such as
question answering, retrieval, and grounding in Appendix I.

Formally, the multimodal fusion problem is defined as follows. We suppose there is a set of M
modalities drawn from a joint distribution p(X1, ...,XM , Y ) whereXm is a random variable denoting
data distributed according to modality m and Y is a random variable representing the label. If
modality m is a static modality, Xm is a random vector without the time dimension. If modality m
is a temporal modality, Xm is a random vector with a time dimension which can be represented as
follows: Xm = (X1

m,X
2
m, ...,X

T
m) where T is the number of time-steps in the temporal modality.

In multimodal fusion, a set of M modalities is drawn from a joint distribution p(X1, ...,XM , Y )
where Xm is a random variable denoting data distributed according to modality m and Y is a random
variable representing the label. A multimodal dataset is a collection of draws of (data, label) pairs from
the joint distribution p(X1, ...,XM , Y ). We denote a dataset as {(xi1, ...,xiM , yi)}ni=1. These draws
from the true distribution are possibly biased (e.g., across individuals, topics, or labels) and noisy (e.g.,
due to noisy or missing modalities). A multimodal model is a set of functions {fm ∶m ∈ [M]}∪ fmm
where each of the fm’s are unimodal encoders, one for each modality, and fmm is a multimodal
fusion network. The unimodal encoders are specially designed with domain knowledge to learn
representations from each modality (e.g., convolutional networks for images, temporal models
for time-series data) resulting in unimodal representations z1, ...,zM . The multimodal network is
designed to capture information across unimodal representations and summarize it in a multimodal
representation zmm that can be used to predict the label y. The goal of multimodal fusion is to learn a
model with the lowest prediction error as measured on a held-out test set, while also balancing other
potential objectives such as low complexity and robustness to imperfect data.

B.2 Technical Challenges

MULTIBENCH tests for the following holistic desiderata in multimodal fusion:

1. Performance: We summarize the following core challenges across all prediction tasks for
multimodal learning with reference to Baltrusaitis et al., [10]. Solving these challenges is
essential in any multimodal prediction problem, regardless of domain and task.
(a) Unimodal structure and granularity: The information coming from each modality

follows a certain underlying structure and invariance, which needs to be processed
by suitable unimodal encoders. While there are certain generally adopted unimodal
encoders for commonly studied modalities such as images and text, there remain
challenges in designing unimodal encoders with the right types of inductive biases
for other less-studied modalities such as tabular and time-series data. Representations
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extracted from unimodal encoders should contain task-relevant information from that
modality, expressed at the right granularity.

(b) Multimodal complementarity: The information coming from different modalities have
varying predictive power by themselves and also when complemented by each other.
We refer to these as higher-order interactions: first-order interactions define a predictive
signal from a single granular unit of information in one modality to the label (e.g., the
presence of a smile indicating positive sentiment); second-order interactions define a
predictive signal from a pair of granular units of information across two modalities
to the label (e.g., the presence of an eye-roll together with a positive word indicating
sarcasm); and nth-order interactions extend the above definition to n modalities. There
are many possible interactions that explain the labels in a dataset, out of which only
some may generalize to unseen data. It remains a challenge to discover these higher-
order interactions using suitably expressive models. At the same time, the space of
possible interactions is too large which requires suitable inductive biases in model
design (see challenges regarding complexity in model design below).

(c) Multimodal alignment: Information from different modalities often comes in different
granularities. In order to learn predictive signals from higher-order interactions, there is
a need to first identify the relations between granular units from two or more different
modalities. This challenge requires a measure of the relationship between different
modalities, which we call cross-modal alignment.
When dealing with temporal data, it also requires capturing possible long-range de-
pendencies across time, which we call temporal alignment. For example, it requires
aligning the presence of an eye-roll together with a positive word to recognize sarcasm
even when both signals happen at different times. This challenge extends cross-modal
alignment to the temporal dimension.

2. Complexity: The space of possible interactions is very large which requires suitable inductive
biases in model design. While more expressive models may perform better, these often come
at the cost of time and space complexity during training and inference. To enable real-world
deployment of multimodal models in a variety of settings [142], there is a need to build
lightweight models with cheap training and inference.

3. Robustness: Information from different modalities often display different noise topologies,
and real-world multimodal signals possibly suffer from missing or noisy data in at least one
of the modalities [10]. While most methods are trained on carefully curated and cleaned
datasets, there is a need to benchmark their robustness in realistic scenarios. The core
challenge here is to build models that still perform well despite the presence of unimodal-
specific or multimodal imperfections.

27



MultiBench 
datasets

MultiBench 
data loader

MultiZoo 
model

MultiBench 
evaluator

MultiBench 
leaderboard

Figure 5: MULTIBENCH provides a standardized machine learning pipeline across data processing, data loading,
multimodal models, evaluation metrics, and a public leaderboard to encourage future research in multimodal
representation learning. MULTIBENCH aims to present a milestone in unifying disjoint efforts in multimodal
machine learning research and paves the way towards a better understanding of the capabilities and limitations
of multimodal models, all the while ensuring ease of use, accessibility, and reproducibility.

C MULTIBENCH Datasets
MULTIBENCH provides a standardized machine learning pipeline that starts from data loading to
running multimodal models, providing evaluation metrics, and a public leaderboard to encourage
future research in multimodal representation learning (see Figure 5).

In this section, we provide additional details on the distribution, release, and maintenance of each of
the datasets in MULTIBENCH as well as the maintenance of MULTIBENCH as a whole.

C.1 Dataset Selection

In this section, we discuss our choices of datasets in MULTIBENCH. We select each dataset based on
its data collection method, input modalities, evaluation tasks, evaluation metric, and train/test splits
that reflect real-world multimodal applications. We consulted with domain experts in each of the
application areas to select datasets that satisfy the following properties:

1. Realism in data collection, input modalities, preprocessing, and task: Each of the datasets
in MULTIBENCH reflect a subset of real-world sensory modalities collected in the wild.
Realism is important since it brings natural noise topologies in each modality and in the
prediction task. It is crucial that these datasets reflect real-world data such that capturing
these imperfections through machine learning models can potentially bridge the gap towards
real-world deployment.

2. Diversity in research area: We chose these research areas through a survey of recent research
papers in multimodal learning across conferences in machine learning and beyond (e.g.,
HCI, NLP, vision, robotics conferences). Furthermore, we consulted with domain experts
in applying multimodal learning to their respective application areas to determine areas of
large potential. Through engaging with domain experts we were able to select research areas
and datasets that reflected realism in data collection, input modalities, preprocessing, and
tasks which present challenges for machine learning models and potential for real-world
transfer of learned algorithms. These research areas that are designed to span both human-
centric and data-centric machine learning. In the former, we selected HCI, healthcare, and
robotics since these are fast-growing research areas with increasingly specialized tracks in
machine learning conferences dedicated to them. In the latter, financial data analysis is an
area with an inherently low signal-to-noise ratio reflecting extremely noisy, imperfect, and
uncertain real-world datasets which provide challenges for current multimodal models. We
also included several multimedia datasets due to the large resources publicly available on
the internet which results in multimodal datasets of the largest scale.

3. Diversity in modalities: We started with a set of commonly studied modalities such as
language, image, video, and audio. For each of the following research areas, we consulted
with domain experts to choose datasets that are established, but not overstudied. More
importantly, we aimed for diversity in modalities to truly test the generalization capabilities
of modern multimodal models outside of commonly studied domains and modalities. For
example, while there is much work in HCI involving images and text, we chose a modality
representing a set of mobile applications for coverage. Similarly, in robotics, we consulted
with domain experts to obtain datasets with high-frequency force and proprioception sensors
that provide a unique challenge to machine learning researchers.

4. Challenging for ML models: We aim to choose datasets where the current state-of-the-art
performance via machine learning models is still far from human performance (if human
performance is provided, otherwise judged by a domain expert). This is to ensure that there
is room for improvement through community involvement in this research area.
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Figure 6: Affective computing studies the perception of human affective states (emotions, sentiment, and
personalities) from our natural display of multimodal signals spanning language (spoken words), visual (fa-
cial expressions, gestures), and acoustic (prosody, speech tone) [124]. MULTIBENCH contains 4 datasets
in this category involving fusing language, video, and audio time-series data to predict sentiment (CMU-
MOSI [181] and CMU-MOSEI [183]), emotions (CMU-MOSEI [183]), humor (UR-FUNNY [64]), and
sarcasm (MUSTARD [24]).

5. Community expansion: Finally, we would like to emphasize that we heavily encourage and
actively seek out community participation in expanding MULTIBENCH to keep up with the
incredible pace in multimodal machine learning research. We describe our plans for an open
call for proposals of new research areas, datasets, and prediction tasks in section I.

C.2 Dataset Details

We provide details for each of the research areas and datasets selected in MULTIBENCH. In each
of the categories, we describe the research area, the datasets and their associated data collection
process, their access restrictions and licenses, and any data preprocessing or feature extraction we
used following current work in each of these domains.

C.2.1 Affective Computing

1. MUSTARD is a multimodal video corpus for research in automated sarcasm discovery [24]. The
dataset is compiled from popular TV shows including Friends, The Golden Girls, The Big Bang The-
ory, and Sarcasmaholics Anonymous. MUSTARD consists of audiovisual utterances annotated with
sarcasm labels. Each utterance is accompanied by its context, which provides additional information
on the scenario where the utterance occurs, thereby providing a further challenge in the long-range
modeling of multimodal information. Sarcasm is specifically chosen as an annotation task since it
requires careful modeling of complementary information, particularly when the semantic information
from each modality do not agree with each other.

Data collection: According to Castro et al., [24], they conducted web searches on YouTube using
keywords such as Friends sarcasm, Chandler sarcasm, Sarcasm 101, and Sarcasm in TV shows to
obtain videos with sarcastic content from three main TV shows: Friends, The Golden Girls, and
Sarcasmaholics Anonymous. To obtain non-sarcastic videos, they used a subset of 400 videos from
MELD, a multimodal emotion recognition dataset derived from the Friends TV series [128]. Videos
from The Big Bang Theory were also collected by segmenting episodes using laughter cues from its
audience.

Access restrictions: While we do not have the license to this dataset, it is a public dataset free to down-
load by the research community from https://github.com/soujanyaporia/MUStARD.

Licenses: MIT, see https://github.com/soujanyaporia/MUStARD/blob/master/
LICENSE

Dataset preprocessing: We followed these preprocessing steps for each modality as suggested in
the original paper [24]:

1. Language: Textual utterances are represented using pretrained BERT representations [42]
as well as Common Crawl pre-trained 300-dimensional GloVe word vectors [119] for each
token.

2. Visual: Visual features are extracted for each frame using a pool5 layer of an ImageNet [41]
pretrained ResNet-152 [66] model. Every frame is first preprocessed by resizing, center-
cropping, and normalizing it. We also use the OpenFace facial behavioral analysis tool [11]
to extract facial expression features.
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3. Audio: Low-level features from the audio data stream are extracted using the speech pro-
cessing library Librosa [112]. We also extract COVAREP [39] features as is commonly used
for the other datasets in the affective computing domain (see below).

Train, validation, and test splits: there are 414, 138, and 138 video segments in train, valid, and
test data respectively, which gives a total of 690 data points.

2. CMU-MOSI is a collection of 2,199 opinion video clips each rigorously annotated with labels
for subjectivity, sentiment intensity, per-frame, and per-opinion annotated visual features, and per-
milliseconds annotated audio features [181]. Sentiment intensity is annotated in the range [−3,+3]
which enables fine-grained prediction of sentiment beyond the classical positive/negative split. Each
video is collected from YouTube with a focus on video blogs, or vlogs which reflect the real-world
distribution of speakers expressing their behaviors through monologue videos. CMU-MOSI is a
realistic real-world multimodal dataset for affect recognition and is regularly used in competitions
and workshops.

Data collection: According to Zadeh et al., [181], videos were collected from YouTube with a focus
on video blogs indexed by #vlog. A total of 93 videos were randomly selected. The final set of videos
contained 89 distinct speakers, including 41 female and 48 male speakers. Most of the speakers
were approximately between the ages of 20 and 30 from different backgrounds (e.g., Caucasian,
African-American, Hispanic, Asian). All speakers expressed themselves in English and the videos
originated from either the United States of America or the United Kingdom.

Access restrictions: The authors are part of the team who collected the CMU-MOSI dataset [181]
so we have the license and right to redistribute this dataset. CMU-MOSI was originally downloaded
from https://github.com/A2Zadeh/CMU-MultimodalSDK.

Licenses: Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the conditions in https://raw.githubusercontent.com/A2Zadeh/
CMU-MultimodalSDK/master/LICENSE.txt

Train, validation, and test splits: Each dataset contains several videos, and each video is further
split into short segments (roughly 10 − 20 seconds) that are annotated. We split the data at the level
of videos so that segments from the same video will not appear across train, valid, and test splits.
This enables us to train user-independent models instead of having a model potentially memorizing
the average affective state of a user. There are 52, 10, and 31 videos in train, valid, and test data
respectively. Splitting up these videos gives a total of 1,284, 229, and 686 segments respectively for
a total of 2,199 data points.

Dataset preprocessing: We follow current work [103, 183] and apply the following preliminary
feature extraction for the CMU-MOSI dataset:

1. Language: Glove word embeddings [119] were used to embed a sequence of individual
words from video segment transcripts into a sequence of word vectors that represent spoken
text. The Glove word embeddings used are 300-dimensional word embedding trained on 840
billion tokens from the common crawl dataset, resulting in a sequence of dimension T × 300
after alignment. The timing of word utterances is extracted using P2FA forced aligner [176].
This extraction enables alignment between text, audio, and video.

2. Visual: We use the library Facet [75] to extract a set of visual features including facial action
units, facial landmarks, head pose, gaze tracking, and HOG features [189]. These visual
features are extracted from the full video segment at 30Hz to form a sequence of facial
gesture changes throughout time, resulting in a sequence of dimension T × 35. In addition to
Facet, OpenFace facial behavioral analysis tool [11] is used to extract the facial expression
features which include facial Action Units (AU) based on the Facial Action Coding System
(FACS) [49].

3. Audio: The software COVAREP [39] is used to extract acoustic features including 12 Mel-
frequency cepstral coefficients, pitch tracking and voiced/unvoiced segment features [46],
glottal source parameters [28], peak slope parameters and maxima dispersion quotients [79].
These visual features are extracted from the full audio clip of each segment at 100Hz to
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form a sequence that represents variations in tone of voice over an audio segment, resulting
in a sequence of dimension T × 74.

3. UR-FUNNY is the first large-scale multimodal dataset of humor detection in human speech [64].
UR-FUNNY is a realistic representation of multimodal language (including text, visual and acoustic
modalities). This dataset opens the door to understanding and modeling humor in a multimodal
framework, which is crucial since humor is an inherently multimodal communicative tool involving
the effective use of words (text), accompanying gestures (visual), and prosodic cues (acoustic).
UR-FUNNY consists of more than 16,000 video samples from TED talks which are among the
most diverse idea-sharing channels covering speakers from various backgrounds, ethnic groups, and
cultures discussing a variety of topics from discoveries in science and arts to motivational speeches
and everyday events. The diversity of speakers, topics, and unique annotation targets make it a
realistic dataset for multimodal language modeling.

Data collection: According to Hasan et al., [64] 1,866 videos and their transcripts in English were
collected from the TED portal, chosen from 1,741 different speakers and across 417 topics. The
laughter markup is used to filter out 8257 humorous punchlines from the transcripts. The context
is extracted from the prior sentences to the punchline (until the previous humor instances or the
beginning of the video is reached). Using a similar approach, 8,257 negative samples are chosen at
random intervals where the last sentence is not immediately followed by a laughter marker. After this
negative sampling, there is a homogeneous 50% split in the dataset between positive and negative
humor examples.

Access restrictions: This is a public dataset free to download by the research community from
https://github.com/ROC-HCI/UR-FUNNY. The authors of the dataset also note that videos
on www.ted.com are publicly available for download [64].

Licenses: No license was provided with this dataset.

Dataset preprocessing: We follow current work [103, 183] and apply the same preliminary feature
extraction as the CMU-MOSI dataset described above.

Train, validation, and test splits: Each dataset contains several videos, and each video is further
split into short segments (roughly 10− 20 seconds) that are annotated. We split the data at the level of
videos so that segments from the same video will not appear across train, valid, and test splits. This
enables us to train user-independent models instead of having a model potentially memorizing the
average affective state of a user. There are 1,166, 300, and 400 videos in train, valid, and test data
respectively. Splitting up these videos gives a total of 10,598, 2,626, and 3,290 segments respectively
for a total of 16,514 data points,

4. CMU-MOSEI is the largest dataset of sentence-level sentiment analysis and emotion recognition
in real-world online videos [102, 183]. CMU-MOSEI contains more than 65 hours of annotated
video from more than 1,000 speakers and 250 topics. Each video is annotated for sentiment as
well as the presence of 9 discrete emotions (angry, excited, fear, sad, surprised, frustrated, happy,
disappointed, and neutral) as well as continuous emotions (valence, arousal, and dominance). The
diversity of prediction tasks makes CMU-MOSEI a valuable dataset to test multimodal models
across a range of real-world affective computing tasks. The dataset has been continuously used in
workshops and competitions revolving around human multimodal language.

Data collection: According to Zadeh et al., [183], videos from YouTube are automatically analyzed
for the presence of one speaker in the frame using face detection to ensure the video is a monologue
and rejecting videos that have moving cameras. A diverse set of 250 frequently used topics in online
videos is used as the seed for acquisition. The authors restrict the number of videos acquired from
each channel to a maximum of 10 and limit the videos to have manual and properly punctuated
transcriptions. After manual quality inspection, they also performed automatic checks on the quality
of video and transcript using facial feature extraction confidence and forced alignment confidence,
before balancing the gender in the dataset using the data provided by annotators (57% male to 43%
female).

Access restrictions: The authors are part of the team who collected the CMU-MOSEI dataset [183]
so we have the license and right to redistribute this dataset. CMU-MOSEI was originally downloaded
from https://github.com/A2Zadeh/CMU-MultimodalSDK.
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Mortality
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Figure 7: Healthcare: Medical decision-making often involves integrating complementary signals from several
sources such as lab tests, imaging reports, and patient-doctor conversations. Multimodal models can help doctors
make sense of high-dimensional data and assist them in the diagnosis process [5]. MULTIBENCH includes the
MIMIC dataset [78] which records ICU patient data including time-series data measured every hour and other
tabular numerical data about the patient (e.g., age, gender, ethnicity) to predict mortality rate and the disease
ICD-9-code. Figure adapted from [165].

Licenses: Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the“"Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the conditions in https://raw.githubusercontent.com/A2Zadeh/
CMU-MultimodalSDK/master/LICENSE.txt

Dataset preprocessing: We follow current work [103, 183] and apply the same preliminary feature
extraction as the CMU-MOSI and UR-FUNNY datasets described above.

Train, validation, and test splits: Each dataset contains several videos, and each video is further
split into short segments (roughly 10 − 20 seconds) that are annotated. We split the data at the level
of videos so that segments from the same video will not appear across train, valid, and test splits.
This enables us to train user-independent models instead of having a model potentially memorizing
the average affective state of a user. There are a total of 16,265, 1,869, and 4,643 segments in train,
valid, and test datasets respectively for a total of 22,777 data points.

C.2.2 Healthcare

1. MIMIC-III (Medical Information Mart for Intensive Care III) [78] is a large, freely-available
database comprising de-identified health-related data associated with over 40,000 patients who
stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012.
Following [129], we organized numerous patient data into two major modalities (using the 17 features
in feature set A in [129]): time series modality, which is a set of medical measurements of the patient
taken every 1 hour in a period of 24 hours where each measurement is a vector of size 12 (12 different
measured numerical values); static modality, which is a set of medical information about the patient,
represented in a vector of size 5. We use these modalities for 3 tasks: mortality prediction (6-class
prediction on whether the patient dies in 1 day, 2 day, 3 day, 1 week, 1 year, or longer than 1 year),
and 2 ICD-9 code predictions (binary classification on whether the patient fits any ICD-9 code in
group 1 (140 − 239) and binary classification on whether the patient fits any ICD-9 code in group 7
460 − 519).

Data collection: According to Johnson et al., [78], MIMIC contains data associated with 53,423
distinct hospital admissions for adult patients (aged 16 years or above) admitted to critical care
units between 2001 and 2012, as well as 7,870 neonates admitted between 2001 and 2008. The data
covers 38,597 distinct adult patients and 49,785 hospital admissions. Data was also downloaded
from several sources, including archives from critical care information systems, hospital electronic
health record databases, and Social Security Administration Death Master File.
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Privacy: Before data was incorporated into the MIMIC-III database, it was first de-identified in
accordance with Health Insurance Portability and Accountability Act (HIPAA) standards using
structured data cleansing and date shifting. The de-identification process removed all eighteen
identifying data elements listed in HIPAA, such as patient name, date of birth (for patients over
89 of age), telephone number, address, and dates. Protected health information was also removed
from text fields, such as diagnostic reports and physician notes. We refer the reader to [129] for full
de-identification details.

Access restrictions: We do not have the license and right to redistribute this dataset. Accessing
MIMIC requires the completion of a training course and approval for access on PhysioNet (https:
//physionet.org/about/database/). However, we provide our own data preprocessing
scripts for MIMIC, which transform the raw data into the standardized format for multimodal data
and perform standardized splitting into the train, validation, and test splits. For a new user getting
started with MIMIC data, all they would need to do is to complete the training course and obtain
approval of access for scientific research from PhysioNet before they can use our public code to load
all extracted features from the raw dataset in a version that can directly be used for machine learning
studies.

Licenses: MIT, see https://github.com/mit-lcp/mimic-code/blob/main/
LICENSE

Dataset preprocessing: We followed the instructions on https://mimic.physionet.
org/gettingstarted/access/ to download the dataset in the form of raw tables,
then generated preprocessed data following the steps described in https://github.
com/USC-Melady/Benchmarking_DL_MIMICIII (which takes 1 − 2 weeks running
time) to get the data used for experiments. Specifically, we will use data in the file
24hrs/series/imputed-normed-ep_1_24-stdized.npz. When accessing this data
from our code repo, set the imputed_path of the npz file above in the get_data.py and
the script will generate the PyTorch data loader for the tasks (where we will normalize the data).

Train, validation, and test splits: We split the data into train/valid/test sets randomly (using a fixed
random seed) in a 80 ∶ 10 ∶ 10 ratio (so 28,970 train, 3,621 valid, and 3,621 test data points) for a
total of 36,212 data points.

C.2.3 Robotics

1. MUJOCO PUSH is a planar pushing task, in which a 7-DoF Panda Franka robot is pushing a
circular puck with its end-effector in simulation. We estimate the 2D position of the unknown object
on a table surface, while the robot intermittently interacts with the object. Similar to VISION&TOUCH,
planar pushing is a contact-rich task. However, instead of estimating robot states, this dataset is
estimating the state of the object the robot is currently interacting with. While other robotics datasets
have also studied planar pushing [14, 175], Yu et al., [175] use a Vicon tracker (instead of raw RGB
images) while Bauza et al., [14] only collect visual and proprioceptive data.

Data collection: According to Lee et al. [90], this dataset consists of 1000 trajectories with 250 steps
at 1.0 × 101 Hz, of a simulated Franka Panda robot arm pushing a circular puck in MuJoCo [152].
The pushing actions are generated by a heuristic controller that tries to move the end-effector to
the center of the object. The multimodal inputs are gray-scaled images (1 × 32 × 32) from an RGB
camera, forces (and binary contact information) from a force/torque sensor, and the 3D position of
the robot end-effector. The task is to predict the 2-D planar object pose which we measure by MSE.

Access restrictions: While we do not have the license to this dataset, it is a public dataset
free to download by the research community from https://github.com/brentyi/
multimodalfilter/.

Licenses: MIT, see https://github.com/brentyi/multimodalfilter/blob/
master/LICENSE.

Dataset preprocessing: Training, validation, and test data are each in their own files and can be used
directly after downloading. Data is normalized using mean and variance from the train set.

Train, validation, and test splits: This dataset contains 1000 training data, 10 validation data, and
300 test data. Each data point is split into 29 time-series sequences of length 16. The total number
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Figure 8: Robotics: Modern robot systems are equipped with multiple sensors to aid in their decision-making. We
include the large-scale MUJOCO PUSH [90] and VISION&TOUCH [92] datasets which record the manipulation
of real and simulated robotic arms equipped with visual (RGB and depth), force, and proprioception sensors.
In MUJOCO PUSH, the goal is to predict the pose of the object being pushed by the robot end-effector. In
VISION&TOUCH, the goal is to predict action-conditional learning objectives that capture forward dynamics of
the different modalities (contact prediction and robot end-effector pose). Figure adapted from [91].

of data points for training, validation, and test are 29,000, 290, and 8,700 for a total of 37990 data
points.

2. VISION&TOUCH is a real-world robot manipulation dataset that collects visual, force, and robot
proprioception data (as well as the robot actions) for a peg insertion task. The robot is a 7-DoF,
torque-controlled Franka Panda robot, which has a triangle peg attached to its end-effector. Rigidly
attached to the table in front of the robot is a box with a triangle hole. The robot attempts to insert
the peg into the hole, a contact-rich manipulation task that has been studied for decades due to its
relevance in manufacturing. Vision, force, and proprioception are feedback modalities shown to be
complementary and concurrent during contact-rich manipulation [17].

Data collection: According to Lee et al., [92], the data is collected by running on the robot a random
policy (that takes random actions) as well as a heuristic policy (that attempts peg insertion). Four
sensor modalities are available, including robot proprioception, an RGB-D camera, and a force-torque
sensor. The proprioceptive input is the robot end-effector pose as well as linear and angular velocity.
They are computed using forward kinematics. RGB images and depth maps are recorded from a fixed
camera (Kinect v2 camera) pointed at the robot. Input images to our model are down-sampled to
128×128. The force sensor provides 6-axis feedback on the forces and moments along the x, y, z axes.
The OptoForce force sensor is mounted between the last joint and the peg. The robot action data is
also collected at every timestep. The robot action is the Cartesian end-effector position displacement
and z-axis roll rotation of the end-effector. There are 150 trajectories collected, each with 1000
timesteps of data collected. While the dataset originally was intended for representation learning for
reinforcement learning, We use 2 tasks from the VISION&TOUCH datasets: (1) predicting binary
contact in the next time step and (2) predicting end-effector position measured in MSE.

Access restrictions: While we do not have the license to this dataset, it is a public dataset free to
download by the research community from https://github.com/stanford-iprl-lab/
multimodal_representation/.

Licenses: MIT, see https://github.com/stanford-iprl-lab/multimodal_
representation/blob/master/LICENSE.
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Figure 9: Finance: We scrape historical stock data from the internet and create our own dataset for financial
time-series prediction across 3 groups of correlated stocks: STOCKS-F&B, STOCKS-HEALTH, and STOCKS-
TECH. Within each group, the previous stock prices of a set of stocks are used as multimodal input to predict the
squared return of a related stock (e.g., using Apple, Google, and Microsoft historical data to predict future prices
of Microsoft).

Dataset preprocessing: Dataset has already been pre-processed and can be downloaded directly
at https://github.com/stanford-iprl-lab/multimodal_representation/.
The dataset comes as a zipped file with 3000 hdf5 files, each with 50 timesteps of data. In order to
get action-conditional contact as well as robot end-effector position, the dataset uses the contact and
end-effector position data from the next timestep. Since the data from the first time step cannot be
used, only 49 of 50 timesteps of data per file can be used.

Train/validation split: This dataset uses a 80 ∶ 20 training and validation split. There are 117600
training data points and 29400 validation data points. Since the original dataset does not contain test
data, we report validation performance instead of test performance for this dataset.

C.2.4 Finance

We created the following financial datasets which consist of historical stock data retrieved from
publicly available online financial databases. We record the opening price of each stock from
2000-06-01 to 2021-02-28, which creates a total of 5218 time steps. Details of each dataset are
described in its own section below.

1. STOCKS-F&B consists of 18 selected stocks from S&P 500 stocks categorized by GICS as
Restaurants or Packaged Foods & Meats. We select MCD, SBUX, HSY, and HRL for initial experiments
on this dataset, record their opening prices, and preprocess the data following the preprocessing
procedures below.

2. STOCKS-HEALTH consists of 63 selected stocks from S&P 500 stocks categorized by GICS as
Health Care. We select MRK, WST, CVS, MCK, ABT, UNH, and TFX for initial experiments on this
dataset, record their opening prices, and preprocess the data following the preprocessing procedures
below.

3. STOCKS-TECH consists of 100 selected stocks from S&P 500 stocks categorized by GICS as
Information Technology or Communication Services. We select AAPL, MSFT, AMZN, INTC, AMD,
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Figure 10: Human Computer Interaction (HCI) studies the design and use of computer technology with
a focus on the interactive interfaces between humans and computers. We use the ENRICO (Enhanced Rico)
dataset [40, 93] of Android app screens (consisting of an image as well as a set of apps and their locations)
categorized by their design motifs and collected for data-driven design applications such as design search, user
interface (UI) layout generation, UI code generation, and user interaction modeling. Figure adapted from [40, 93].

and MSI for initial experiments on this dataset, record their opening prices, and preprocess the data
following the preprocessing procedures below.

Access restrictions: The datasets were collected from Yahoo Finance, which is publicly available
but does not allow redistribution of their data. We provide automated download and preprocessing
scripts for this dataset.

Licenses: We could not find a finance dataset with a free redistribution license that includes historical
financial data. As such, we provide automated download and preprocessing scripts as part of this
project, which utilizes the open-source pandas-datareader to download raw finance data.
We used the open-source code at https://github.com/pydata/pandas-datareader/
blob/master/pandas_datareader/yahoo/components.py. The automated scripts we
provide are licensed under an MIT License.

Dataset preprocessing: Data is downloaded, converted to returns, and normalized. Labels are
converted to squared returns. Each time series is split in chronological order, where the test split
corresponds to the latest prices. For each data point, 500 previous returns are used to predict the
squared return of the next day. The first 500 time steps are not predicted since they do not have 500
previous steps. We consider each stock as a modality; unimodal datasets have the input stock identical
to the target stock. To keep memory usage practical for MULT [154] models, we evenly separate the
stocks into 3 groups and use each group as a modality when preprocessing for MULT [154].

Train, validation, and test splits: We split the data according to time. There are 3200 continuous
days of stock prices in the train data (2002-06-04 start to 2015-02-18 end date), 500 continuous days
of stock prices in the valid data (2015-02-19 start to 2017-02-10 end date), and 1017 continuous days
of stock prices in the test data (2017-02-13 start to 2021-02-26 end date).

C.2.5 HCI

1. ENRICO (Enhanced Rico) [93] is a dataset of Android app screens categorized by their design
motifs. ENRICO was collected to help data-driven design applications such as design search, UI layout
generation, UI code generation, and user interaction modeling. ENRICO is a subset of RICO [40],
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which is a large dataset of app screens collected by the automated and semi-automated “crawling” of
Android apps available on the Google Play Store.

The RICO and ENRICO datasets have been used as benchmarks for data-driven models of design in
scaffolding the creation of mobile apps. These constitute a set of relevant examples that help designers
understand best practices and trends in building human-centered interfaces. Building multimodal
models on these examples will enable systems that can predict whether a UI design will achieve
its targeted goals even before it is deployed to millions of people. In the long run, this will enable
the large-scale creation of personalized UI designs that can automatically adapt to diverse users and
contexts.

The authors of ENRICO employed two main modalities for app classification: (1) the app screenshot
and (2) the view hierarchy. The app screenshot is given in the form of an image. The view hierarchy
is a type of metadata associated with some UI screens that describe the spatial and structural layout
of UI elements. This view hierarchy can be treated as a set since it contains an unordered collection
of UI elements each containing metadata and their spatial and structural layout.

Data collection: The original RICO dataset was collected using a combination of manual (i.e.,
crowdworkers) and automated (i.e., app crawler) methods. More information about how the apps
were downloaded and captured is available in the RICO paper [40]. The ENRICO dataset is a subset
of RICO that was created by first randomly sampling 10000 screens from RICO and labeling a high-
quality subset (1460 screens) that can be categorized into 20 design categories. More information
about the collection and annotation process is available in the ENRICO paper [93].

Access restrictions: While we do not have the license to this dataset, it is a public dataset free to
download by the research community from https://github.com/luileito/enrico.

Licenses: MIT, see https://github.com/luileito/enrico/blob/master/
LICENSE

Dataset preprocessing: We extract the following features from each modality:

1. Image: The authors of ENRICO used a VGG-16 network (augmented with batch normaliza-
tion and dropout) to encode app screenshots. To reduce overfitting on the relatively small
dataset (1460 examples), we use a VGG-11 network pre-trained on ImageNet, with a frozen
feature extraction network and a slimmed-down classifier network.

2. Set: We followed prior modeling approaches [40, 93] to represent the view hierarchy as a
set of UI elements spatially rendered as a “wireframe” (similar to a semantic map). The
wireframe was then fed into the same VGG-11 network used to encode the screenshot.
Another possibility, which we briefly explored, is to use a set encoder [184] to use a
permutation invariant function to compute a pooled representation of the set of mobile
applications. We found that the CNN-based approach resulted in better performance, as it
allowed the network to be initialized from a pre-trained checkpoint, although our experiments
were initial and there is still ample room for future work to explore better encoders for this
set modality.

Train, validation, and test splits: The original paper doesn’t provide official splits for training,
validation, and testing. We used a known seed to deterministically shuffle the dataset and create splits
for training (65%, 947 examples), validation (15%, 219 examples), and testing (20%, 292 examples).

C.2.6 Multimedia

1. AV-MNIST is a multimodal dataset created by paring audio of a human reading digits from the
FSDD dataset [1] with written digits in the MNIST dataset [88] with a task to predict the digit into
one of 10 classes (0 − 9). Since existing models can already complete the digit recognition task from
either modality quite well, one common practice in previous work [161] is to increase the difficulty by
removing 75% of energy in the visual modality via PCA and adding noise from ESC-50 [125] to the
audio modality, such that models have to leverage information from both modalities to make accurate
predictions. ESC-50 is a realistic dataset collected from real-world audio of various everyday objects.
Therefore, AV-MNIST serves as a good starting point of a relatively simple multimodal dataset
but with underlying challenges of complementarity and noisy data. In fact, the method of injecting
real-world background noises into the audio modality also inspired more tests for robustness included
in MULTIBENCH. AV-MNIST has served as a popular benchmark for evaluating the effectiveness of
multimodal fusion models [122, 161].
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Data collection: According to Vielzeuf et al., [161], AV-MNIST starts with the entirety of the
MNIST image and FSDD audio datasets. The audio samples are augmented by adding randomly
chosen ‘noise’ samples from the ESC-50 dataset [125], to reach the same number of examples as in
MNIST (55000 training, 5000 validation, and 10000 testing examples).

Access restrictions: This dataset is programmatically generated by combining 2 unimodal datasets:
MNIST and FSDD (with the additional audio signal from ESC-50). While we do not have the
license to these datasets, they are public datasets free to download by the research community.

Licenses: MNIST is released with a Creative Commons Attribution-Share Alike 3.0. FSDD is
released with a Creative Commons Attribution-ShareAlike 4.0 International license. ESC-50 is
released with a Creative Commons Attribution Non-Commercial license. All of these licenses allow
redistribution of the datasets.

Dataset preprocessing: To create the dataset, we downloaded MNIST from http://
yann.lecun.com/exdb/mnist/, FSDD from https://github.com/Jakobovski/
free-spoken-digit-dataset, ESC-50 from https://github.com/karolpiczak/
ESC-50, and generated AV-MNIST with the scripts provided in https://github.com/
slyviacassell/_MFAS/blob/master/datasets/avmnist_gen.py. Note that since
the official implementation of the preprocessing is not released, our preprocessing, as well as all other
existing preprocessing scripts, may differ from the original preprocessing in some details (such as
keeping at most or at least 25% of energy in the image modality, and some parameters in adding
noise to audio), so the performance of models in our version of AV-MNIST should not be compared
directly with the performance of models on AV-MNIST in other papers.

No preprocessing is done for the image modality. For audio, it is converted to a 112x112 Spec-
togram. See the code in https://github.com/slyviacassell/_MFAS/blob/master/
datasets/avmnist_gen.py for details.

Train, validation, and test splits: Data splits for AV-MNIST follow that of the MNIST dataset,
with 55000 training, 5000 validation, and 10000 testing examples.

2. MM-IMDB is the largest publicly available multimodal dataset for genre prediction on movies [8].
MM-IMDB starts from the movies of the MovieLens 20M dataset and expands this dataset by
collecting genre, poster, and plot information for each movie. The final dataset contains ratings for
25,959 movies. MM-IMDB is a realistic real-world multimodal dataset and is a popular benchmark
for multimodal learning [8, 81, 122].

Data collection: According to Arevalo et al., [8], MM-IMDB dataset is built with the IMDb ids
provided by the Movielens 20M dataset that contains ratings of 27,000 movies. Using the IMDbPY 3
library, movies that do not contain their poster image were filtered out. The resulting dataset comprises
25,959 movies along with their plot, poster, genres, and other 50 additional metadata fields such as
year, language, writer, director, aspect ratio, etc. The task is to perform multilabel classification into
one of 23 movie genres.

Access restrictions: While we do not have the license to this dataset, it is a public dataset free
to download by the research community from http://lisi1.unal.edu.co/mmimdb/ and
https://github.com/johnarevalo/gmu-mmimdb/.

Licenses: MIT, see https://github.com/johnarevalo/gmu-mmimdb/blob/
master/LICENSE

Dataset preprocessing: We used the same method as [8] to extract features from texts and images.

1. Text: We used the pretrained Google Word2vec1 to extract text features. The final vocabulary
contains 41,612, which is the intersection of Google word2vec words and the MM-IMDB
plots. We converted all text to lowercase following existing work.

2. Image: All images were scaled, and cropped when required, to 160 × 256 pixels keeping
the aspect ratio. A VGG-16 model [139] is applied as the image feature extractor. This
CNN consists of 5 convolutional layers of 5,3,3,3,3 squared filters and 2 × 2 pool sizes.
Each convolutional layer has 16 hidden units. The convolutional layers are connected with a
MaxoutMLP on top.

1https://code.google.com/archive/p/word2vec/
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Figure 11: Multimedia: A significant body of research in multimodal learning has been fueled by the large
availability of multimedia data (language, image, video, and audio) on the internet. MULTIBENCH includes 3
popular large-scale multimedia datasets with varying sizes and levels of difficulty: (1) Audio-Visual MNIST
(AV-MNIST) [161] is assembled from images of handwritten digits [88] and audio samples of spoken digits [94],
(2) Multimodal IMDb (MM-IMDB) [8] uses movie titles, metadata, and movie posters to perform multi-label
classification to a set of movie genres, and (3) KINETICS [80] contains video and audio of 306,245 video clips
annotated for 400 human actions. To ease experimentation, we split KINETICS into small and large partitions
(see Appendix C). Figure adapted from [8, 80].

Train, validation, and test splits: The MM-IMDb dataset is split by genre into train, valid, and test
datasets containing 15552, 2608, and 7799. The split was performed so that training, valid and test
sets comprise 60%, 10%, 30% samples of each genre respectively.

3. KINETICS is a series of large-scale curated video clips covering a diverse range of human actions.
We use the original Kinetics-400 dataset [80] which contains 400 human action classes, with at least
400 video clips for each action. Each clip lasts around 10s and is taken from a different YouTube
video. This is one of the largest publicly available multimodal datasets with a total of 306,245 video
clips spanning 400 human actions. Therefore, KINETICS is suitable for testing the scalability of
multimodal models to extremely large datasets. Furthermore, recognizing human actions is a core
challenge in a variety of applications such as human-AI interaction, robotics, and human behavior
analysis.

The sheer scale of the KINETICS dataset means that even the simplest models take up to several
weeks to finish training. To enable multimodal learning from video and audio while also increasing
access across researchers with limited computing resources, we subsample the KINETICS dataset into
small and large partitions:

KINETICS-S: We subsampled 5 human actions: archery, breakdancing, crying, dining, singing and
retained all video clips annotated for these 5 actions. We selected these actions randomly out of the
400 actions in Kinetics-400. This gave us a total of 2624 video clips in the small version of the dataset.
Training a basic supervised learning model on KINETICS-S takes roughly 2 hours on a single GPU.

KINETICS-L: This represents the entire KINETICS-400 dataset with 306,245 video clips spanning
400 human actions. Training a basic supervised learning model on KINETICS-L takes roughly 2
weeks on a single GPU.

Data collection: We refer the reader to Kay et al., [80] for a detailed description of the dataset
collection process. Briefly, the authors (1) started with a list of human actions from sources spanning
existing action datasets, motion capture, and crowdsourcing, (2) obtained candidate clips from
YouTube and extracted temporal positions within a video, (3) performed manual labeling for human
actions with Amazon’s Mechanical Turk, and (4) cleaning up and de-noising the selected videos.

Access restrictions: While we do not have the license to this dataset, it is a public dataset
free to download by the research community from https://deepmind.com/research/
open-source/kinetics.
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Licenses: Creative Commons Attribution 4.0 International, so we are free to share, copy, and
redistribute the material in any medium or format, see https://deepmind.com/research/
open-source/kinetics.

Dataset preprocessing: We downloaded links from https://deepmind.com/research/
open-source/kinetics and preprocessed them with the torchvision Kinetics scripts.

We processed the video and audio modalities as follows:

1. Video: We use 150 × 224 × 224 × 3 input clips, created with a frame skip of 2, a center crop
with shape (224,224), and the normalization step required for using torchvision.models.

2. Audio: We use log-scaled mel spectrograms with 763 temporal frames by 40 Mel filters,
element-wise averaging 2-channel waveforms to yield single channel ones.

Train, validation, and test splits: We use the 80.5/6.5/13 split provided by the original dataset,
taking all the data points in our chosen classes. This yields 2112, 171, and 341 data points in train,
validation, and test splits respectively for KINETICS-S and 246527, 19906, and 39812 data points in
train, validation, and test splits respectively for KINETICS-L.

C.3 Documentation

We provide documentation for MULTIBENCH in the form of datasheets for datasets [54]:

1. Motivation
(a) For what purpose was the dataset created? Was there a specific task in mind? Was

there a specific gap that needed to be filled? Please provide a description.
Learning multimodal representations involves integrating information from multiple
heterogeneous sources of data. It is a challenging yet crucial area with numerous
real-world applications in multimedia, affective computing, robotics, finance, and
healthcare. Unfortunately, current research focuses primarily on a fixed set of modalities
and tasks without a concrete understanding of generalization across domains and
modalities, complexity during training and inference, and robustness to noisy and
missing modalities. In order to standardize multimodal research and accelerate progress
towards understudied modalities and tasks while ensuring real-world robustness, we
release MULTIBENCH, a systematic and unified large-scale benchmark for multimodal
learning spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research
areas. MULTIBENCH provides an automated end-to-end machine learning pipeline that
simplifies and standardizes data loading, experimental setup, and model evaluation.
To enable holistic evaluation, MULTIBENCH summarizes both performance as well
as the potential drawbacks involving increased time and space complexity and risk
of decreased robustness from other modalities. To accompany MULTIBENCH, we
also provide a standardized implementation of 20 core approaches in multimodal
learning unifying innovations in fusion paradigms, optimization objectives, and training
approaches.
MULTIBENCH datasets present significant challenges of scalability to large-scale
multimodal datasets and robustness to realistic imperfections, which present fruitful
opportunities for future research. We hope that MULTIBENCH will present a milestone
in unifying disjoint efforts in multimodal machine learning research and paves a way
towards a better understanding of the capabilities and limitations of multimodal models,
all the while ensuring ease of use, accessibility, and reproducibility. MULTIBENCH, our
standardized implementation, and leaderboards are publicly available, will be regularly
updated, and welcomes inputs from the community.

(b) Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
MULTIBENCH is created primarily by the MultiComp Lab in the Language Technolo-
gies Institute and Machine Learning Department of the School of Computer Science
at Carnegie Mellon University, in collaboration with several other researchers in the
Human-Computer Interaction Institute and Computer Science Department at Carnegie
Mellon University as well as at Johns Hopkins University, Stanford University, and UT
Austin. The creation of MULTIBENCH is for purely research purposes only.

(c) Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.
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This material was based upon work partially supported by the National Science Foun-
dation (Awards #1722822 and #1750439) and National Institutes of Health (Awards
#R01MH125740, #R01MH096951, #U01MH116925, and #U01MH116923), NSF
IIS1763562, and ONR Grant N000141812861. Any opinions, findings, and conclu-
sions, or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation or National
Institutes of Health, and no official endorsement should be inferred.

(d) Any other comments?
No.

2. Composition
(a) What do the instances that comprise the dataset represent (e.g., documents, photos,

people, countries)? Are there multiple types of instances (e.g., movies, users, and
ratings; people and interactions between them; nodes and edges)? Please provide a
description.
We describe each dataset in detail in Appendix C.2. MULTIBENCH provides a compre-
hensive suite of multimodal datasets to benchmark current and proposed approaches
in multimodal representation learning. It covers a diverse range of research areas (af-
fective computing, healthcare, robotics, finance, HCI, and multimedia), dataset sizes
(small, medium, and large), input modalities (in the form of `: language, i: image, v:
video, a: audio, t: time-series, ta: tabular, o: optical flow, f : force sensor, p: propri-
oception sensor, s: set), and prediction tasks (affect recognition, robot manipulation,
stock prediction, design interface, action recognition, movie genre prediction, and digit
prediction).

(b) How many instances are there in total (of each type, if appropriate)?
We describe each dataset’s statistics in detail in Appendix C.2. We chose datasets to
span small, medium, and large sizes. The smallest dataset contains 1,460 instances
(and training a model takes roughly a few minutes on a single GPU) while the largest
one contains 306,245 instances (and training a model takes roughly 2 weeks on a single
GPU). This enables accessibility for researchers with limited computational resources,
while also allowing for large-scale studies of multimodal datasets and models.

(c) Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set (e.g., geographic coverage)?
If so, please describe how this representativeness was validated/verified. If it is not
representative of the larger set, please describe why not (e.g., to cover a more diverse
range of instances, because instances were withheld or unavailable).
Each of the datasets is collected in different ways that we detail in Appendix C.2. To
summarize, each dataset consists of samples from a larger set since it is impossible to
include all videos/stock data/medical data/robotics data in the world. Each dataset is
collected with the aim to be representative of the entire population.

(d) What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
We describe in detail the raw data and processed features for each dataset in Ap-
pendix C.2. To summarize, MULTIBENCH contains both raw modality data as well as
processed data with predefined feature extractors following current work.

(e) Is there a label or target associated with each instance? If so, please provide a descrip-
tion.
We describe in detail the labels for each dataset in Appendix C.2. To summarize, MULTI-
BENCH contains 6 research areas with a total of 15 prediction tasks spanning affect
recognition, robot manipulation, stock prediction, design interface, action recognition,
movie genre prediction, and digit prediction.

(f) Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does
not include intentionally removed information, but might include, e.g., redacted text.
No, all datasets are provided in full. For robustness tests, we do inject noise and
imperfections into each dataset to simulate the performance of machine learning
models on real-world imperfections (see Appendix D.3 for details).

(g) Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
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We describe in detail the relationships between modalities for each dataset in Ap-
pendix C.2.

(h) Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.
Yes, MULTIBENCH provides a data loading pipeline that directly loads train, validation,
and test splits according to current work. We provide these details for each dataset in
Appendix C.2.

(i) Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.
We do not know of any errors in each of the datasets included in MULTIBENCH.
However, we will always be on the lookout for potential issues and update them via
https://cmu-multicomp-lab.github.io/multibench/ and https:
//github.com/pliang279/MultiBench.

(j) Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a)
are there guarantees that they will exist, and remain constant, over time; b) are there
official archival versions of the complete dataset (i.e., including the external resources
as they existed at the time the dataset was created); c) are there any restrictions (e.g.,
licenses, fees) associated with any of the external resources that might apply to a
future user? Please provide descriptions of all external resources and any restrictions
associated with them, as well as links or other access points, as appropriate.
Most of the datasets in MULTIBENCH have been collected, stored, processed, and are
self-contained. There are some datasets that depend on external resources which we
explain below:

i. MIMIC: We depend on the original dataset to be hosted on https://mimic.
physionet.org/gettingstarted/access/. Unfortunately, since we are
not allowed to redistribute the raw data and users need to complete training to access
the raw data, we are unable to provide a self-contained version of the MIMIC dataset.
We are currently planning to add several new multimodal datasets in the healthcare
domain that can be self-contained after appropriate de-identification.

ii. Finance: Yahoo Finance prohibits the redistribution of their data. We
depend on the original data to be hosted on Yahoo Finance and
provide automated downloading and preprocessing scripts for the
datasets based on pandas-datareader, which has original code
at https://github.com/pydata/pandas-datareader/blob/
master/pandas_datareader/yahoo/components.py

(k) Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.
From the authors of MIMIC [78]: “The project was approved by the Institutional Review
Boards of Beth Israel Deaconess Medical Center (Boston, MA) and the Massachusetts
Institute of Technology (Cambridge, MA). Requirement for individual patient consent
was waived because the project did not impact clinical care and all protected health
information was de-identified.”
To the best of our knowledge, all other datasets do not contain confidential data and are
publicly available for research purposes.

(l) Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.
We reviewed the datasets and found no offensive content. While there are clearly
expressions of highly negative sentiment or strong displays of anger and disgust in
the affective computing videos, there are no offensive words used or personal attacks
recorded in the video. All videos are related to movie or product reviews, TED talks,
and TV shows.

(m) Does the dataset relate to people? If not, you may skip the remaining questions in this
section.
Yes, the healthcare, affective computing, and Kinetics (multimedia) datasets relate to
people. The other datasets in MULTIBENCH do not.
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(n) Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please
describe how these subpopulations are identified and provide a description of their
respective distributions within the dataset.
The following datasets relate to people:

i. Affective computing: These datasets do not identify any subpopulations in their
modeling decisions. However, the raw data comes in the form of videos publicly
available and free to download from YouTube. Sub-population and demographic
information can be inferred from these raw videos.

ii. MIMIC: According to the authors [78]: “The median age of adult patients is 65.8
years and 55.9% patients are male.”

iii. Kinetics: This dataset does not identify any subpopulations. However, the raw
data comes in the form of videos publicly available and free to download from
YouTube. Sub-population and demographic information can be inferred from these
raw videos.

(o) Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.
The following datasets relate to people:

i. Affective computing: One can see the person in the raw video, but the dataset
contains no personal information. We do not explicitly use information regarding
gender, ethnicity, identity, or video identifier in online sources. All pre-extracted
features are non easily invertible and only rely on general visual or audio features
such as the presence of a smile or magnitude of voice [181, 183].

ii. MIMIC: The MIMIC dataset has been rigorously de-identified in accordance with
Health Insurance Portability and Accountability Act (HIPAA) such that all possi-
ble personal information has been removed from the dataset. Removed personal
information includes patient name, telephone number, address, and dates. Dates
of birth for patients aged over 89 were shifted to obscure their true age. Please
refer to Appendix C.2.2 for de-identification details. Again, we emphasize that any
multimodal models trained to perform prediction should only be used for scientific
study and should not in any way be used for real-world prediction.

iii. Kinetics: One can see the person in the raw video, but the dataset does not contain
direct personal information. We do not explicitly use information regarding gender,
ethnicity, identity, or video identifier in online sources.

(p) Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.
MULTIBENCH contains datasets with financial and healthcare data. However, all these
datasets are publicly available for research purposes. Healthcare data (MIMIC) has
been rigorously de-identified in accordance with the Health Insurance Portability and
Accountability Act (HIPAA) such that all possible personal information (patient name,
telephone number, address, and dates, date of birth) has been removed from the dataset.
Please refer to Appendix C.2.2 for de-identification details.

(q) Any other comments?
No.

3. Collection Process
(a) How was the data associated with each instance acquired? Was the data directly observ-

able (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indi-
rectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived
from other data, was the data validated/verified? If so, please describe how.
We include the collection process for each dataset in Appendix C.2.

(b) What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? How were these
mechanisms or procedures validated?
We include these details in Appendix C.2.
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(c) If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
We include sampling methods for each dataset in Appendix C.2.

(d) Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?
We include annotation details for each dataset in Appendix C.2.

(e) Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.
We include timeframes for each dataset in Appendix C.2.

(f) Were any ethical review processes conducted (e.g., by an institutional review board)? If
so, please provide a description of these review processes, including the outcomes, as
well as a link or other access point to any supporting documentation.
From the authors of MIMIC [78]: “The project was approved by the Institutional Review
Boards of Beth Israel Deaconess Medical Center (Boston, MA) and the Massachusetts
Institute of Technology (Cambridge, MA). Requirement for individual patient consent
was waived because the project did not impact clinical care and all protected health
information was de-identified.”

(g) Does the dataset relate to people? If not, you may skip the remainder of the questions
in this section.
Yes, the healthcare, affective computing, and Kinetics (multimedia) datasets relate to
people. The other datasets in MULTIBENCH do not.

(h) Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?
Affective computing and Kinetics datasets are collected from YouTube videos that
follow the creative commons license and follow fair use guidelines of YouTube. Ac-
cording to the authors for the MIMIC dataset [78]: “Data was downloaded from several
sources, including archives from critical care information systems, hospital electronic
health record databases, and Social Security Administration Death Master File.”

(i) Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how the notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of
the notification itself.
Affective computing and Kinetics datasets are collected from YouTube videos that
follow the creative commons license and follow fair use guidelines of YouTube. This is
the standard way for content creators to grant someone else permission to use and redis-
tribute their work. According to the authors for the MIMIC dataset [78]: “The project
was approved by the Institutional Review Boards of Beth Israel Deaconess Medical
Center (Boston, MA) and the Massachusetts Institute of Technology (Cambridge, MA).
Requirement for individual patient consent was waived because the project did not
impact clinical care and all protected health information was de-identified.”

(j) Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was
requested and provided, and provide a link or other access point to, or otherwise
reproduce, the exact language to which the individuals consented.
Affective computing and Kinetics datasets are collected from YouTube videos that
follow the creative commons license and follow fair use guidelines of YouTube which
allows content creators to grant someone else permission to use and redistribute their
work. According to the authors for the MIMIC dataset [78]: “Requirement for individual
patient consent was waived because the project did not impact clinical care and all
protected health information was de-identified.”

(k) If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? If so, please provide a description,
as well as a link or other access point to the mechanism (if appropriate).
N/A.

(l) Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis) been conducted? If so, please provide a description
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of this analysis, including the outcomes, as well as a link or other access point to any
supporting documentation.
N/A.

(m) Any other comments?
N/A.

4. Preprocessing/cleaning/labeling
(a) Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or

bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)? If so, please provide a description. If not, you
may skip the remainder of the questions in this section.
Yes, we followed the convention in prior research for any preprocessing done to the
datasets. We explain these steps in Appendix C.2.

(b) Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? If so, please provide a link or other access point
to the “raw” data.
Yes, we include the raw data in MULTIBENCH in addition to the preprocessed features.
The raw data (usually in the form of raw text, videos, audio, time series etc) are useful
for users to perform their own feature extraction and also for robustness tests on raw
data itself (e.g., imperfections in the raw text through spelling errors and missing
words). There are certain cases where we are not allowed to distribute the raw data: for
MIMIC where users must undergo training to download the raw data, and for finance
datasets where Yahoo Finance is publicly available but does not allow redistribution of
raw data. For both of these datasets, we provide automated download and preprocessing
scripts once the raw data is downloaded through the correct procedure by each user
(see details in Appendix C.2).

(c) Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point.
Yes, we provided all links and references to preprocessing steps in Appendix C.2.

(d) Any other comments?
No.

5. Uses
(a) Has the dataset been used for any tasks already? If so, please provide a description.

Yes, MULTIBENCH contains several datasets that have been used in the multimodal
ML community. We provide links to the original repositories of each dataset and their
original citations in Appendix C.2.

(b) Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.
We provide links to the original repositories of each dataset and their original citations in
Appendix C.2. We also include references to general multimodal methods implemented
in MULTIZOO in Appendix E. Many of these methods have been tested by their original
authors on a small subset of datasets in MULTIBENCH. In addition to these references,
the leading authors maintain a reading list on topics in multimodal ML at [98] which
contains links to papers, datasets, code, academic courses, conferences, and workshops
relevant to the multimodal ML community.

(c) What (other) tasks could the dataset be used for?
In addition to building multimodal models for the prediction tasks, datasets in MULTI-
BENCH can also be used for:
i. Unsupervised learning across multimodal data/unsupervised pre-training of multi-

modal models.
ii. Interpreting relationships between modalities.

iii. Designing models for robustness to noisy and missing modalities.
iv. Investigating alignment between modalities.
v. Other multimodal tasks including but not limited to: co-learning, translation, re-

trieval, and grounding [10].
(d) Is there anything about the composition of the dataset or the way it was collected and

preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
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undesirable harms (e.g., financial harms, legal risks) If so, please provide a description.
Is there anything a future user could do to mitigate these undesirable harms?
We are careful to outline all possible risks associated with each dataset in Appendix C.2
and also in our broader impact statement (Appendix A). We acknowledge that there
could be risks regarding the privacy and security of data, as well as the real-world
deployment of these methods whenever human-centric data is involved (e.g., in health-
care, affective computing, and multimedia). We discussed data demographics in the
previous section and it should be taken into consideration when making claims regard-
ing the generalization of models to new users. We also emphasize that these multimodal
datasets and methods should only be used for research purposes and not for actual
real-world deployment until research can sufficiently verify their safety. Finally, we are
carefully working with domain experts towards better understanding biases in these
multimodal datasets and models as well as their real-world safety.

(e) Are there tasks for which the dataset should not be used? If so, please provide a
description.
Yes, we emphasize that all multimodal models trained to perform prediction on these
datasets should not in any way be used to harm individuals and should only be used
as a scientific study. They should not be deemed safe for real-world deployment. In
particular, the models used to make predictions of affective states, human actions,
health indicators, and financial indicators are particularly sensitive and should not be
used to inform any real-world decisions. All results must only be used as a scientific
study of machine learning methods. See more details in Appendix A.

(f) Any other comments?
No.

6. Distribution

(a) Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
Yes, the benchmark will be distributed to the public research community for theoreti-
cians and practitioners to experiment on multimodal data.

(b) How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?
We plan to distribute MULTIBENCH via our public GitHub: https://github.
com/pliang279/MultiBench. We also include a landing website page on
https://cmu-multicomp-lab.github.io/multibench/ that includes
an introduction to the benchmark, links to the relevant papers on multimodal datasets
and algorithms, and a public leaderboard to keep track of current progress on these
multimodal tasks.

(c) When will the dataset be distributed?
The dataset is currently available for use.

(d) Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any
relevant licensing terms or ToU, as well as any fees associated with these restrictions.
We release the benchmark and code under an MIT license: see https://github.
com/pliang279/MultiBench/blob/main/LICENSE, which allows for shar-
ing and distribution of the code for research purposes. Each of the datasets in MULTI-
BENCH has their own licenses which we detail in Appendix C.2.

(e) Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any
fees associated with these restrictions.
Yes, MULTIBENCH brings together a collection of several existing datasets in the
multimodal research that were built by their individual authors who have original
licenses for these datasets. We only included the datasets with licenses that allow for
redistribution (MIT or Creative Commons license) and are freely downloadable for
research purposes. We detailed all dataset licenses in Appendix C.2.
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(f) Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any supporting documentation.
We are not aware of any such restrictions.

(g) Any other comments?
No.

7. Maintenance

(a) Who is supporting/hosting/maintaining the dataset?
The dataset is supported and hosted by the team of authors at CMU. The team will
also lead the maintenance and expansion of MULTIBENCH. The team will also work
with the other collaborators on the paper who are domain experts in each research area
MULTIBENCH covers, such as robotics, HCI, healthcare, and finance.

(b) How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
We provide all contact addresses at https://cmu-multicomp-lab.github.
io/multibench/.

(c) Is there an erratum? If so, please provide a link or other access point.
All erratum and updates to the dataset will be tracked via GitHub commit histo-
ries at https://github.com/pliang279/MultiBench. We will also pro-
vide updates via our landing page https://cmu-multicomp-lab.github.
io/multibench/.

(d) Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?
Yes, we plan for long-term maintenance and expansion of the dataset. All erratum
and updates to the dataset will be tracked via GitHub commit histories at https://
github.com/pliang279/MultiBench. We will also provide updates via our
landing page https://cmu-multicomp-lab.github.io/multibench/.
Please refer to Appendix C.5 for details.

(e) If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.
The individuals in question were not notified about the data collection. For YouTube
videos, they are released under a creative commons license which is the standard way
for content creators to grant someone else permission to use and redistribute their work.
According to the authors for the MIMIC dataset [78]: “The project was approved by the
Institutional Review Boards of Beth Israel Deaconess Medical Center (Boston, MA)
and the Massachusetts Institute of Technology (Cambridge, MA). Requirement for
individual patient consent was waived because the project did not impact clinical care
and all protected health information was de-identified.”

(f) Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated
to users.
Yes, we will maintain a GitHub history for all updates and older versions of datasets
and code in MULTIBENCH.

(g) If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? If so, please provide a description. Will these contributions be
validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to other users? If so, please provide a
description.
Yes, we will create a system where users can create pull requests on GitHub to include
their datasets and models. The authors will verify that the additions are in the scope of
multimodal learning and do not break the current experimental code. We will work with
these authors to ensure that their data and algorithms can be included in MULTIBENCH.

(h) Any other comments?
No.
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C.4 Benchmark Distribution

We plan to distribute the MULTIBENCH benchmark via our public GitHub: https://github.
com/pliang279/MultiBench. We also include a landing website page on https://
cmu-multicomp-lab.github.io/multibench/ that includes an introduction to the bench-
mark, links to the relevant papers on multimodal datasets and algorithms, and a public leaderboard to
keep track of current progress on these multimodal tasks.

The GitHub and webpage will also allow feedback from the research community in suggesting and
adding new datasets and algorithms. Finally, we plan to include a list of planned future updates to
MULTIBENCH on the webpage along with their target release dates.

C.5 Hosting and Maintenance

We have a long-term plan to continue the expansion and maintenance of MULTIBENCH. Here we
summarize the main directions we plan to expand towards and leave details and other areas of future
work to Appendix I.

• Maintenance: MULTIBENCH will be continuously hosted via GitHub which provides stable
access to code and a landing page website. We guarantee that MULTIBENCH will be
available for a long time through our distribution channels. The authors themselves are also
actively working on multimodal learning in affective computing, robotics, healthcare, human-
computer interaction, and multimedia. The authors are also involved in efforts in applying
multimodal machine learning to finance. As a result of these long-term collaborative research
efforts, the authors will continue to maintain and expand on the datasets and code provided
in MULTIBENCH.

• Expansion of datasets: We plan to include more datasets for multimodal fusion as well as
more research areas in multimodal learning such as retrieval, question answering, grounding,
and reinforcement learning. While these research areas are very different, we hope that
insights in multimodal representations can be shared across them.

• Expansion of evaluation: To enable holistic evaluation, we plan to build on top of our metrics
by adding robustness to distribution shift, uncertainty measures, tests for fairness and social
biases, as well as labels/metrics for interpretable multimodal learning.

• Expansion of datasets: We plan to encourage students taking the multimodal ma-
chine learning course at CMU (https://cmu-multicomp-lab.github.io/
mmml-course/fall2020/) to use the benchmark and add their proposed datasets
and models to it.

• Expansion of methods: The authors currently collect a very up-to-date read-
ing list of core multimodal papers https://github.com/pliang279/
awesome-multimodal-ml and plan to continuously update MULTIZOO with
new multimodal methods proposed by the community.

C.6 Author Statement

The authors carefully reviewed the information present in this document. To the best of our knowledge,
the datasets in MULTIBENCH can be used for research purposes, following the methodology and
licenses described in the dataset section (Appendix C.2).

C.7 License

Each of the datasets included in MULTIBENCH includes their own licenses which we detail in
Appendix C.2.. We release all preprocessing code across all datasets using the MIT license. All
other codes for multimodal algorithms in MULTIZOO as well as evaluation scripts, are also released
via an MIT license: see https://github.com/pliang279/MultiBench/blob/main/
LICENSE, which allows for sharing and distribution of the code for research purposes.

C.8 Metadata

We have included structured metadata for MULTIBENCH on our landing page: https://
cmu-multicomp-lab.github.io/multibench/.
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C.9 Persistence of MULTIBENCH

MULTIBENCH is publicly hosted on https://github.com/pliang279/MultiBench. For
larger datasets that cannot be uploaded to GitHub, we plan to upload the processed dataset to CMU
Box. We are still exploring the best options for sharing large datasets. Users need to download these
processed datasets, place them into a correct folder, and run the MULTIBENCH data loader and
machine learning pipeline.
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D MULTIBENCH Evaluation Protocol
To enable holistic evaluation, MULTIBENCH offers a comprehensive evaluation methodology to
assess (1) generalization across domains and modalities, (2) complexity during training and inference,
and (3) robustness to noisy and missing modalities: We describe the evaluation protocol for each
desiderata in detail in each of the following subsections:

D.1 Performance

MULTIBENCH provides standardized evaluation using metrics designed for each dataset, ranging from
MSE and MAE for regression to accuracy, micro & macro F1-score, and AUPRC for classification
on each dataset. To assess for generalization, we compute the variance of a particular model’s
performance across all datasets in MULTIBENCH on which it is tested. We split these results on
multiple datasets into in-domain datasets and out-domain datasets. In-domain datasets refer to model
performance on datasets that it was initially proposed and tested on, while out-domain datasets refer to
model performance on the remaining datasets. Comparing out-domain vs in-domain performance, as
well as variance in performance across datasets as a whole, allow us to summarize the generalization
statistics of each multimodal model.

D.2 Complexity

Modern ML research, unfortunately, causes significant impacts to energy consumption [142], a
phenomenon often exacerbated in processing high-dimensional multimodal data. As a step towards
quantifying energy complexity and recommending lightweight multimodal models, MULTIBENCH
records the amount of information taken in bits (i.e., data size), number of model parameters, and
time and memory resources required during the entire training process. To enforce consistency, the
training time measured for all models on each dataset is run on the same CPUs and GPUs. We
report training memory by measuring peak memory usage of the python process during the entire
training process using python memory_profiler toolkit (https://pypi.org/project/
memory-profiler/). When counting the number of parameters when training a model, we only
count the parameters in persistent modules during training and does not count the ephemeral networks
or modules created in the middle of the training process (such as the networks trained for determining
weights in GRADBLEND or the fusion architectures created as part of the architecture search process
in MFAS).

In addition to training time and resources, real-world models may need to be small and compact to
run on mobile devices [131]. To account for this, MULTIBENCH also records inference time and
parameters. We report inference time by measuring the time it takes for the trained model to complete
inference on the entire test set of the dataset. In some cases, only parts of the parameters used in
training are counted towards the inference parameters (for example, the parameters in decoders of
MVAE and MFM are part of training parameters but not part of inference parameters).

D.3 Robustness to Imperfect Data

Real-world multimodal data is often imperfect as a result of missing entries, noise corruption, or
missing modalities entirely. For example, multimodal dialogue systems trained on acted TV shows
are susceptible to poor performance when deployed in the real world where users might be less
expressive in using facial gestures. This calls for robust models that can still make accurate predictions
despite only having access to a (possibly noisy [101]) subset of signals [123]. To standardize efforts
in evaluating the robustness of multimodal models, MULTIBENCH includes the following robustness
tests as part of the evaluation:

D.3.1 Modality-specific Imperfections

Modality-specific imperfections are independently applied to each modality taking into account the
unique noise topologies in that source of data (i.e., flips and crops of images, natural misspellings
in text, abbreviations in spoken audio). We describe all the modality-specific imperfections we
implement in MULTIBENCH in the following:

Language: Imperfections in the language modality can occur at various granularities spanning the
character, word, phrase, and sentence levels. With reference to [15], many of these imperfections
occur at the raw text data level and are usually results of spelling errors on a QWERTY keyboard
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as well as abbreviations in written, typed, and spoken text. Given a word w of length n and a fixed
probability p ∈ (0,1), we implement the following language-specific imperfections:

1. Spelling errors: note that spelling mistakes are different from intentionally changed word
forms (e.g. abbreviation used in instant messaging service) since they are unintentional [144].
We simulate typos by replacing each letter with a letter having an adjacent position on a
QWERTY keyboard with probability p.

2. Short message noise: Short Message Service (SMS) data usually include intentional corrup-
tions of words and phrases like abbreviations, phonetic substitutions, omission of characters
and words, and dialectal and informal usages [144]. We implement the following:
(a) Simulate sticky keys: given a number m, choosing m letters of a word randomly to

repeat with probability p.
(b) Simulate quick typing: given a number m, choosing m letters of a word randomly to

omit with probability p.
3. Random permutation of letters: swapping adjacent two letters is a common natural noise

when typing quickly [15]. Random permutation of the entire word or the majority of letters
is a form of synthetic noise. We implement the following:
(a) Swap two random adjacent letters (except for the first and the last letter) with probability

p.
(b) Permute the middle chunk of a word: denote the middle chunk (all letters except the

first and the last letter) as w[1 ∶ n], with probability p, produce a permutation f with
the first and last letter fixed, i.e. f(0) = 0, f(n) = n. The shuffled word is w′ with
w′[f(i)] = w[i] for all i ∈ [n].

Image: Given a RGB image X ∈ ZW×H×3 where W and H are the height and width of the image, let
R,G,B be the W ×H matrices of three color channels. We implement the following robustness tests
in the image modality:

1. Noises in digital images: various noises are naturally prevalent in digital images during
image acquisition, coding, transmission, and processing steps [19]. We implement the
following:
(a) Gaussian/electronic noise that normalizes histogram with respect to the gray values. We

add Gaussian noise as a W ×H matrix with each entry following Gaussian distribution
N (0, p).

(b) Impulse valued/salt-and-pepper noise that has dark pixels in bright regions and bright
pixels in dark regions. To add salt-and-pepper noise, for each pixel x ∈ X, we convert
x = 0 (white) or x = 255 (black) into a dead pixel with uniform distribution with
probability p.

(c) Periodic noise such that it looks like some repeating patterns are exposed on top of
the affected image. We add periodic noise by exposing the original image to periodic
patterns with probability p.

2. Color errors:
(a) Convert the image to grayscale: 0.3R + 0.59G + 0.11B with probability p.
(b) Decrease the contrast with probability p.
(c) Negate the color: let X’ be the inverted image then ∀i ∈ [W ], j ∈ [H], k ∈

[3],X′(i, j, k) = 255 −X[i, j, k] with probability p.
(d) Change the white-balance by increasing/decreasing the temperature with probability p.
(e) Colorize the image with probability p.

3. Flips, crops, and rotations:
(a) Horizontal flipping with probability p.
(b) Color space transformation - isolating a single color channel and changing brightness

etc with probability p.
(c) Random cropping changes with probability p.
(d) Rotate the image by random angle ∈ [20,40] with probability p.
(e) Translation of images to the left, right, up, or down with probability p.

Most of these transformations are achieved with the Python Imaging Library (PIL).

Video: We treat video data as a time series of images. For each image in the video, we apply the
image-specific robustness tests as described above. In addition, we also apply the following tests to
simulate imperfections in time-series data:
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1. Random drop: dropping the datapoint at random time step with probability p.
2. Structured drop: given a time step t, m consecutive time steps with at least one nonzero

signal are dropped with probability p.

Audio: Audio is typically represented as a time-series signal. Noises are primarily caused by imper-
fections in the recording device, which can cause static Gaussian noise to be added to the recorded
temporal waveform at random time steps, background noise to be picked up at higher magnitudes,
and certain time steps (or consecutive time steps) to be dropped from the recording. We implement
the following unimodal noises in the audio modality:

1. Additive white Gaussian noise: given an array of length N of a sampled audio segment,
we add white gaussian noise, which is an array of N with each entry following a normal
distribution with mean 0 and standard deviation p.

In addition to these imperfections applied at a single time step, we also apply the following across the
entire time-series signal:

1. Random drop: dropping the datapoint at random time step with probability p.
2. Structured drop: given a time step t, m consecutive time steps with at least one nonzero

signal are dropped with probability p.

Time-series data consists of a sequence with a time-dimension (a sequence of data points indexed by
time). Following Liang et al., [101], we implement the following types of noise and missing values in
time-series data:

1. White noise added independently at every time step (noise sampled from zero-mean Gaussian
with standard deviation p).

2. Random drop: dropping the datapoint at random time step with probability p.
3. Structured drop: given a time step t, m consecutive time steps across modalities are dropped

with probability p.

Optical flow: We treat optical flow in a similar manner as time-series data and implement the same
robustness tests.

Force and proprioception sensors: We also treat these sensors in robotics as time-series data with
a key difference - we add noise/drop time steps at a higher frequency since force and proprioception
sensors often record data at a higher frequency.

Tabular data takes the form of rows, each of which contains information about some feature (e.g.,
age, ). We define the following robustness tests on tabular data:

1. Random drops of elements from the table with probability p.
2. Random swaps elements in the table with probability p.

Sets are data instances where the collection of input elements satisfy permutation invariance, which
is in contrast to fixed dimensional vectors that are commonplace in machine learning on images, text,
and audio. The key difference between sets and tabular data is that each element in the set is often
assumed to be from the same distribution (e.g., a point cloud is a set of 3D coordinates). We define
the following types of noise on an input set modality:

1. Random dropping of elements from the set with probability p.
2. Adding noise to elements of the set with noise sampled from zero-mean Gaussian with

standard deviation p.

D.3.2 Multimodal Imperfections

Multimodal imperfections capture correlations in imperfections across modalities (e.g., missing
modalities [123], or a chunk of time missing in multimodal time-series data [101]). These represent
settings where data collection across modalities is correlated rather than independent.

1. Correlated noise: adding noise to all modalities with probability p, where noise is defined
according to the aforementioned modality-specific noises.

2. Correlated drop: dropping all modalities with probability p, where dropping patterns are
defined according to the aforementioned modality-specific drops.
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3. Temporal drop: in the case of temporal modalities recorded in parallel (e.g., video, audio,
and text recorded across time; financial time-series data recorded across days), we perform
correlated drops across all modalities at random time steps with probability p.

4. Structured temporal drop: we extend temporal drop such that given a time step t, we perform
temporal drop on m consecutive time steps with probability p.

5. Missing modalities: dropping an entire modality with probability p.

D.3.3 Robustness Measure

We train the model on clean training data and evaluate it under increasing levels of noise added only
to test data. To simulate realistic noise and imperfections in test data, we follow the modality-specific
and multimodal imperfections as described above. Given a multimodal dataset with M modalities,
this allows us to create M + 1 partitions of imperfect test datasets: one partition of increasing noise
levels for modality-specific imperfections within each modality (which gives a total of M partitions)
and one partition of multimodal imperfections across all modalities. For datasets where it is not
possible to create multimodal imperfections due to the lack of a shared dimension (e.g., image and
text datasets typically do not share any correlated dimension, but multimodal time-series datasets
share an underlying time dimension), we implement the first M modality-specific imperfections
which results in M imperfect data partitions.

A qualitative visualization: Given each test partition, we take a unimodal or multimodal model
trained on clean data and plot model performance on the y-axis as increasing levels of noise is added
to the test data, on a range of 0 (no noise) to 1 (complete noise) along the x-axis. This allows us to
visually inspect the robustness of each model as increasing imperfections are added to the test data.
Visually, a robust model should maintain high accuracy (or low MSE) as much as possible despite
increasing levels of noise.

A quantitative metric: While the visualization technique above allows one to compare the robustness
of several multimodal models across the same dataset, it does not allow us to aggregate robustness
performance across the broad range of datasets and tasks in MULTIBENCH. To design such a metric,
we extend the quantitative robustness measures proposed in Taori et al., [149] to deal with multimodal
imperfections across a range of imperfection levels σ ∈ [0.0,1.0].
We begin by reviewing the example proposed in Taori et al., [149]: suppose we are given two models
f1 and f2, where accuracy accclean(f1) = 0.8, accnoisy(f2) = 0.75 (i.e., a 5% drop in accuracy from
the imperfections), and accclean(f2) = 0.9, accnoisy(f2) = 0.76 (a 14% drop). Model f2 has higher
accuracy on the noisy test set, but overall sees a drop of 14% from the clean to the noisy test set. In
contrast, f1 starts off with a lower accuracy but sees only a 5% drop. To capture both these desiderata
(i.e., having higher accuracy at all levels and lower drops in accuracy), Taori et al., [149] introduce
two notions of robustness: relative and effective robustness.

Relative robustness directly measures accuracy under imperfection. A model with higher relative
robustness would display higher accuracy at all levels of imperfection compared to a baseline model.
We measure the relative robustness of all multimodal models as compared to a baseline LF (simple
late fusion with concatenation) method since that is the most basic method tested on all datasets. We
compute relative robustness of a model f using the formula

τ(f) = ∫
σ

accσ(f) − accσ(LF) dσ, (1)

which essentially measures the area between two performance-imperfection curves as imperfection
levels σ increase from 0.0 to 1.0 (we compute a discrete approximation to the integral).

Effective robustness measures the rate of accuracy drops as imperfection levels increase. However,
to reliably measure the rate of accuracy drops, one must remove the confounding variable brought by
differences in initial accuracies on clean test data. Taori et al., [149] therefore propose to measure
whether a model can offer higher accuracy on the noisy test set beyond what is expected from having
higher accuracy on the original test set. Taori et al., use a log-linear fit on the set of (accuracy on
noisy test data, accuracy on clean test data) points across a range of models trained on ImageNet to
measure the expected accuracy on noisy test data given a new model’s performance on clean test
data. Graphically, effective robustness then corresponds to a model’s performance on noisy test data
lying above the linear trendline. Similar to relative robustness, we measure the effective robustness of
multimodal models relative to the accuracy trend of the LF baseline, which we denote as βLF. We
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compute effective robustness of a model f using the formula

ρ(f) = ∫
σ

accσ(f) − βLF (acc0.0(f)) dσ, (2)

which essentially measures the area between the performance-imperfection curve of model f and a
shifted performance-imperfection curve of the LF baseline (shifted to match the initial accuracy of
model f at imperfection level 0.0). A model with higher effective robustness should lie above this
shifted accuracy curve at all imperfection levels σ. Again, we compute a discrete approximation to
the integral.

Overall, a robust multimodal model should obtain both high relative and effective robustness.

D.4 Aggregating Measures Across Datasets and Tasks

MULTIBENCH benefits from benchmarking multimodal models across a diverse set of datasets,
modalities, and tasks. While it is useful to analyze methods on a single dataset in isolation, it is also
useful to assess the generalization and failure modes of methods across multiple datasets. Therefore,
we need a way to reliably summarize the above metrics (performance, complexity, and robustness)
across datasets despite their being on vastly different scales (e.g., accuracy for different numbers of
categories) and orders (e.g., accuracy vs RMSE). We find that min-max normalization of results per
dataset into a 0 − 1 scale (where min and max are appropriately reversed for RMSE/MSE metrics)
before averaging across datasets gives a reliable indicator of overall performance across multiple
datasets.
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Table 3: MULTIZOO provides a standardized implementation of the following multimodal methods to enable
accessibility for new researchers and reproducibility of results. These approaches span advances in data process-
ing, fusion paradigms, optimization objectives, and training procedures. We choose these approaches since they
offer complementary perspectives towards tacking the fundamental challenges in multimodal fusion: (1) aligning
signals across modalities at the right granularity, (2) learning complementary information across aligned signals,
and (3) maintaining robustness in the presence of noisy and missing modalities.

Category Method Alignment Complementarity Robustness
Data WORDALIGN [26] 3 7 7

Model

EF, LF [10] 7 3 7
TF [179], LRTF [106] 7 3 7

MI-MATRIX, MI-VECTOR, MI-SCALAR [77] 7 3 7
NL GATE [167] 7 3 7

MULT [154] 3 3 7
MFAS [122] 7 3 7

Objective

CCA [7] 3 7 7
REFNET [135] 3 7 7

MFM [155] 7 3 7
MVAE [168] 7 3 7
MCTN [123] 7 7 3

Training GRADBLEND [167] 7 3 3
RMFE [53] 7 3 3

E MULTIZOO: A Zoo of Multimodal Algorithms
In this section, we provide more details into our choice of standardizing multimodal representation
learning as well as the implementation of our standardized library. In each category, we carefully
describe the algorithm, motivate its effect in tackling one of the core challenges in section B.2, and
provide references to the original code that we adapted to include in MULTIZOO.

E.1 Selection of Algorithms in MULTIZOO

We begin by discussing our choices of algorithms in MULTIZOO. We consulted with domain experts
in each of the application areas to select methods that satisfy the following properties:

1. Diversity in areas: We chose algorithms that present novel perspectives across a suite
of machine learning research domains spanning data preprocessing, fusion paradigms,
optimization objectives, and training procedures.

2. Coverage of technical challenges: Each of the algorithms selected in MULTIZOO are chosen
because they provide unique perspectives to the technical challenges in multimodal learning
as elucidated in Appendix B.2. In Table 3, we provided a coarse attempt in categorizing each
of the technical challenges in multimodal learning. As a result, we did not include too many
methods in any category (e.g., multiple methods that are based on model architectures that
tackle similar challenges of learning complementary information). Even within the same
category and within those tackling the same technical challenge, we attempted to select
ones that were fundamentally different (e.g., architectures based on domain knowledge,
general-purpose Transformers, and architecture search).

3. SOTA on a particular dataset: For each dataset chosen in MULTIBENCH, we aim to include
the model that currently achieves state-of-the-art performance on that dataset. This allows
us to assess the best performing model within the same domain of the dataset, as well as the
best performing model outside the domain of the dataset.

4. Community expansion: Any set of initial methods that we will choose will represent only a
small sample of the powerful multimodal methods out there. We will encourage community
participation in expanding the methods in MULTIZOO and encourage researchers to imple-
ment new methods using a similar modular structure to reduce confounding factors, enable
standardized sharing of code, and ensure reproducibility in results.

E.2 Data Preprocessing

Temporal alignment: As a preprocessing step, performing temporal alignment [26] has been
shown to help tackle the multimodal alignment problem in the case of time-series data. This
approach makes an implicit assumption on the temporal granularity of the modalities (e.g., at
the level of words for text) and aligns information from the remaining modalities to the same
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temporal granularity. We call this approach WORDALIGN [26] and apply it to temporal data
with text being one of the modalities. We use the temporal alignment provided in https:
//github.com/A2Zadeh/CMU-MultimodalSDK. Specifically, it performs alignment at the
granularity of words. Given a sentence with words w1, ...,wT each annotated with their start and
end times (s1, e1), (s2, e2), ..., (sT , eT ), word-level alignment takes the non-text modality fea-
tures (which are typically extracted at a higher frequency) and averages them during the intervals
e1 − s1, e2 − s2, ..., eT − sT . This results in a text sequence of T words alongside aligned non-text
modality sequences of T time-steps as well.

E.3 Fusion Paradigms

Early and late fusion have been the de-facto first-approach when tackling new multimodal problems.
Early fusion performs concatenation at the input data level before using a suitable prediction model
(i.e., zmm = [x1,x2]) and late fusion applies suitable unimodal models to each modality to obtain
their feature representations, concatenates these features, and defines a classifier to the label (i.e.,
zmm = [z1,z2]) [10]. MULTIZOO includes their implementations denoted as EF and LF respectively.
Since these are basic building blocks in the multimodal learning field, we implement them ourselves.

Tensors are specifically designed to tackle the multimodal complementarity challenge by explicitly
capturing higher-order interactions across modalities [179]. Given unimodal representations z1,z2, a

multimodal tensor representation is defined as zmm = [z1
1
]⊗ [z2

1
] where ⊗ denotes an outer product.

However, computing tensor products is expensive since their dimension scales exponentially with the
number of modalities. Several efficient variants have been proposed to approximate expensive full
tensor products with cheaper variants while maintaining performance [71, 101, 106]. MULTIZOO
includes Tensor Fusion (TF) [179] as well as approximate Low-rank Tensor Fusion (LRTF) [106].

We use the Tensor Fusion implementation in https://github.com/Justin1904/
TensorFusionNetworks and the Low-rank Tensor Fusion implementation in https://
github.com/Justin1904/Low-rank-Multimodal-Fusion. As future work, we also
plan to include more expressive higher-order tensor fusion methods [71].

Multiplicative Interactions (MI) further generalize tensor products to include learnable parameters
that capture the interactions between streams of information [77]. In its most general form, MI defines
a bilinear product zmm = z1Wz2 + z⊺1U +Vz2 + b where W,U,Z, and b are trainable parameters.
By appropriately constraining the rank and structure of these parameters, MI recovers HyperNet-
works [61] (unconstrained parameters resulting in a matrix output), Feature-wise linear modulation
(FiLM) [120, 188] (diagonal parameters resulting in vector output), and Sigmoid units [37] (scalar
parameters resulting in scalar output). MULTIZOO includes all 3 as MI-MATRIX, MI-VECTOR, and
MI-SCALAR respectively.

Since code was not released for the Multiplicative Interactions paper [77], we implemented the
MI layer ourselves. We also referred to the implementation of Feature-wise linear modulation
(FiLM) [120] from https://github.com/ethanjperez/film and added it as a module in
MULTIBENCH, which we call FILM. While MI-VECTOR (i.e., diagonal parameters in a MI layer
which results in a vector output) corresponds to the most basic implementation of FILM, the original
FILM layer uses multiple non-linear layers instead of a single linear transformation in MI-VECTOR
which has been shown to improve performance [120].

Gated attention models are prevalent in learning combinations of two representations that dynam-
ically change for every input [25, 167, 171]. Its general form can be written as zmm = z1 ⊙ h(z2),
where h represents a function with sigmoid activation and ⊙ denotes the element-wise product. The
output h(z2) is commonly referred to as “attention weights” learned from z2 used to attend on z1.

We implement the Query-Key-Value mechanism as NL GATE as proposed in [167] by referring to
the implementation of in https://github.com/facebookresearch/VMZ. This attention
mechanism is conceptually similar to the MI-VECTOR case above but recent work has explored more
expressive forms of h such as using a Query-Key-Value mechanism [167] or several fully-connected
layers [25] rather than a linear transformation in MI-VECTOR.

Temporal attention models are useful in tackling the challenge of multimodal alignment and
complementarity. Transformer models [158] have been shown to be useful for temporal multimodal
data by automatically aligning and capturing complementary features at different time-steps [154,
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174]. We include the Multimodal Transformer (MULT) [154] which uses a Crossmodal Transformer
block that uses z1 to attend to z2 (and vice-versa), before concatenating both representations to obtain
zmm = [z1→2,z2→1] = [CM(z1,z2),CM(z2,z1)].
We use the public implementation available at https://github.com/yaohungt/
Multimodal-Transformer which includes a basic crossmodal transformer block designed
for 2 modalities. To extend this to 3 modalities, the crossmodal transformer block is repeated across
all 3 sets of modality pairs (i.e., zmm = [z1→2,z2→1,z1→3,z3→1,z2→3,z3→2]). While this is still
computationally feasible for 3 modalities such as the language, video, and audio datasets that MULT
was originally designed for, this quickly becomes intractable for problems involving more than 3
modalities. To adapt MULT for the financial prediction task involving more than 10 modalities, we
cluster all modalities into 3 groups based on similarities in their data and perform early fusion on the
data within each cluster before applying MULT only on the 3 clusters of modalities. While MULT is
a strong model based on performance, it poses scalability issues that should be the subject of future
work (i.e., since the number of cross-modal attention blocks grows quadratically with the number of
modalities).

Architecture search: Finally, instead of hand-designing multimodal architectures, several approaches
define a set of atomic neural operations (e.g., linear transformation, activation, attention, etc.) and use
architecture search to automatically learn the best order of these operations for a given multimodal
task [122, 173]. We focus on the more general approach, MFAS [122], designed for language and
vision datasets.

We adapt the implementation from https://github.com/juanmanpr/mfas. While this
approach is categorized under innovations in model architecture (since it primarily targets better
architectures for multimodal fusion), its code in the MULTIZOO toolkit is implemented under training
structures, since architecture search requires an outer loop to learn model architectures over multiple
inner supervised learning loops that train an individual model architecture. Therefore, we are unable
to integrate MFAS directly with the basic supervised learning training loops like we do for the other
fusion paradigms described above.

E.4 Optimization Objectives

In addition to the standard supervised losses (e.g., cross-entropy for classification, MSE/MAE for
regression), several proposed methods have proposed new optimization objectives based on:

Prediction-level alignment: There has been extensive research in defining objective functions to
tackle the challenge of multimodal alignment: capturing a representation space where semantically
similar concepts from different modalities are close together. While primarily useful for cross-
modal retrieval [104, 187], recent work has also shown its utility in learning representations for
prediction [9, 33, 91, 151]. These alignment objectives have been applied at both prediction and
feature levels. In the former, we implement Canonical Correlation Analysis (CCA) [7, 166], which
computes LCCA = corr (g1(z1), g2(z2)) where g1, g2 are auxiliary classifiers mapping each unimodal
representation to the label. This method corresponds to prediction-level alignment since they aim to
learn representations of each modality that agree on the label, as measured by the correlation of label
predictions made by each modality across a batch of samples.

We refer to the paper that most closely implements CCA-based alignment for multimodal data (specif-
ically directly testing on the CMU-MOSI dataset) [145]. Since the authors did not release their code,
we implemented it from scratch with reference to CCA implementations from https://github.
com/Michaelvll/DeepCCA and https://github.com/VahidooX/DeepCCA.

Feature-level alignment: In the latter, contrastive learning has emerged as a popular approach that
brings similar concepts close in feature space and different concepts far away [33, 91, 151]. MULTI-
ZOO includes REFNET [135] which includes a self-supervised contrastive loss between unimodal
representations z1,z2 and the multimodal representation zmm, i.e., Lcontrast = 1 − cos(zmm, g1(z1)) +
1 − cos(zmm, g2(z2)) where g1, g2 is an auxiliary layer mapping each modality’s representation into
the joint multimodal space. The intuition here is that the unimodal representations z1,z2 and the
multimodal representation zmm should be aligned in the multimodal feature space as measured by
cosine similarity. While the original REFNET method does not use negative samples, closely related
work in multi-view contrastive learning has extended this idea to use negative samples which is more
closely in line with recent work in contrastive learning [151].
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Since they did not release code, we implement REFNET ourselves on top of current supervised
learning modules in MULTIZOO.

Reconstruction objectives: Methods based on generative-discriminative models (e.g., VAEs) include
an objective to reconstruct the input (or some part of the input) [91, 155]. These have been shown
to better preserve task-relevant information learned in the representation, especially in settings with
sparse supervised signals such as robotics [91] and long videos [155]. We include the Multimodal
Factorized Model (MFM) [155] which is a general approach that learns a representation zmm that
can reconstruct input data x1,x2 while also predicting the label. The multimodal representation is a
concatenation of factorized representations z1, z2, ..., zM , and zy .

Since MFM optimizes a variational lower-bound to the log likelihood, the overall objective consists
of 3 terms - generative, discriminative, and prior regularization:

min
fi,fmm,gi,gy

EPx1∶M,yEf1(z1∣x1)⋯EfM (zM ∣xM )Efmm(zy ∣x1∶M )

[
M

∑
i=1

∥xi, gi(zi,zy)∥2 + ` (y, gy(zy))] + λMMD(Qz, Pz),
(3)

where fi’s are encoders from each modality to representations, fmm is a multimodal encoder to the
joint representation zy , gi’s are decoders from latent representations back into input data, and gy is a
classification head to the label. The final MMD term is a regularizer to bring the representations close
to a unit Gaussian prior. The multimodal encoder fmm in MFM can be instantiated with any multi-
modal model from section 3.2 (e.g., learning zy via tensors and adding a term to reconstruct input data).
We use the public implementation in https://github.com/pliang279/factorized,
which uses a temporal attention model as fmm for multimodal time-series data. For the remain-
ing experiments we replace fmm with a simple late fusion but also run some experiments with
multimodal methods that are state-of-the-art in each domain.

Improving robustness: These approaches modify the objective function to account for robustness
to noisy [101] or missing [89, 111, 123] modalities. MULTIZOO includes MCTN [123] which
uses cycle-consistent translation to predict the noisy/missing modality from present ones. The key
insight is that a joint representation between modalities x1 and x2 can be learned by using x1 to
predict x2, in a vein similar to machine translation or image/text style transfer. MCTN defines a
cyclic translation path x1 → zmm → x̂2 → zmm → x̂1 and adds additional reconstruction losses
Lrec = ∥x1 − x̂1∥2 + ∥x2 − x̂2∥2 on top of the supervised learning loss. The representations zmm
learned via translation are then used to predict the label. Surprisingly, the model needs to take in only
x1 at test time and is therefore robust to all levels of noise or missingness in x2.

E.5 Training Procedures

Improving generalization: Recent work has found that directly training a multimodal model
with all modalities using supervised learning is sub-optimal since different modalities overfit
and generalize at different rates. MULTIZOO includes an approach to solve this, called Gradi-
ent Blending (GRADBLEND), that computes generalization statistics for each modality to de-
termine their weights during multimodal fusion [167]. We use the implementation in https:
//github.com/facebookresearch/VMZ and modify it to be part of the MULTIZOO training
structures.

We also include a similar work, Regularization by Maximizing Functional Entropies (RMFE),
which uses functional entropy to balance the contribution of each modality to the classifica-
tion result [53]. We use the public implementation from https://github.com/itaigat/
removing-bias-in-multi-modal-classifiers.

E.6 Domain-specific Methods

Finally, we also implemented several domain-specific methods that had been applied to each domain.
These include sensor fusion [91] and Kalman filtering [90] for robotics, and the multimodal Refiner
network [135] for multimedia experiments. We refer the reader to the respective papers for algorithmic
details.
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F Integrating MULTIBENCH and MULTIZOO: A Brief Tutorial

MULTIBENCH is available via our public GitHub: https://github.com/pliang279/
MultiBench. We also include a landing website page on https://cmu-multicomp-lab.
github.io/multibench/ that includes an introduction to the benchmark, links to the relevant
papers on multimodal datasets and algorithms, and a public leaderboard to keep track of current
progress on these multimodal tasks. In this section, we provide more details for the loading of
datasets ML pipeline provided by MULTIBENCH. We also describe the modular implementation of
multimodal models in MULTIZOO and provide several code examples to illustrate its usage.

F.1 Reading the Dataset

We provide scripts for reading each dataset supported by MULTIZOO at
dataset/[dataset_name]/get_data.py in the repository. For each dataset, the
user will need to first follow downloading and preprocessing instructions documented in Section C.2
or in the comments of the get_data.py. The python script contains a function (usually called
get_dataloader) that takes in required arguments (such as the location of the preprocessed
dataset or compressed data, etc) and it will output a tuple of three PyTorch Dataloader objects for
train, valid, and test split of the dataset respectively. You can feed these dataloaders directly into
training structures in MULTIZOO.

F.2 Unimodal Models

In addition to the multimodal models described in Appendix E that are the main subject of study in
this area, each dataset and modality typically also requires an initial processing stage either through
feature extraction (see Appendix C.2 for initial feature extraction done on each dataset) and/or
unimodal models on raw data/extracted features.

To standardize the implementation of unimodal models, MULTIZOO includes an implementation of
several standard unimodal models that we encountered when running experiments on the diverse range
of datasets and modalities in MULTIBENCH. Each unimodal model is implemented as a function
class that takes in either raw data or extracted features from a modality and returns a unimodal
representation tensor after applying the function. MULTIZOO includes the following unimodal
methods:

1. MULTI-LAYER PERCEPTRONS form the building blocks of many deep learning methods and
are generally suitable for any modality that has undergone feature extraction into a vector that
does not require any more processing with inductive biases. Their general structure means
that they can be flexibly adapted for the tabular, set, and image, and text (e.g., see Deep
Averaging Network [76]) modalities. They have also been used as a starting point for force
and proprioception sensors in robotics if data does not come in the form of time-series [91].

2. CONVOLUTIONAL NETWORKS [87] are typically used over the image modality. They are
also used on the audio modality if an initial preprocessing step of converting raw audio to
spectrograms is used.

3. RESNETS [66] are an improvement over ConvNets to enable training of deeper models and
have been used extensively for images and audio spectrograms.

4. RECURRENT NETWORKS [134], GRUS [29], and LSTMS [69] are suitable for temporal
data in the form of text, video, audio, and time-series modalities.

5. TRANSFORMERS [158] have recently emerged as a strong alternative to recurrent models
by using self-attention rather than an accumulative memory. They are also suitable for text,
video, audio, and time-series modalities. We also implemented recently proposed VISION
TRANSFORMERS [44] that adapt Transformer models for image classification as well.

6. DEEP SETS [184] was proposed as a permutation-invariant method for machine learning
on sets, and was shown to outperform prior methods such as MLPs that are sensitive to the
permutation of elements.

7. Finally, we also included several domain-specific methods that we encountered as we were
accumulating the datasets in MULTIBENCH. Some of these methods include MAXOUT
networks [58] used for MM-IMDB [8] and CAUSAL CONVOLUTION [157] for the high-
frequency force sensors used in robotics datasets [91, 90].
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F.3 Multimodal Models

MULTIZOO includes an implementation of all multimodal methods described in Appendix E. Each
multimodal method (i.e., fusion paradigm) is implemented as a Pytorch Module class taking in
unimodal tensors and returning final multimodal representation vectors. We implemented several
common fusion modules, such as Concatenation, Early-Concatenation (i.e., concatenate in input
space), Stack, FilM, Multiplicative-Interactions (MI), Tensor Fusion, LRTF, NL-gate, and more
described in Appendix E. When the training algorithm requires non-standard multimodal represen-
tations (e.g., more than one vector output from fusion module) or the unimodal encoders produce
non-standard unimodal representations (i.e., not a single vector representation), special fusion mod-
ules will be needed in these situations. For example, we wrote a roboticsConcat module that
performs concatenation for the VISION&TOUCH dataset due to its non-standard unimodal encoder
output. We also have special fusion modules for optimization objectives or training structures such as
MVAE, MFAS, and GRADBLEND. The design of modular fusion modules gives flexibility in model
design, as users can reuse a previous fusion module directly in most cases but can also write their
own special fusion modules easily.

F.4 Classification Head

Finally, MULTIZOO includes flexible implementations of classification heads that take in the multi-
modal representation and return a label either directly (perhaps with some activation) for regression
or a softmax over classes for classification.

F.5 Optimization Objectives

The optimization objectives are modules that take in the classification or regression result produced
by the model and the ground-truth (as well as other necessary inputs if applicable) and return
a loss that can be used to optimize the model based on the desired objective. In most methods
we simply use torch.nn.CrossEntropyLoss as the objective for classification tasks and
torch.nn.MSELoss as the objective for regression tasks. However, in certain training structures,
special objectives are required. For example, MULTIZOO includes implementations of objective
functions such as weighted reconstruction loss and ELBO loss used in reconstruction-based methods
MFM and MVAE, and there are also implementations of alignment-based objectives such as CCA
and contrastive learning. The final optimization objective returns a weighted sum of these prediction
objectives and auxiliary objectives, where the user is free to specify these weights as hyperparameters.

F.6 Training Structures

Training Structures are the main body of MULTIZOO programs. All other modules (unimodal models,
fusion paradigms, optimization objectives, classification heads, etc) can be seen as exchangeable
plugins to these training structures. The training structure determines the main training algorithm,
with the most common one being supervised_learning (training unimodal, multimodal, and
classification parameters directly for a task-specific supervised learning objective).

More advanced methods may change this training structure either through additional optimiza-
tion objectives (MVAE [168], MFM [155]) or via extensions of supervised learning through dy-
namic weighting of modalities (GRADBLEND [167]) or an outer architecture search training loop
(MFAS [122]). Each of these methods, therefore, have their own training structure module.

These interchangeable plugin modules give a lot of flexibility in adapting each training structure to
new tasks. For example, for the experiments described in Section G, the methods that are primarily
based on different fusion paradigms (i.e., EF, LF, TF, LRTF, MI, NL-GATE, MULT etc all use
the same training structure (supervised_learning) with different plugin fusion modules (and
different unimodal encoders and heads based on datasets and tasks). Similarly, while most of these
more advanced training structures were originally paired with a simple LF model in their original
papers, our modular implementation makes it possible to combine advances in fusion paradigms with
training structures in future work.

F.7 Performance Evaluation

We standardize evaluation using metrics designed for each dataset, ranging from MSE and MAE for
regression to accuracy, micro macro F1-score, and AUPRC for classification. We use the standard
PyTorch and scikit-learn implementations of these performance metrics.
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Algorithm 2 PyTorch code integrating MULTIBENCH datasets and MULTIZOO models.

from datasets.get_data import get_dataloader
from unimodals.common_models import ResNet, Transformer
from fusions.common_fusions import MultInteractions
from training_structures.gradient_blend import train, test

# loading Multimodal IMDB dataset
traindata, validdata, testdata = get_dataloader(’multimodal_imdb’)
out_channels = 3
# defining ResNet and Transformer unimodal encoders
encoders = [ResNet(in_channels=1, out_channels, layers=5),

Transformer(in_channels=1, out_channels, layers=3)]
# defining a Multiplicative Interactions fusion layer
fusion = MultInteractions([out_channels*8, out_channels*32], out_channels*32, ’matrix’)
classifier = MLP(out_channels*32, 100, labels=23)
# training using Gradient Blend algorithm
model = train(encoders, fusion, classifier, traindata, validdata,

epochs=100, optimtype=torch.optim.SGD, lr=0.01, weight_decay=0.0001)
# testing
performance, complexity, robustness = test(model, testdata)

F.8 Complexity Evaluation

We report training memory by measuring peak memory usage of the python process during the entire
training process using python memory_profiler toolkit (https://pypi.org/project/
memory-profiler/). When counting the number of parameters when training a model, we only
count the parameters in persistent modules during training and does not count the ephemeral networks
or modules created in the middle of the training process (such as the networks trained for determining
weights in GRADBLEND or the fusion architectures created as part of the architecture search process
in MFAS).

F.9 Robustness Evaluation

For robustness experiments, modality-specific and multimodal imperfections are implemented as
modules. A separate version of data loader is created for each dataset to test robustness, which
adds custom unimodal or multimodal imperfections of increasing noise levels σ ∈ [0,1] to the
original clean test set. A testing module is also provided specifically for robustness experiments,
which evaluates the model on increasing levels of noisy test datasets and prints out the metrics for
visualization. In this way, MULTIZOO allows highly modular data loading and robustness evaluation
that requires minimal modification to the regular training and testing workflow.

MULTIZOO includes evaluation protocols summarizing these robustness results. It includes visualiza-
tion functions of the performance-imperfection curves across datasets in MULTIBENCH. We also
implemented relative and effective robustness as two quantitative metrics for robustness evaluation.
For relative robustness, we approximate the area under the performance-imperfection curves for each
model across MULTIBENCH datasets. For effective robustness, we take the performance-imperfection
curve of LF evaluated on the same dataset equalized for initial accuracy on clean test data. For both
metrics, we normalized performance across all models evaluated on the same dataset.

F.10 Code Snippets

In Algorithm 2, we show a sample code snippet in Python that loads a dataset from MULTIBENCH
(Appendix C.2), defines the unimodal and multimodal architectures, optimization objectives, and
training procedures (Appendix E), before running the evaluation protocol (Appendix D). Our MUL-
TIZOO toolkit is easy to use and trains entire multimodal models in less than 10 lines of code. By
standardizing the implementation of each module and disentangling the individual effects of models,
optimizations, and training, MULTIZOO ensures accessibility and reproducibility of its multimodal
algorithms.
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Table 4: Table of hyperparameters for prediction on affective computing dataset.

Component Model Parameter Value

GRU Encoder GRU

Input sizes [5, 20, 35, 74, 300, 704]

Hidden sizes [32, 32, 64, 128, 512, 1024]

Num of layers 1 or 2
Dropout 0.0 or 0.1

Transformer Encoder [158] Transformer [158]

Input sizes [5, 20, 35, 74, 300, 704]

Hidden sizes [5, 10, 20, 40, 40, 50]

Num heads 2 or 3
Dropout 0.2

Head MLP

Input sizes [5, 20, 32, 64, 128, 256]

Hidden sizes [5, 20, 32, 64, 128, 256]

Num layers 2

Dropout 0.2

MCTN [123] Encoder GRU

Input sizes 300

Hidden sizes [32, 64]

Num of layers 1 or 2
Dropout 0.0 or 0.1

MCTN [123] Decoder GRU

Input sizes [32, 64]

Hidden sizes 300

Num of layers 1 or 2
Dropout 0.0 or 0.1

MCTN [123] Seq2Seq GRU+GRU
teaching ratio 0.5

Embed sizes 32

µt1 , µc, µt2 0.01

Fusion

LRTF [106]
Num ranks 64

Output sizes 128

MI-MATRIX [77] Hidden size 128

MULT [156]
Hidden size 40

Num heads 8 or 10

Training

Loss MAE or Cross Entropy
Batch size 32

Seq Length 50 or 20
Num epochs 100 or 300
Early stop True
Patience [8, 20]

Activation ReLU
Optimizer AdamW

Weight Decay 1 × 10−4

Learning rate 1 × 10−4

G Experimental Setup

In this section, we provide additional details of the experimental setup. All experiments were
conducted on a server with 4× Nvidia GTX 980 Ti GPUs, 5× Nvidia Tesla P40 GPUs, 2× Nvidia
Tesla K40c GPUs, 4× Nvidia TITAN X GPUs, 1× Tesla T4 GPU, and 1× Tesla V100 GPU. The
server also contained 32× Intel(R) Xeon(R) CPU (E5 − 2670, 2.60GHz).

G.1 Affective Computing

Hyperparameters: We show the hyperparameters used for models on datasets in the Affective
Computing domain in Table 4. For each dataset we tune the following hyperparameters selected from
the following ranges: the learning rate is selected between 0.00001 to 0.001 and set to be 0.0001 in
the beginning; Early stopping is applied with patience 8 to 20 before overfitting happens; The input
sizes and hidden sizes vary according to the different modalities and datasets. The µt0 , µc, and µt1
hyperparameters in MCTN [123] is tuned between 0.005 to 0.1. The sequence length varies from 20
to 50. Only punchline sentences (target sentences) are used in UR-FUNNY [64] and MUSTARD [24]
following the original papers.
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Hyperparameters were selected based on performance on the validation set. For models that had been
previously proposed and tested on these datasets, we use the same hyperparameters as those reported
in their paper or public code.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.2 Healthcare

We show the hyperparameters used for models on datasets in the Healthcare domain in Table 5. The
unimodal architectures follow the original paper that created this partition of MIMIC [129], then
we tune the following hyperparameters selected from the following ranges: Learning rate is tuned
between 0.1 and 0.0001; the number of epochs is selected based on when overfitting happens; for
hyperparameters specific to architectures or training structures (such as GRADBLEND, MFAS), we
followed the same configuration as the original papers where these methods are proposed.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.3 Robotics

We show the hyperparameters used for MUJOCO PUSH in Table 6 and VISION&TOUCH in Table 7.

For MUJOCO PUSH, we follow hyperparameters and preprocessing in the original paper [90].
Unimodal modules follow the original hyperparameters assigned to the input modality.

For VISION&TOUCH, we follow hyperparameters in the original paper [91] for all unimodal modules
as well as Sensor Fusion (which is the method proposed in [91]).

All other hyperparameters were selected based on performance on the validation set. For models that
had been previously proposed and tested on these datasets, we use the same hyperparameters as those
reported in their paper or public code. The original VISION&TOUCH dataset did not have a unique
test dataset, so we report their best performance on the validation set instead.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.4 Finance

We show the hyperparameters used for models on datasets in the Finance domain in Table 8. For each
dataset, we tune the following hyperparameters selected from the following ranges: Hidden/embed
dim (4 − 512), Transformer/MULT layers (1 − 4), Transformer/MULT heads (1 − 4), epochs (1 − 32),
and batch size (4 − 128). Hyperparameters were selected based on performance on the validation set.
Note that this dataset overfits quickly when model complexity is increased; several hyperparameters
are kept small for this reason.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.5 HCI

We show the hyperparameters used for models on the ENRICO dataset in the HCI domain in Table 9.
We tune the learning rate by starting from 10−4, the value reported in the original paper [93]. We
searched in a range between 10−2 and 10−6 and found that 10−5 led to the best performance. We tested
hidden dimension sizes from 8 to 128 and found that a size of 16 was sufficient for the unimodal
encoders. Note that this dataset is small and overfits quickly when model complexity is increased. We
minimized the risk of overfitting by keeping several hyperparameters (e.g., hidden dim) small. For
more information, refer to the dataset preprocessing section for ENRICO.

All experiments were repeated 10 times and a mean and standard deviation was computed.

G.6 Multimedia

We show the hyperparameters used for models on datasets in the Multimedia domain in Ta-
bles 10, 11, 12.

For AV-MNIST, used the same LeNet unimodal encoders following current work [161]. We tuned
learning rates between 0.1 and 0.001. The default batch size is 40, although it can be changed in
some methods (such as CCA) to make sure the methods work as intended; the number of epochs is
selected based on when overfitting happens; for hyperparameters specific to architectures or training
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structures (such as GRADBLEND, MFAS), we followed the same configuration as the original papers
where these methods are proposed.

For MM-IMDB, used the same MaxoutLinear unimodal encoders following current work [8].
Learning rates were tuned between 0.1 and 0.001 except for unimodal training. The default batch
size is 128 while that for CCA is 800 to make sure the methods work as intended. The number of
epochs was selected based on early stopping with patience equal to 7, which means if the macro F1
on the validation set did not improve for 7 epochs, training was stopped early.

For KINETICS, we use a ResNet-LSTM for the visual modality encoder and the architectures described
by Wang et al [167] for the rest of the models. We use a learning rate of 0.0001, batch size of 16, and
15 epochs for the small dataset experiments. For the large dataset experiments, we used the setup
described by Wang et al [167].

Hyperparameters were selected based on performance on the validation set. For models that had been
previously proposed and tested on these datasets, we use the same hyperparameters as those reported
in their paper or public code.

All experiments were repeated 10 times and a mean and standard deviation was computed.
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Table 5: Table of hyperparameters for prediction on MIMIC dataset in the healthcare domain.

Component Model Parameter Value

Static Encoder 2-layer MLP
Hidden sizes [10, 10]

Activation LeakyReLU(0.2)

Static Decoder 2-layer MLP
Layer sizes [200, 40, 5]

Activation LeakyReLU(0.2)
Time Series Encoder GRU Hidden dim 30

Time Series Decoder GRU Hidden dim 30

Classification Head 2-Layer MLP
Hidden size 40

Activation LeakyReLU(0.2)

Fusion

LRTF [106]
Output dim 100

Ranks 40

NL-Gate [167]
thw-dim/c-dim/tf-dim 24/30/10

key linear [10, 300]

value linear [10, 300]

MI-Matrix [77] output dim 100

Training

Unimodal, LF, LRTF,
MI-Matrix, NL-gate

Loss Cross Entropy
Batch size 40

Num epochs 20

Optimizer RMSprop
Learning rate 0.001

GRADBLEND [167]

Loss Cross Entropy
Batch size 40

Num epochs 300

Optimizer SGD
Learning Rate 0.005

GB-epoch 20

v-rate 0.8

finetune epoch 25

MVAE [168]

Loss Cross Entropy + ELBO
Batch size 40

Num epochs 30

Optimizer Adam
Learning Rate 0.001

Cross Entropy Weight 2.0

Latent Representation Fusion ProductOfExpert

MFM [155]

Loss
Cross Entropy

+ Reconstruction(MSE)
Batch size 40

Num epochs 30

Optimizer Adam
Learning Rate 0.001

Recon Loss Modality Weights [1, 1]

Cross Entropy Weight 2.0

Intermediate Modules
MLPs [200, 100, 100],

[200, 100, 100], [400, 100, 100]

MFAS [122]

Batch size 32

Epochs/search iters 3/3/6

Num samples/surrogates per epoch 15/50

η max/min/Ti/Tm 10−3/10−6/1/2

Temperature init/final/decay 10.0/0.2/4.0

Max progression level 4

Surrogate learning rate 0.001

Surrogate hidden size 100

Surrogate embedding size 100

Search space (3, 3, 2)

Optimizer Adam
Representation Size 16
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Table 6: Table of hyperparameters for prediction on MUJOCO PUSH dataset in the robotics domain.

Component Model Parameter Value
Pos Encoder Linear Hidden sizes [64, 64, 64 (residual)]
Sensors Encoder Linear Hidden sizes [64, 64, 64 (residual)]

Image Encoder CNN

Filter sizes [5, 3, 3, 3, 3]

Num filters [32, 32, 32, 16, 8]

Filter strides 1

Filter padding [2, 1, 1, 1, 1]

Control Encoder Linear Hidden sizes [64, 64, 64 (residual)]

Fusion

Early Fusion &
Unimodal LSTM

Hidden size 512

Num layers 2

Late Fusion LSTM
Hidden size 256

Num layers 1

MULT [156]
Embed size 64

Num heads 4

Classification Head Linear Hidden size 64

Training

Loss Mean Squared Error
Batch size 32

Num epochs 20

Activation ReLU
Optimizer Adam

Learning rate 10−5

Table 7: Table of hyperparameters for prediction on VISION&TOUCH dataset in the robotics domain.

Component Model Parameter Value

Image Encoder CNN

Filter sizes [7, 5, 5, 3, 3, 3]

Num filters [16, 32, 64, 64, 128, 128]

Filter strides [2, 2, 2, 2, 2, 2]

Filter padding Same

Force Encoder
Causal Convolution
[157]

Filter sizes [2, 2, 2, 2, 2]

Num filters [16, 32, 64, 128, 256]

Filter strides [2, 2, 2, 2, 2]

Filter padding 1

Proprio Encoder Linear Hidden sizes [32, 64, 128, 256]

Depth Encoder CNN

Filter sizes [3, 3, 4, 3, 3, 3]

Num filters [32, 64, 64, 64, 128, 128]

Filter strides [2, 2, 2, 2, 2, 2]

Filter padding Same
Action Encoder Linear Hidden sizes [32, 32]

Classification Head 2-Layer MLP
Hidden size 128

Activation LeakyReLU(0.2)

Fusion
LRTF [106]

Output dim 200

Ranks 40

Sensor Fusion [91] z-dim 128

Training

Loss
Contact: Cross Entropy

End-Effector: MSE
Batch size 64

Num epochs
Sensor Fusion: 50

LRTF: 35; Others: 15
Optimizer Adam

Learning rate
Contact: 10−4

End-Effector: 5 × 10−4

REFNET [135]

Loss Cross Entropy + Contrast
Batch size 40

Optimizer/Learning Rate Adam / 0.0005
Refiner MLP(1056, 2000, 65760)

Self Loss Weight 0.0001
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Table 8: Table of hyperparameters for stock prediction on finance datasets (we use the same hyperparameters on
all 3 datasets: STOCKS-F&B, STOCKS-HEALTH, and STOCKS-TECH).

Model Parameter Value
Unimodal &
Early Fusion LSTM Hidden dim 128

Late Fusion LSTM Hidden dim 16

TRANSFORMER [? ]
Embed dim 9

Num heads 3

Layers 3

MULT [154]
Embed dim 9

Num heads 3

Layers 3

GRADBLEND [167] LSTM Hidden dim 128

Training

Loss Mean Squared Error
Batch size 16

Max seq length 500

Activation ReLU
Optimizer Adam

Learning rate 10−3

Num epochs
Unimodal, EF 2

LF, Transformer,
MULT, GRADBLEND

4

Table 9: Table of hyperparameters for prediction on ENRICO dataset in the HCI domain.

Model Parameter Value
Unimodal Hidden dim 16

Late Fusion Hidden dim 32

GRADBLEND [167] Hidden dim 32

REFNET [135] Hidden dim 32

MI-Matrix [77]
Hidden dim 32

Input dims 16, 16

Tensor Matrix
Hidden dim 32

Input dims 16, 16

LRTF [106]
Hidden dim 32

Input dims 16, 16

Rank 20

CCA [145] Hidden dim 32

Training

Loss Class-weighted Cross Entropy
Batch size 32

Activation ReLU
Dropout 0.2

Optimizer Adam
Learning rate 10−5

Num epochs 50
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Table 10: Table of hyperparameters for prediction on AV-MNIST dataset in the multimedia domain.

Component Model Parameter Value

Image Encoder LeNet-3

Filter Sizes [5, 3, 3, 3]

Num Filters [6, 12, 24, 48]

Filter Strides / Filter Paddings [1, 1, 1, 1] /[2, 1, 1, 1]
Max Pooling [2, 2, 2, 2]

Image Decoder DeLeNet-3
Filter Sizes [4, 4, 4, 8]

Num Filters [24, 12, 6, 3]

Filter Strides / Filter Paddings [2, 2, 2, 4]/[1, 1, 1, 1]

Audio Encoder LeNet-5

Filter Sizes [5, 3, 3, 3, 3, 3]

Num Filters [6, 12, 24, 48, 96, 192]

Filter Strides / Filter Paddings [1, 1, 1, 1, 1, 1]/[2, 1, 1, 1, 1, 1]
Max Pooling [2, 2, 2, 2, 2, 2]

Audio Decoder DeLeNet-5
Filter Sizes [4, 4, 4, 4, 4, 8]

Num Filters [96, 48, 24, 12, 6, 3]

Filter Strides / Filter Paddings [2, 2, 2, 2, 2, 4]/[1, 1, 1, 1, 1, 1]

Classification Head 2-Layer MLP
Hidden size 100

Activation LeakyReLU(0.2)

Fusion
LRTF [106]

Output dim 120

Ranks 40

MI-Matrix [77] output dim 240

Training

Unimodal, LF,
LRTF, MI-Matrix

Loss Cross Entropy
Batch size 40

Num epochs LRTF: 30, Others: 25
Optimizer/Learning rate/weight decay SGD/0.05/0.0001

GRADBLEND [167]

Loss Cross Entropy
Batch size 40

Num epochs 300

Optimizer/Learning rate SGD/0.05
GB-epoch/finetune-epoch 10/25

v-rate 0.8

MVAE [168]

Loss Cross Entropy + ELBO
Batch size 40

Num epochs 20

Optimizer/Learning rate Adam/0.001
Cross Entropy Weight 2.0

Latent Representation Fusion ProductOfExpert

MFM [155]

Loss
Cross Entropy

+ Reconstruction(MSE)
Batch size 40

Num epochs 25

Optimizer/Learning rate Adam/0.001
Recon Loss Modality Weights [1, 1]

Cross Entropy Weight 2.0

Intermediate Modules
MLPs [200, 100, 100],

[200, 100, 100], [400, 100, 100]

MFAS [122]

Batch size 32

Main epochs/search iters/epochs per model 3/3/6

Num samples/surrogates per epoch 15/50

η max/min/Ti/Tm 10−3/10−6/ 1/2
Temperature init/final/decay 10.0/0.2/4.0

Max progression level 4

Surrogate learning rate 0.001

Surrogate hidden/embedding size 100/100

Search space (3, 5, 2)

Optimizer Adam
Representation Size 16

CCA [145]
Batch size 800

Loss CCALoss
Optimizer/Learning Rate/Weight Decay AdamW/ 0.01/0.01

REFNET [135]

Loss Cross Entropy + Contrast
Batch size 40

Optimizer/Learning Rate SGD / 0.05
Refiner MLP(384, 1000, 13328)

Self Loss Weight 0.1
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Table 11: Table of hyperparameters for prediction on MM-IMDB dataset in the multimedia domain.

Component Model Parameter Value

Text Encoder 2-Layer MaxoutMLP
Hidden size 512

Output dim 128/256/512

MLP num 2

Image Encoder 2-Layer MaxoutMLP
Hidden size 1024

Output dim 128/256/512

MLP num 2

Classification Head

Linear

2-Layer MLP
Hidden size 512

Activation ReLU

2-Layer Maxout_Linear
Hidden size 512

MLP num 2

Fusion

Concatenate

LRTF [106]
Output dim 512

Ranks 128

MI-Matrix [77] output dim 1024

Training

Unimodal, EF, LF,
LRTF, MI-Matrix

Loss Binary Cross Entropy
Batch size 128

Num epochs
Text: 125, Image: 25, LF:5,
EF/LRTF:15, MI-Matrix:20

Optimizer AdamW

Learning rate
Unimodal: 0.0001, EF: 0.04,
LF/LRTF/MI-Matrix: 0.008

Weight decay 0.01

CCA [145]

Loss Binary Cross Entropy + CCA
CCA weight 0.001

Batch size 800

Num epochs 20

Optimizer AdamW
Learning rate 0.01

Weight decay 0.01

RMFE [53]

Loss
Binary Cross Entropy

+ Regularization
Regularization weight 1e − 10

Batch size 128

Num epochs 10

Optimizer AdamW
Learning rate 0.01

Weight decay 0.01

REFNET [135]

Loss
Binary Cross Entropy

+ Contrast + Self-supervised
Contrast weight 0.0001

Self-supervised weight 0.1

Batch size 128

Num epochs 10

Optimizer AdamW
Learning rate 0.01

Weight decay 0.01

MFM [155]

Loss
Binary Cross Entropy

+ Reconstruction(MSE)
Batch size 128

Num epochs 10

Optimizer Adam
Learning rate 0.005

Recon Loss Modality Weight [1, 1]

Cross Entropy Weight 2.0

Intermediate Modules
MLP [512, 256, 256]

MLP [512, 256, 256]

MLP [1024, 512, 256]
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Table 12: Table of hyperparameters for prediction on KINETICS dataset in the multimedia domain.

Component Model Parameter Value

Video Encoder ResNet [66] + LSTM
ResNet Version 18-layer

LSTM Hidden size 64

Audio Encoder ResNet [66] + 2-Layer MLP

ResNet Version 50-layer
MLP hidden size 200

MLP output size 64

MLP activation ReLU

Classification Head
Linear

2-Layer MLP
Hidden size 200

Activation ReLU
Fusion Concatenate

Training Unimodal, LF

Loss Cross Entropy
Batch size 16

Num epochs 15

Optimizer Adam
Learning rate 0.0001
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Table 13: Results on multimodal datasets in the affective computing domain. U: unimodal models, M: multimodal
fusion paradigms, O: optimization objectives, T: training structures. MULT is the best performing model on all
these datasets, and is categorized as an in-domain method since it was originally proposed and tested on affect
recognition datasets. Many out-domain methods struggle on these datasets.

Dataset MUSTARD CMU-MOSI UR-FUNNY CMU-MOSEI
Metric Acc(2) ↑ Acc(2) ↑ Acc(2) ↑ Acc(2) ↑

U
Unimodal (`) 68.6 ± 0.4 74.2 ± 0.5 58.3 ± 0.2 78.8 ± 1.5
Unimodal (a) 64.9 ± 0.4 65.5 ± 0.2 57.2 ± 0.9 66.4 ± 0.7
Unimodal (v) 65.7 ± 0.7 66.3 ± 0.3 57.3 ± 0.5 67.2 ± 0.4

M

EF-GRU 66.3 ± 0.3 73.2 ± 2.2 60.2 ± 0.5 78.4 ± 0.6
LF-GRU 66.1 ± 0.9 75.2 ± 0.8 62.5 ± 0.5 79.2 ± 0.4
EF-TRANSFORMER 65.3 ± 1.4 78.8 ± 0.4 62.9 ± 0.2 79.6 ± 0.3
LF-TRANSFORMER 66.1 ± 0.9 79.6 ± 0.4 63.4 ± 0.3 80.6 ± 0.3
TF [179] 62.1 ± 2.2 74.4 ± 0.2 61.2 ± 0.4 79.4 ± 0.5
LRTF [106] 65.2 ± 1.5 76.3 ± 0.3 62.7 ± 0.2 79.6 ± 0.6
MI-MATRIX [77] 61.8 ± 0.3 73.9 ± 0.4 61.9 ± 0.3 76.5 ± 0.4
MULT [154] 71.8 ± 0.3 83.0 ± 0.1 66.7 ± 0.3 82.1 ± 0.5

O
MFM [155] 66.3 ± 0.3 78.1 ± 0.9 62.4 ± 1.1 79.4 ± 0.7
MVAE [168] 64.5 ± 0.4 77.2 ± 0.3 62.0 ± 0.5 79.1 ± 0.2
MCTN [123] 63.2 ± 1.4 76.9 ± 2.1 63.2 ± 0.8 76.4 ± 0.4

T GRADBLEND [167] 66.1 ± 0.3 75.5 ± 0.5 62.3 ± 0.3 78.1 ± 0.3

H Experimental Results
In this section, we provide additional experimental results and observations. For all experimental
tables, we describe the accuracy metrics using Acc(c) where c is the number of classes. AUPRC stands
for the area under the precision-recall curve which is a useful performance metric for imbalanced
data in settings where one cares a lot about finding positive examples. MSE stands for mean squared
error. We use up and down arrows (↑ and ↓) to indicate metrics where higher is better (Acc, AUPRC)
and metrics where lower is better (MSE) respectively.

H.1 Affective Computing

We show the full performance results in Table 13 and complexity results in Table 14. Here we list
some observations regarding these results:

1. Language is usually the best performing modality, especially on sentiment and emotion
prediction. However, the improvement of language over audio and video on humor prediction
and sarcasm prediction is much less. This follows our intuition that while language is
primarily useful for sentiment and emotion prediction, audio and visual are strong predictors
for humor and sarcasm.

2. The best performing method over these datasets is consistently the Multimodal Transformer
(MULT [155]), which was originally tested on predicting sentiment and emotions on the
CMU-MOSI and CMU-MOSEI dataset. We find that it is a general method and generalizes
to humor and sarcasm prediction as well.

3. However, while it MULT achieves the best performance, it suffers in complexity, taking
more than 12× the inference time of unimodal models and 3 − 4× several simpler early or
late fusion multimodal baselines.

4. Some methods that work well on humor, sentiment, and emotion prediction do not generalize
to sarcasm detection, such as tensor fusion (TF) and reconstruction-based models (MVAE
and MFM). It is not a surprise that this coincides with sarcasm being the least studied task
as well. Furthermore, we believe that it is a task with extremely complementary information
(e.g., sarcasm is usually displayed via text and video/audio features contradicting each other).
We hope that MULTIBENCH can encourage further research in such multimodal tasks since
current methods do not generalize to these tasks.

5. Several out-of-domain methods, such as GRADBLEND do not work well. In fact we find
that the variance of the GRADBLEND method is quite high and shows strong performance
on several datasets but struggles on others.

6. MCTN is designed for robustness and only uses the language modality at test time. While it
was shown to work well for relatively easier fusion tasks in predicting sentiment, emotions,
and humor [123], we find that it struggles on the more challenging sarcasm prediction task.
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Table 14: Complexity results for datasets in the affective computing domain. U: unimodal models, M: multimodal
fusion paradigms, O: optimization objectives, T: training structures.

Dataset MUSTARD

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U
Unimodal (`) 43 381 0.12 2347 0.33 0.12
Unimodal (v) 48 56 0.01 2288 0.24 0.01
Unimodal (a) 69 288 0.001 2288 0.25 0.001

M

EF-GRU 126 168 0.84 2291 0.34 0.84
LF-GRU 74 52 1.52 2307 0.40 1.52
EF-TRANSFORMER 30 601 1.86 2423 0.79 1.86
LF-TRANSFORMER 42 1868 14.0 2586 1.02 14.0
TF [179] 46 1370 14.7 2542 1.62 14.7
LRTF [106] 33 49 0.68 2483 0.50 0.68
MULT [154] 31 2414 1.93 3345 3.01 1.93

O
MFM [155] 40 2138 4.85 2417 1.48 4.33
MVAE [168] 33 4645 4.32 2695 2.11 4.05
MCTN [123] 100 1026 0.19 2359 1.02 0.19

T GRADBLEND [167] 100 6012 1.95 2406 0.42 1.58

Dataset CMU-MOSI

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U
Unimodal (`) 30 590 0.17 2347 0.49 0.17
Unimodal (v) 35 71 0.01 2288 0.36 0.01
Unimodal (a) 188 346 0.001 2288 0.38 0.001

M

EF-GRU 106 221 1.42 2291 0.44 1.42
LF-GRU 14 60 1.84 2307 0.58 1.84
EF-TRANSFORMER 20 635 2.18 2423 1.07 2.18
LF-TRANSFORMER 33 2011 15.1 2586 2.12 15.1
TF [179] 35 384 12.2 2867 2.38 12.2
LRTF [106] 43 172 0.82 2454 0.59 0.82
MULT [154] 22 2414 2.38 3345 4.30 2.38

O
MFM [155] 31 1692 5.53 2455 1.52 4.98
MVAE [168] 35 3820 5.31 2564 2.03 4.69
MCTN [123] 100 1149 0.19 2366 0.98 0.19

T GRADBLEND [167] 300 18869 3.91 2355 0.59 1.86

Dataset UR-FUNNY

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U
Unimodal (`) 32 602 1.99 6524 1.82 1.99
Unimodal (v) 29 70 0.14 6528 1.61 0.14
Unimodal (a) 40 1039 0.03 6599 1.66 0.03

M

EF-GRU 34 612 3.58 6535 2.51 3.58
LF-GRU 10 498 2.28 6791 3.25 2.28
EF-TRANSFORMER 32 2358 4.87 7086 3.81 4.87
LF-TRANSFORMER 33 6024 34.5 7288 6.75 34.5
TF [179] 32 2780 21.3 7165 6.35 21.3
LRTF [106] 25 2057 1.05 6931 3.32 1.05
MULT [154] 30 8096 5.01 9572 12.1 5.01

O MFM [155] 30 5123 6.89 6970 10.3 6.23
MVAE [168] 32 10670 6.59 7038 12.1 6.10
MCTN [123] 100 10857 0.19 6578 4.39 0.19

T GRADBLEND [167] 100 19212 4.12 6832 3.42 2.31

Dataset CMU-MOSEI

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U
Unimodal (`) 23 561 1.80 5830 1.79 1.80
Unimodal (v) 27 647 0.12 5817 1.46 0.12
Unimodal (a) 39 910 0.03 5818 1.48 0.03

M

EF-GRU 22 548 3.23 5835 2.01 3.23
LF-GRU 9 443 2.08 5996 2.55 2.08
EF-TRANSFORMER 30 1658 4.49 6082 2.88 4.49
LF-TRANSFORMER 35 5504 31.5 6996 5.65 31.5
TF [179] 30 2784 22.6 6337 5.89 22.6
LRTF [106] 22 2057 0.78 6102 2.45 0.78
MULT [154] 32 6033 4.75 7572 10.1 4.75

O MFM [155] 33 5340 6.65 6088 9.42 5.97
MVAE [168] 40 11673 6.21 6782 12.0 5.89
MCTN [123] 100 12242 0.19 6526 4.84 0.19

T GRADBLEND [167] 100 18176 3.89 6042 2.63 2.25
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MUStARD videoMUStARD language MUStARD audio MUStARD multimodal

Figure 12: Robustness of multimodal models with increasing levels of noise on the MUSTARD dataset in the
affective computing domain.

CMU-MOSI language CMU-MOSI video CMU-MOSI audio CMU-MOSI multimodal

Figure 13: Robustness of multimodal models with increasing levels of noise on the CMU-MOSI dataset in the
affective computing domain.

UR-FUNNY videoUR-FUNNY language UR-FUNNY audio UR-FUNNY multimodal

Figure 14: Robustness of multimodal models with increasing levels of noise on the UR-FUNNY dataset in the
affective computing domain.

CMU-MOSEI videoCMU-MOSEI language CMU-MOSEI audio CMU-MOSEI multimodal

Figure 15: Robustness of multimodal models with increasing levels of noise on the CMU-MOSEI dataset in the
affective computing domain.
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We show the robustness of multimodal models with increasing levels of noise on MUSTARD in
Figure 12, CMU-MOSI in Figure 13, UR-FUNNY in Figure 14, and CMU-MOSEI in Figure 15.
We highlight the following observations:

1. Unimodal and multimodal models are in general not robust to increasing noise and imper-
fections in these datasets. Performance drops off very quickly towards random.

2. We find that multimodal models are slightly more robust than unimodal models. For video
and audio, the unimodal method is the least robust. However, for language, the unimodal
model can actually be more robust than several multimodal models. In other words, multi-
modal models are more robust to video and audio while being less robust to language, which
is the best performing modality. We believe that directly training multimodal models via
supervised learning can be prone to overfitting on the most informative modality (in this
case language) which causes the multimodal model to be even less robust than unimodal
models in language. A similar observation was the motivation behind the GRADBLEND
approach to balance overfitting and generalization across different modalities [167].

3. GRADBLEND [167] seems to be a surprisingly robust approach while also generalizing
to several datasets. GRADBLEND was not in fact not initially designed for the affective
computing domain, although it was designed for similar multimodal time-series data in the
multimedia domain.

4. MCTN [123] was designed as a robust alternative to multimodal models since it uses
multimodal data at training time but only language data at test time. On imperfections to
video and audio, MCTN therefore stays constant and can potentially be a viable alternative
that learns a unimodal model from multimodal data during training but remains unimodal at
testing.
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Table 15: Results on the MIMIC dataset in the healthcare domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures. Several out-domain methods perform well on
MIMIC and improve upon the current state-of-the-art performance on in-domain methods.

Dataset MIMIC MORTALITY MIMIC ICD-9 GROUP 1 MIMIC ICD-9 GROUP 7
Metric Acc(6) ↑ Acc(2) ↑ AUPRC(2) ↑ Acc(2) ↑ AUPRC(2) ↑
Most frequent 76.1 83.1 − 52.5 −

U Unimodal (t) 76.7 ± 0.3 83.6 ± 0.1 35.0 ± 0.9 56.3 ± 0.3 54.6 ± 0.4
Unimodal (ta) 76.4 ± 0.2 91.4 ± 0.0 68.4 ± 0.1 67.6 ± 0.4 72.9 ± 0.3

M

LF 77.9 ± 0.3 91.5 ± 0.1 74.2 ± 0.7 68.9 ± 0.5 74.3 ± 0.4
LRTF [106] 78.2 ± 0.3 91.5 ± 0.1 75.1 ± 0.3 68.5 ± 0.4 73.8 ± 0.4
MI-MATRIX [77] 77.6 ± 0.4 91.5 ± 0.1 74.2 ± 0.6 67.9 ± 0.3 73.0 ± 0.5
NL GATE [167] 78.1 ± 0.2 91.6 ± 0.1 73.8 ± 0.7 68.7 ± 0.5 74.3 ± 0.4
MFAS [122] 77.9 ± 0.2 91.4 ± 0.0 70.3 ± 1.2 68.5 ± 0.4 73.7 ± 0.4

O MFM [155] 78.2 ± 0.3 91.5 ± 0.1 75.0 ± 0.5 68.8 ± 0.4 74.4 ± 0.4
MVAE [168] 78.0 ± 0.3 91.6 ± 0.1 73.5 ± 1.4 68.7 ± 0.6 74.0 ± 0.7

T GRADBLEND [167] 78.2 ± 0.2 91.5 ± 0.1 74.1 ± 0.4 68.0 ± 0.7 73.2 ± 0.5

Table 16: Complexity results for datasets in the healthcare domain. ((*) This is the number of parameters in
modules input to MFAS at the start of training, MFAS will generate more parameters during the architecture
search process). U: unimodal models, M: multimodal fusion paradigms, O: optimization objectives, T: training
structures.

Dataset MIMIC

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (t) 20 46.4 0.019 2360 0.41 0.019
Unimodal (ta) 20 34.6 0.001 2359 0.39 0.001

M

LF 20 49.4 0.034 2362 0.41 0.034
LRTF [106] 50 261 0.008 2575 0.41 0.008
MI-MATRIX [77] 20 56.6 0.801 2377 0.39 0.801
NL GATE [167] 20 51.4 0.040 2422 0.43 0.040
MFAS [122] 42 × 6 3762 0.086∗ 2360 1.79 0.016

O MFM [155] 25 221 0.323 2438 0.85 0.315
MVAE [168] 30 486 0.312 2553 0.89 0.305

T GRADBLEND [167] 300 2785 0.063 2575 0.45 0.034

H.2 Healthcare

We show the full results in Table 15 and complexity results in Table 16. Here we list some observations
regarding these results:

1. We find that results across all models show small variations on MIMIC, which suggests that
many current multimodal approaches may not generalize that well to the input modalities
and prediction tasks that MIMIC tests for.

2. In particular, while MFAS (architecture search) is otherwise a pretty general solution that
works well across quite a few datasets, it struggles on MIMIC. While there has been a
recently proposed MUFASA [173] method that adapts architecture search specifically for
healthcare datasets, we were not able to test this method on our partition of MIMIC, and it is
in our top priorities to implement that approach into MULTIZOO and accurately benchmark
its performance on a suite of datasets.

3. Late Fusion (LF) with simple concatenation was the best-performing model in the evalua-
tions conducted by the previous paper that used the exact same partition as ours [129]. It
actually works quite well compared to more complex models evaluated here, as it has the
best performance on ICD-9 group 7 task and is quite close to the best performing models
in the other two. This may suggest that simple multimodal models such as Late Fusion is
worth being tried first on healthcare datasets.

4. The reconstruction-based multimodal models such as MVAE and MFM have strong per-
formance on this dataset, possibly due to the low dimensions of the input modalities. This
suggests that reconstruction-based architectures and objectives might work well on datasets
with simple or low-dimensional modalities which are easier to reconstruct.
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MIMIC Mortality MIMIC ICD-9 10-19 MIMIC ICD-9 70-79MIMIC ICD-9 Group 1 MIMIC ICD-9 Group 7

Figure 16: Robustness of multimodal models with increasing levels of noise on the MIMIC dataset in the
healthcare domain.

Finally, we show the robustness of multimodal models with increasing levels of noise on the MIMIC
dataset in Figure 16. We highlight the following observations:

1. Unimodal and multimodal models are in general not robust to increasing noise and imper-
fections in the table and time-series modalities. Performance drops off very quickly towards
random.

2. In general, multimodal models are slightly more robust than unimodal models. The behavior
is best exhibited in the ICD-9 group 7 task where many models start off strong, but multi-
modal models remain more robust than the best unimodal model. This perhaps indicates
that multimodal models do learn to use information from other sources when another one is
noisy.

3. There is high variance in the robustness of each multimodal model even within the same
dataset and modalities but across different prediction tasks. We observe that LRTF is the
most robust model on the ICD-9 group 7 task but the least robust model on the ICD-9 group
1 task. This high variance is a concern especially given the close similarity across both of
these tasks.
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Table 17: Results on multimodal datasets in the robotics domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures.

Dataset MUJOCO PUSH
Metric MSE ↓

U

Unimodal (i) 0.334 ± 0.034
Unimodal (f ) 4.266 ± 0.085
Unimodal (p) 3.885 ± 0.004
Unimodal (c) 3.804 ± 0.005

M

EF-LSTM 0.363 ± 0.038
LF-LSTM 0.290 ± 0.018
TF [179] 0.574 ± 0.059
MULT [156] 0.402 ± 0.026

Dataset VISION&TOUCH CONTACT VISION&TOUCH END EFFECTOR

Metric Acc(2) ↑ MSE (×10−4) ↓

U
Unimodal (i) 83.6 ± 0.3 1.99 ± 0.160
Unimodal (f ) 93.6 ± 0.1 87.2 ± 0.477
Unimodal (p) 85.6 ± 0.6 0.202 ± 0.022

M
LF 93.6 ± 0.1 0.185 ± 0.011
Sensor Fusion [91] 93.4 ± 0.1 0.258 ± 0.011
LRTF [106] 93.3 ± 0.1 0.232 ± 0.031

O REFNET [135] 93.5 ± 0.1 0.203 ± 0.025

H.3 Robotics

We show the full results in Table 17 and complexity results in Table 18. Here we list some observations
regarding these results:

1. We find that in all robotics tasks, there exists one modality with extremely strong unimodal
performance (force in VISION&TOUCH contact task, proprioception in VISION&TOUCH
End Effector task, image in MUJOCO PUSH).

2. On the VISION&TOUCH dataset, we found that Late Fusion outperforms the method of
choice in the original paper for the dataset [91] (Sensor Fusion) on both tasks, so Late Fusion
seems to generalize well to this domain.

3. In our experiments, as well as the baselines [91], the action modality is typically treated as a
general modality without specific modeling. Future work should explore whether this is the
best way to encode action as a modality in these action-conditional prediction tasks, and
possibly unify these datasets with those used in embodied multimodal learning [36, 97, 110].

4. We plan to include several more reinforcement learning tasks for multimodal learning
in robotics. It remains an open question where multimodal representations suitable for
fusion-type prediction tasks are also suitable for reinforcement learning tasks. Adding such
reinforcement learning tasks from multiple sensors to MULTIBENCH will enable more
accurate benchmarking of the generalization capabilities of these multimodal models.

Finally, we show the robustness of multimodal models with increasing levels of noise on MUJOCO
PUSH in Figure 17 and on VISION&TOUCH in Figure 18. We highlight the following observations:

1. For MUJOCO PUSH we plot the MSE using a log scale on the y-axis since the error of the
TF method blows up significantly much faster than the other methods.

2. We observe that multimodal methods are much more robust than unimodal methods, which
match the robustness results as reported in the paper [91] where the trained multimodal
model is robust and able to recover from external forces on the force sensor or occlusions to
the image sensor. This observation is true for both datasets.

3. For VISION&TOUCH, we observe that unimodal performance is especially bad for the object
pose prediction task. The remaining multimodal models are relatively robust as compared to
unimodal performance. The most robust models seem to be Sensor Fusion [91] (SF) and
Late Fusion (LF).
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Table 18: Complexity results for datasets in the robotics domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures.

Dataset MUJOCO PUSH

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U

Unimodal (i) 20 738 ± 133 3.88 3607 ± 1 3.46 ± 0.02 3.88
Unimodal (f ) 20 288 ± 39 3.33 3595 ± 2 0.91 ± 0.08 3.33
Unimodal (p) 20 252 ± 6 3.33 3594 ± 1 0.87 ± 0.04 3.33
Unimodal (c) 20 372 ± 64 3.33 3594 ± 1 0.86 ± 0.04 3.33

M

EF 20 815 ± 34 3.92 3654 ± 1 4.44 ± 0.55 3.92
LF-LSTM 20 856 ± 46 1.90 3636 ± 1 4.32 ± 0.45 1.90
TF-LSTM [179] 20 1914 ± 31 23.5 4530 ± 9 7.75 ± 0.12 23.5
MULT [156] 20 4792 ± 62 14.6 6530 ± 16 22.4 ± 0.28 14.6

Dataset VISION&TOUCH

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U
Unimodal (i) 15 2633 1.00 5530 63.9 1.00
Unimodal (f ) 15 2185 0.13 2426 51.6 0.13
Unimodal (p) 15 2514 0.08 2389 59.5 0.08

M
LF 15 2672 1.20 5572 64.4 1.20
Sensor Fusion [91] 50 11604 1.10 4467 62.6 1.10
LRTF [106] 35 8366 1.09 4987 64.4 1.09

O REFNET [135] 15 3819 135 6067 65.0 1.20

MuJoCo Push controls

MuJoCo Push image MuJoCo Push force MuJoCo Push proprioception

MuJoCo Push multimodal

Figure 17: Robustness of multimodal models with increasing levels of noise on the MUJOCO PUSH dataset in
the robotics domain.
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Vision&Touch image Vision&Touch force Vision&Touch proprioception

Figure 18: Robustness of multimodal models with increasing levels of noise on the VISION&TOUCH dataset in
the robotics domain.
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Table 19: Results on multimodal datasets in the finance domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures. MULT struggles on these datasets even though it
performs strongly on similar multimodal time-series datasets in the affective computing domain. Other methods
also show high variance across different data partitions.

Dataset STOCKS-F&B STOCKS-HEALTH STOCK-TECH
Metric MSE ↓ MSE ↓ MSE ↓
Mean 2.140 0.575 0.140

U ARIMA 2.199 0.620 0.152
Unimodal 1.856 ± 0.093 0.541 ± 0.010 0.125 ± 0.004

M

EF-LSTM 1.835 ± 0.098 0.526 ± 0.017 0.121 ± 0.003
LF-LSTM 1.893 ± 0.106 0.541 ± 0.018 0.120 ± 0.008
EF-TRANSFORMER 2.144 ± 0.014 0.573 ± 0.006 0.143 ± 0.003
LF-TRANSFORMER 2.155 ± 0.023 0.573 ± 0.006 0.143 ± 0.004
MULT [156] 2.053 ± 0.022 0.555 ± 0.005 0.135 ± 0.003

T GRADBLEND [167] 1.820 ± 0.138 0.537 ± 0.011 0.138 ± 0.030

H.4 Finance

We show the full results in Table 19 and complexity results in Table 20. Here we list some observations
regarding these results:

1. We do observe better performance using multimodal models as compared to unimodal
ones, which suggests that multiple financial signals do help in stock prediction. Several
multimodal models do generalize to this more challenging area which presents scalability
challenges due to a large number of modalities (18/63/100 as compared to 2/3 in most
datasets), as well as robustness challenges arising from real-world data with an inherently
low signal-to-noise ratio.

2. There has been very little research in multimodal models in this area, and no public imple-
mentations of multimodal models on actual finance data. By adapting current models on
this dataset, we observe decent performance of several out of domain methods. Specifically,
early fusion (EF) works well which we believe to be due to the little heterogeneity in data
origins (i.e., all data comes in the form of time-series data, which is much less heterogeneous
as compare to image and text datasets).

3. There remains high variance in the performance of multimodal models even within the same
domain: we observe that the best multimodal is not consistent across the 3 partitions of
finance datasets, which suggests that current multimodal models remain highly sensitive to
the task at hand.

4. Perhaps surprisingly, our experiments on using a Transformer found that they performed
worse off than LSTM models. We hypothesize that these large Transformer models might
be prone to overfitting on these small and noisy datasets.

5. These datasets present scalability issues to a large number of modalities. We find that we
had to adapt several methods such as Tensor Fusion (TF) and Multimodal Transformer
(MULT) since they scale exponentially and quadratically with the number of modalities
respectively, which does not scale to these finance datasets with more than 10 modalities.
We had to adapt these models by performing an initial clustering over the modalities to
form 2/3 groups, performing early fusion by concatenating the data within each group
and forming 2/3 ‘modalities’ before applying methods such as Tensor Fusion (TF) and
Multimodal Transformer (MULT). This might explain their slightly worse performance,
especially MULT given its strong performance and generalization to different datasets in
the affective computing domain. Future research should focus on more scalable multimodal
methods to a large number of modalities. Unfortunately, the bulk of multimodal research
being in language and vision means that this question is relatively unexplored.

Finally, we show the robustness of multimodal models with increasing levels of noise on the finance
datasets in Figure 19. We highlight the following observations:

1. We again observe a similar trend where the best multimodal models (MULT and sometimes
EF) are more robust than the best unimodal model. However, different from other datasets,
we find that certain multimodal models can be worse in performance and robustness than
the best unimodal model. LF in particular is not very robust and performs worse than the
best unimodal method.
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Table 20: Complexity results for datasets in the finance domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures.

Dataset STOCKS-F&B

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (t) 2 9.5 ± 0.1 0.067 3028 ± 3 0.50 ± 0.01 0.067

M

EF-LSTM 2 9.7 ± 0.1 0.069 3067 ± 21 0.51 ± 0.01 0.069
LF-LSTM 4 62 ± 0.4 0.005 2433 ± 4 1.74 ± 0.02 0.005
EF-Transformer 4 25 ± 0.3 0.118 2434 ± 3 0.62 ± 0.01 0.118
LF-Transformer 4 88 ± 0.3 0.472 2468 ± 1 1.70 ± 0.00 0.472
MulT [156] 4 160 ± 1 0.125 3313 ± 1 4.82 ± 0.06 0.125

T GRADBLEND [167] 4 409 ± 2 0.338 3102 ± 1 0.44 ± 0.01 0.069

Dataset STOCKS-HEALTH

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (t) 2 9.6 ± 0.1 0.067 3032 ± 15 0.51 ± 0.01 0.067

M

EF-LSTM 2 9.6 ± 0.1 0.070 3083 ± 2 0.51 ± 0.02 0.070
LF-LSTM 4 108 ± 1 0.009 2464 ± 7 2.89 ± 0.04 0.009
EF-Transformer 4 25 ± 0.4 0.118 2466 ± 4 0.65 ± 0.02 0.118
LF-Transformer 4 159 ± 1 0.826 2524 ± 1 2.93 ± 0.01 0.826
MulT [156] 4 162 ± 1 0.125 3315 ± 1 4.88 ± 0.04 0.125

T GRADBLEND [167] 4 582 ± 4 0.541 3141 ± 2 0.49 ± 0.01 0.070

Dataset STOCK-TECH

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (t) 2 9.5 ± 0.1 0.067 3023 ± 1 0.51 ± 0.01 0.067

M

EF-LSTM 2 9.6 ± 0.1 0.070 3075 ± 4 0.53 ± 0.01 0.070
LF-LSTM 4 92 ± 0.5 0.007 2453 ± 4 2.51 ± 0.04 0.007
EF-Transformer 4 25 ± 0.4 0.118 2453 ± 1 0.63 ± 0.01 0.118
LF-Transformer 4 135 ± 1 0.708 2506 ± 1 2.52 ± 0.00 0.708
MulT [156] 4 161 ± 1 0.125 3315 ± 2 4.79 ± 0.03 0.125

T GRADBLEND [167] 4 500 ± 3 0.473 3167 ± 1 0.44 ± 0.01 0.070

Stocks-F&B Stocks-Health Stocks-Tech

Figure 19: Robustness of multimodal models with increasing levels of noise on the stock prediction datasets in
the finance domain.

81



2. The Gradient Blend (GRADBLEND) method is interesting since it starts off with the best
(lowest) MSE but is the least robust – its error increases really quickly and ends up worse
than several models that it was initially outperforming on 0 noise levels.

3. We find that several approaches might be underfitting the data on STOCKS-HEALTH and
STOCKS-TECH. These methods do not start off with a good MSE and are also not af-
fected significantly at increasing noise levels, showing a roughly straight horizontal line in
Figure 19.
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Table 21: Results on the ENRICO dataset in the HCI domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures. Several out-domain methods perform well on
MIMIC and improve upon the current state-of-the-art performance on in-domain methods.

Dataset ENRICO
Metric Acc(20) ↑

U Unimodal (i) 47.0 ± 1.6
Unimodal (s) 46.1 ± 1.3

M

LF 50.8 ± 2.0
TF [179] 46.6 ± 1.9
LRTF [106] 47.1 ± 2.9
MI-MATRIX [77] 46.7 ± 2.4

O CCA [145] 50.1 ± 1.4
REFNET [135] 44.4 ± 2.2

T GRADBLEND [167] 51.0 ± 1.4

Table 22: Complexity results for datasets in the HCI domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures.

Dataset ENRICO

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (i) 50 1601 9.6 2796 7.3 19.3
Unimodal (s) 50 1644 9.6 2771 8.1 19.3

M

LF 50 1714 19.3 2730 8.7 19.3
TF [179] 50 2012 19.3 2718 10.9 19.3
LRTF [106] 50 1853 19.3 2717 9.7 19.3
MI-MATRIX [77] 50 1604 19.3 2730 8.5 19.3

O CCA [145] 50 2945 19.3 2923 9.1 19.3
REFNET [135] 50 1747 25.7 2757 13.8 25.7

T GRADBLEND [167] 50 2618 19.3 2610 12.1 19.3

H.5 HCI

We show the full results in Table 21 and results on complexity in Table 22. Here we list some
observations regarding these results:

1. The ENRICO paper [93] does not include code or provide many details about their ex-
periments (e.g., data splits, hyperparameters). Compared to their reported results, our
reproduction resulted in better performance for the set modality and worse performance for
the screenshot modality.

2. Using multiple modalities can help prediction on ENRICO, boosting performance over the
best unimodal model by 4%.

3. Similar to finance, there has been very little research in multimodal models for HCI. We
observe decent performance of several out of domain methods, especially GRADBLEND
which offers a slight improvement over a standard LF model.

4. Certain more complex methods, unfortunately, do not work that well on this dataset. On
the architecture side, more expressive methods such as TF, LRTF and MI do not offer
improvements over a simple LF model. We hypothesize that these more complex models
have a larger number of trainable parameters which make them more prone to overfitting to
small and noisy datasets.

We show robustness results with increasing levels of noise in Figure 20. We highlight the following
observations:

1. We again observe a similar trend where the best multimodal models (LF and sometimes
GRADBLEND) are more robust than the best unimodal model. However, different from
other datasets, we find that certain multimodal models can be worse in performance and
robustness than the best unimodal model. TF in particular is not robust and performs worse
than the best unimodal method.

2. LF is surprisingly robust to imperfections in the image modality and shows a very stable
trend despite high levels of noise, implying that the model has learned to rely on the set
modality instead when the image is imperfect.
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ENRICO image ENRICO set

Figure 20: Robustness of multimodal models with increasing levels of noise on the ENRICO dataset in the HCI
domain.

3. Multimodal models show a high variance in robustness at high noise levels – performance
can range from 5% to 40% at the highest noise levels.
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Table 23: Results on multimodal datasets in the multimedia domain. U: unimodal models, M: multimodal fusion
paradigms, O: optimization objectives, T: training structures. We observe high variance in model performance
across datasets with no method showing consistently strong performance.

Dataset MM-IMDB
Metric Micro F1(23) ↑ Macro F1(23) ↑

U Unimodal (`) 58.6 ± 1.3 45.6 ± 4.5
Unimodal (i) 40.1 ± 1.3 25.3 ± 0.6

M

EF 58.9 ± 2.6 49.8 ± 1.7
LF 58.8 ± 1.6 49.2 ± 2.0
LRTF [106] 59.2 ± 0.5 49.2 ± 0.6
MI-MATRIX [77] 58.3 ± 1.0 48.0 ± 1.1

O
CCA [145] 59.3 ± 1.2 50.2 ± 0.9
REFNET [135] 59.2 ± 2.7 50.2 ± 1.4
MFM [155] 38.4 ± 1.6 22.3 ± 1.3

T RMFE 58.6 ± 2.3 47.1 ± 2.0

Dataset AV-MNIST
Metric Acc(10) ↑

U Unimodal (i) 65.1 ± 0.2
Unimodal (a) 42.0 ± 0.2

M

LF 71.7 ± 0.4
LRTF [106] 71.5 ± 0.5
MI-MATRIX [77] 71.2 ± 0.5
MFAS [122] 72.8 ± 0.2

O

CCA [145] 71.9 ± 0.4
REFNET [135] 70.9 ± 0.6
MFM [155] 71.8 ± 0.4
MVAE [168] 72.3 ± 0.2

T GRADBLEND [167] 68.5 ± 0.5

Dataset KINETICS-S KINETICS-L
Metric Acc(5) ↑ Acc(400) ↑

U Unimodal (v) 56.5 72.6
Unimodal (a) 39.7 19.7

M LF 56.1 71.7
T GRADBLEND [167] 23.7 74.7

H.6 Multimedia

We show the full results in Table 23 and results on complexity in Table 24. Here we list some
observations regarding these results:

1. The current SOTA on AV-MNIST is based on architecture search: MFAS [122]. Amongst
all the methods we evaluated, MFAS is still the best performing method and beats the
second best method (MVAE) by 0.5%. Meanwhile, Gradient Blend (GRADBLEND) does
not seem to generalize well to this dataset, as it performs worse than all other multimodal
methods.

2. On MM-IMDB, we attempted several methods on the objective function side. We found
that using contrastive learning (REFNET) [135] or canonical correlation analysis (CCA)
were quite useful in improving performance, with both outperforming purely architectural
baselines without alignment as an optimization objective. In particular, while the CCA
approach for multimodal fusion was originally proposed for affect recognition datasets [145],
we find that they also generalize to the multimedia domain.

3. On KINETICS, Gradient Blend (GRADBLEND) [167] was shown to work really well in
their original paper. However, we found that this approach does not generalize well to
other datasets such as AV-MNIST. We also created a smaller version of Kinetics called
KINETICS-S to enable quick prototyping of multimodal models. Unfortunately, we found
that GRADBLEND also struggles on the smaller partition of Kinetics.

4. For KINETICS-S, we also observed that the visual unimodal model slightly outperformed
the late fusion model despite the latter using more modalities. This reflects the observations
by Wang et al., [167] on the original full version of the KINETICS dataset.
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Table 24: Complexity results for datasets in the multimedia domain. ((*) This is the number of params in modules
input to MFAS at the start of training, MFAS will generate more params during the architecture search process).
U: unimodal models, M: multimodal fusion paradigms, O: optimization objectives, T: training structures.

Dataset MM-IMDB

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (`) 125 622 0.55 2146 2.07 0.55
Unimodal (i) 25 127 4.86 2176 2.14 4.86

M

EF 15 117 5.05 2010 3.24 5/05
LF 5 45 10.3 2016 3.44 10.3
LRTF [106] 15 741 10.3 2448 5.57 10.3
MI-MATRIX [77] 20 735 280 4036 3.59 280
MFM [155] 10 78 21.3 2038 3.36 10.9
CCA [145] 20 1025 9.51 2273 3.33 9.51
RMFE [53] 10 104 8.78 22297 3.46 8.78
REFNET [135] 10 2207 27.0 2899 3.47 10.3

Dataset AV-MNIST

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (i) 25 106 0.02 9549 0.95 0.02
Unimodal (a) 25 158 0.24 11895 1.35 0.24

M

LF 25 260 0.26 11917 1.20 0.26
MI-MATRIX [77] 25 289 2.53 11509 1.21 2.53
LRTF [106] 30 470 0.25 11610 1.25 0.25
MFAS [122] 172 × 6 17648 0.14∗ 9444 4.39 0.07

O

CCA [145] 25 310 0.25 9548 1.42 0.25
REFNET [135] 15 1179 14.01 15931 4.39 0.28
MFM [155] 25 544 0.92 9570 4.76 0.45
MVAE [168] 20 679 0.81 9755 4.98 0.34

T GRADBLEND [167] 300 12539 0.29 12029 1.51 0.26

Dataset KINETICS-SMALL

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (v) 15 6702 12.0 12151 13.7 12.0
Unimodal (a) 15 46767 25.8 8533 60.9 25.8

M LF 15 20283 37.8 9525 13.9 37.8
T GRADBLEND [167] 15 20283 37.8 9525 13.9 37.8

Dataset KINETICS-LARGE

Metric Epochs
trained

Training
time (s)

Training
params (M)

Training peak
memory (MB)

Inference
time (s)

Inference
params (M)

U Unimodal (v) 45 938280 12.0 12151 1918 12.0
Unimodal (a) 45 947380 33.5 8533 8526 33.5

M LF 45 2839620 45.5 9525 1946 45.5
T GRADBLEND [167] 45 2839620 45.5 9525 1946 45.5

5. Therefore, we find that multimodal models still struggle on the KINETICS dataset with
multimodal performance on simple models (LF) unable to outperform unimodal methods.
While GRADBLEND can improve multimodal performance, it comes at the expense of
∼ 3× the training time. Future research should explore building lightweight and effective
multimodal models on KINETICS as well as other datasets in MULTIBENCH.

We show robustness results with increasing levels of noise on the MM-IMDB datasets in Figure 21.
We highlight the following observations:

1. Multimodal models outperform unimodal models when it comes to robustness (and initial
performance). This is especially true for imperfections in the image modality. We believe
that multimodal models are able to successfully rely on the other modality when one is
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MM-IMDb imageMM-IMDb language

Figure 21: Robustness of multimodal models with increasing levels of noise on the MM-IMDB dataset in the
multimedia domain.

imperfect. We find that the gap between multimodal and unimodal performance is very
significant on the image modality. However, the gap is much smaller on the text modality.

2. MFM was a method tested initially for affective computing datasets but we found it did
not generalize to MM-IMDB, giving poor initial performance and poor robustness. We
believe the high-dimensionality of image and text input means that reconstruction of input
modalities is difficult, which causes reconstruction-based objectives in MFM to suffer.

3. On the whole, multimodal models are more robust to imperfections on the image modality
as compared to the language modality. However, unimodal performance is much better on
language than on image, which implies that the language modality is more informative.
Similar to the observations on the affective computing datasets, we also find that multimodal
models tend to overfit to the more informative modality (language) and are therefore less
robust to imperfections in the more informative modality.
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Figure 22: Relative performance of each model across in-domain (red dots) and out-domain datasets (blue dots).
In-domain refers to the performance on datasets that the method was previously proposed for and out-domain
shows performance on the remaining datasets. We find that many methods show strongest performance on
in-domain datasets which drop when tested on different domains, modalities, and tasks. In general, we also
observe high variance in the performance of multimodal methods across datasets in MULTIBENCH, which
suggest open questions in building more generalizable models.

H.7 Performance

In this subsection, we summarize several general observations regarding the performance of multi-
modal models across domains, modalities, and tasks.

In the following analysis, we aggregate the performance of models by first assigning each task a weight
of 1

n
where n is the number of tasks in a dataset (e.g., there are 3 tasks in the MIMIC dataset: mortality,

ICD-9 group 1, and ICD-9 group 7 prediction). Then, we compute the scaled performance of each
model on each task by min-max normalization – setting the best-performing model’s performance
to 1 and worst-performing model’s performance to 0, and scaling the performance of all remaining
models linearly between 0 and 1. Note that we only take the best unimodal performance into account
when determining the best and worst-performing models. Then, the final performance score for each
model is computed by a weighted average of its scaled performances on all tasks that model was
evaluated on.

Benefits of standardization: Simply applying methods in a research different area achieves state-
of-the-art performance on 9 out of the 15 tasks. We find that this is especially true for domains and
modalities that have been relatively less studied in multimodal research (i.e., healthcare, finance,
HCI). Performance gains can be obtained using multimodal methods outside of that research area.
Therefore, this motivates the benefits of standardizing and unifying areas of research in multimodal
machine learning. We believe that the ever-expanding diversity of datasets in MULTIBENCH can
greatly accelerate research in multimodal learning.

Generalization across domains and modalities: MULTIBENCH offers an opportunity to analyze
algorithmic developments across a large suite of modalities, domains, and tasks. We illustrate these
observations through 2 summary plots of the generalization performance of multimodal models.
Firstly, in Figure 22, we plot the performance of each multimodal method across all datasets that it
is tested on, using the color red to indicate performance on datasets that it was initially proposed
and tested on (which we label as in-domain), and blue to indicate its performance on the remaining
datasets (which we label as out-domain). Secondly, in Figure 23, we color-code the performance on
each dataset depending on which research area the dataset belongs to (one of the 6 research areas
covered in MULTIBENCH).

We summarize several observations regarding generalization across domains and modalities below:

1. Many multimodal methods still do not generalize across domains and datasets. For examples,
MFAS [122] works well on domains it was designed for (AV-MNIST and MM-IMDB
in the multimedia domain), but does not generalize to other domains such as healthcare
(MIMIC). Similarly, the method designed for robustness, MCTN [123], does not gener-
alize to datasets within the affective computing domain (UR-FUNNY and MUSTARD).
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Figure 23: Relative performance of each model across different domains. We find that the performance of
multimodal models varies significantly across datasets spanning different research areas and modalities. Similarly,
the best-performing methods on each domain are also different. Therefore, there still does not exist a one-size-
fits-all model, especially for understudied modalities and tasks.

Finally, GRADBLEND [167], an approach specifically designed to improve generalization
in multimodal learning and tested on video and audio datasets (e.g., Kinetics), does not
perform well on other datasets. Therefore, there still does not exist a one-size-fits-all model,
especially on understudied modalities and tasks.

2. From Figure 22, we find that many methods show their strongest performance on in-domain
datasets, and their performance drops when tested on different domains, modalities, and
tasks. Some interesting observations are that MULT performs extremely well on the affect
recognition datasets it was designed for but struggles on other multimodal time-series in the
finance and robotics domains. On the other hand, MFM shows an impressive performance
in generalizing to new domains, although its in-domain performance has been exceeded by
several other methods.

3. From Figure 22, we also observe high variance in the performance of multimodal meth-
ods across datasets in MULTIBENCH, which suggest open questions in building more
generalizable models. We find that LF is quite stable and always achieves above-average
performance.

4. There are methods that are surprisingly generalizable across datasets. These are typically
general modality-agnostic methods such as LF. While simple, it is a strong method that
balances simplicity, performance, and low complexity. However, it does not achieve the best
performance on any dataset, which suggests that it is a good starting point but perhaps not
the best eventual method.

5. From Figure 23, we find that performance also varies significantly across research areas.
6. Several methods such as MFAS and CCA are designed for only 2 modalities (usually image

and text), and TF and MI do not scale efficiently beyond 2/3 modalities. Therefore, we were
unable to directly adapt these approaches to other datasets. We encourage the community to
generalize these approaches across datasets and modalities on MULTIBENCH.

Tradeoffs between modalities: How far can we go with unimodal methods? Surprisingly far! From
each of the individual tables, we observe that decent performance can be obtained with the best
performing modality. Further improvement via multimodal models may come at the expense of
around 2 − 3× the parameters.
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Figure 24: Tradeoff between performance and complexity. Size of circles shows variance in performance
and complexity across (a) all datasets and (b) datasets on which we tested > 6 approaches. We plot a dotted blue
line of best quadratic fit to show the Pareto frontier between performance and complexity. These strong tradeoffs
suggest that future work should focus on lightweight multimodal models that generalize throughout datasets
in MULTIBENCH. It remains an open question whether several well-performing methods (such as MFAS or
MULT) can be successfully adapted to new domains and tasks, since they work much better on more-studied
datasets (b) as compared to over all datasets (a).

H.8 Complexity

We aggregate the complexity of each model by taking the weighted average of the relative complexity
of the model across tasks on which it is evaluated. The weights are assigned in the same way as
performance weights described in the subsection above (i.e., performing min-max normalization
across models within each task and averaging across the normalized performance across all datasets
that the model was tested on). The relative complexity of each model on each task is computed by
dividing its training time by the best unimodal model’s training time and taking the negative log 10 of
this value (we take negative log because some more complex methods can take hundreds of times the
training time of simpler methods). Thus, the higher the value of aggregated complexity, the faster the
model trains.

Based on the full results above, we summarize the overall tradeoff between performance and complex-
ity in Figure 24(a). We aggregate performance and complexity statistics by first performing min-max
normalization within each data to a scale of 0 − 1 for performance and complexity separately. Note
that for metrics where lower is better (i.e., MSE or RMSE) we reverse the direction of min-max nor-
malization. We then aggregate normalized statistics across all datasets and plot the tradeoff between
performance and complexity. We highlight the following observations:

1. In Figure 24, we plot a dotted blue line of best quadratic fit to show the Pareto frontier
between performance and complexity. We choose a quadratic fit since it is common to fit a
curve rather than a straight line when considering the tradeoff frontier between 2 variables
(related to the law of diminishing returns in economics). Using this plot, we find a strong
tradeoff between these two desiderata: simple fusion techniques (e.g., early fusion EF and
late fusion LF) are actually appealing choices that score high on both metrics, especially
when compared to complex (but slightly better performing) methods such as architecture
search MFAS or Multimodal Transformers MULT.

2. Using this quadratic curve, we find that the best unimodal model is under the curve (i.e.,
worse-off than the Pareto front). This implies that while unimodal models train the fastest,
several multimodal methods can outperform them despite being slightly slower, and is an
overall better choice when taking both performance and complexity into account. LF is an
appealing choice that lies above the curve.
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3. While LF is the easiest to adapt to new datasets and domains, we encountered difficulties
in adapting several possibly well-performing methods (such as MFAS or MULT) to new
datasets and domains. MFAS is designed with a specific set of atomic architectural elements
in mind which makes it most suitable for convolutional networks. MULT is suitable for
multimodal time-series data and it is unclear how to adapt its fusion paradigm to modalities
without a temporal dimension. For a more fair comparison, in Figure 24(b), we plot the
accumulated performance for methods only on the most commonly studied datasets where
we experimented with more than 6 methods. We find that these well-performing methods
(MFAS or MULT) show only slightly better than LF on all datasets (see Figure 24(a)), they
(see Figure 24(b)). Therefore, it is important for future research to focus on models that
generalize to multiple domains, modalities, and tasks, since our results suggest that many
methods currently do not satisfy these desiderata.

4. These plots do not completely capture the picture since complexity is measured via total
training time (training speed), which can be prohibitively high for methods such as MFAS,
MVAE, and GRADBLEND. However, these methods are primarily slow due to extra parame-
ters or training procedures during training, and once the model is trained, test-time inference
is fast and cheap. Plotting a performance-complexity tradeoff using a different complexity
metric will likely result in different observations. Overall, MULTIBENCH enables a holistic
evaluation of training and test-time space and memory complexity so practitioners can
choose the most suitable model for their real-world application setting.
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Figure 25: Tradeoff between performance and robustness. Size of circles shows variance in performance and
robustness across datasets. We show the line of best linear fit in dotted blue. While better performing methods
display better relative robustness (as shown by the positive trend in the best linear fit in (a)), some of these
methods suffer in effective robustness. In other words, their performance drops off faster as shown by the negative
linear fit in (b). Few models currently achieve both relative and effective robustness, which suggests a crucial
area for future multimodal research.

Robustness →

P
er

fo
rm

an
ce
→

SF

TF

LRTF

EF

GradBlend

MulT

Best Unimodal

ReFNet

LF

MFM

CCA

MCTN

MI

MFAS

RMFE
MVAE

Figure 26: Overall tradeoff between performance and robustness obtained by averaging the relative and
effective robustness values in Figure 25. We show the line of best linear fit in dotted blue. There is only a
slight positive trend between performance and overall robustness of these multimodal models. Therefore, few
well-performing models currently achieve both relative and effective robustness, which is a crucial area for
future multimodal research.

H.9 Robustness

In this section, we summarize our observations regarding the tradeoffs between accuracy and ro-
bustness, where we use the quantitative metrics for relative and effective robustness as described in
Appendix D.3. As a reminder, relative robustness directly measures accuracy under imperfections
while effective robustness measures the rate of accuracy drops with imperfection after equalizing
for initial accuracy on clean test data. In Figure 25, we plot a similar tradeoff plot between accuracy
and (relative & effective) robustness. Again, we aggregate performance and complexity statistics
by first performing min-max normalization within each data to a scale of 0 − 1 for performance and
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robustness separately. We aggregate normalized statistics across all datasets and plot the tradeoff
between performance and robustness. We highlight the following observations:

1. We show the line of best linear fit for relative and effective robustness in dotted blue
in Figure 25. We observe a slight positive correlation between performance and relative
robustness, which implies that models starting off with higher accuracy tend to stay above
other models on the performance-imperfection curve. In particular, several methods such as
MVAE and RMFE show strong performance and robustness.

2. However, we observe a slightly negative correlation for effective robustness. Unfortunately,
several well-performing methods such as MULT, CCA, and MVAE tend to drop off faster
after equalizing for initial accuracy on clean test data.

3. Finally, we plot an average of relative and effective robustness in Figure 26 as an overall
quantitative measure of robustness. We observe that very few models currently achieve both
relative and effective robustness, which prompts an area for future multimodal research.

H.10 Summary of Takeaway Messages

From these results, we emphasize the main take-away messages and motivate several directions for
future work:

1. Benefits of standardization: Applying methods in a research different area achieves state-of-
the-art performance on 9 out of the 15 datasets, especially those relatively less studied in
multimodal research (i.e., healthcare, finance, HCI). This motivates the benefits of standard-
izing and unifying areas of research in multimodal learning. We hope that MULTIBENCH
and MULTIZOO can be a step in this direction.

2. Generalization across domains and modalities:
(a) Many multimodal methods still do not generalize across domains and datasets, showing

high variance across datasets in MULTIBENCH. Some of these methods perform worse
on out-of-domain datasets than in-domain datasets while other methods are designed
in a specific manner for certain modalities and domains which makes them unable to
be adapted to other datasets in straightforward ways.

(b) Certain simple methods (e.g., LF) are surprisingly generalizable. However, it does not
achieve the best performance on any dataset, which suggests that it is a good starting
point but perhaps not the best method.

3. Decent performance can be obtained with the best performing modality, which motivates
the need for new datasets that offer challenges and opportunities in multimodal modeling
not achievable from unimodal methods.

4. There is a strong tradeoff between performance and complexity which suggests that future
work should also focus on lightweight multimodal models that generalize throughout datasets
in MULTIBENCH.

5. Tradeoffs between performance and robustness:
(a) Models starting off with higher accuracy tend to stay above other models on the

performance-imperfection curve.
(b) However, several well-performing methods also tend to drop off faster after equalizing

for initial accuracy on clean test data.
(c) Overall, very few models currently achieve both relative and effective robustness, which

prompts an area for future multimodal research.
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I Future Directions
We plan to ensure the continual availability, maintenance, and expansion of MULTIBENCH. Several
immediate future directions include expansions in the datasets provided, algorithms implemented in
MULTIZOO, and broadening the holistic evaluation of multimodal models.

I.1 Datasets

One main area of expansion lies in the datasets supported by MULTIBENCH. We first describe the
categories of multimodal datasets in the fusion domain that we plan to add in the following months.
We also plan to include several new application areas where multimodal fusion is useful, such as
cross-modal retrieval, multimodal question answering, and grounding across modalities, which we
will detail in the following subsections. Finally, we explain our plan for community-based expansion
of datasets and models based on user feedback that will happen in parallel.

I.1.1 Fusion

Within the same category of multimodal fusion, we plan to add datasets within the same application
domains as well as to expand to new application domains. Within the current domains, we plan
to include (1) the hateful memes challenge [82] as a core challenge in multimedia to ensure safer
learning from ubiquitous text and images from the internet, (2) more datasets in the robotics and
HCI domains where there are many opportunities for multimodal modeling, and (3) several datasets
which are of broad interest but are released via licenses that restrict redistribution such as dyadic
emotion recognition on IEMOCAP [21], deception prediction on from real-world Trial Data [121],
and multilingual affect recognition on CMU-MOSEAS [182] which was only just recently released.
We are currently working with the authors to integrate some of these datasets into MULTIBENCH in
the near future. These new datasets will benchmark multimodal modeling in human-centric areas
where privacy and fairness can be important desiderata. Furthermore, it will enable benchmarking
of multimodal learning in languages other than English which is important towards building more
accessible multimodal models that include the language modality.

I.1.2 Retrieval

Another area of great interest lies in cross-modal retrieval [104, 187]. In this area, the goal is to
retrieve semantically similar data from a new modality using a modality as a query (e.g., given a
phrase, retrieve the closest image describing that phrase). The core challenge is to perform alignment
of representations across both modalities. Retrieval has been studied primarily in the multimedia
space (e.g., retrieving images, video, and audio given a text query) and we hope to add some of these
datasets as well as to expand datasets for cross-modal retrieval using different combinations of query
and retrieved modalities.

I.1.3 Question Answering

Within the domain of language and vision, there has been growing interest in language-based question
answering (i.e., “query” modality) of entities in the visual, video, or embodied domain (i.e., “queried”
modality). Datasets such as Visual Question Answering [4], Social IQ [178], and Embodied Question
Answering [36] have been proposed to benchmark the performance of multimodal models in these
settings. A core challenge lies in aligning words asked in the question with entities in the queried
modalities, which can take the form of visual entities in images or videos, and actions in embodied
environments. We plan to add these datasets as soon as possible, and also plan to add QA over
multiple queried modalities such as text, images, and tables as proposed in recent work [63, 147].

I.1.4 Grounding

Grounding is the task of linking entities (often at their most granular level) in one modality with
entities in another modality. As an example, in the domain of language and vision, a well-studied
grounding task is visual referring expressions - the task of localizing an object in an image referred
to by a natural language expression (e.g., half of a sandwich on the right side of a plate nearest
a coffee mug) [32]. Grounding can be seen as a more fine-grained version of retrieval where the
retrieved modality of interest is at the level of sub-patches of an image. We currently do not include
tasks in the grounding area since there are no datasets outside using language to query images (and
their subregions). We plan to include grounding datasets in the language and vision domain but also
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encourage research in extending this research problem to other modalities (e.g., using language to
query video/audio/sets/tables).

I.1.5 Reinforcement Learning
Learning from multiple modalities in an interactive setting is an area of interest as a step towards
building more intelligent embodied agents that can perceive the visual world, language instructions, au-
ditory feedback, and other sensor modalities. These research areas broadly span language-conditional
RL (i.e., instruction following, learning a reward function from instructions, language in the observa-
tion or action space) and language-assisted RL (language as domain knowledge, language to structure
policies) [110]. Recent work has also explored audio as a modality in an agent’s multisensory interac-
tion with the world [38]. Modern robot systems are also equipped with multiple sensors to aid in their
decision-making and there has been considerable research in learning multimodal representations
from multiple sensors for robot manipulation [89–91].

These multimodal problems are fundamentally different from those that are concerned with prediction
tasks. Alongside the core challenges in learning complementary information and aligning entities
in language instructions to those in the visual environment, there also lies the core challenge of
learning actionable representations that link to the set of actions that can be taken and their associated
long-term rewards [110]. We plan to include these datasets in a future version of MULTIBENCH. We
also encourage research in extending these multimodal tasks beyond language and vision to truly
incorporate the diverse set of modalities humans use in everyday interactive tasks.

I.2 Models

By partitioning the structure of multimodal code into the distinct areas in Appendix E (data pro-
cessing, unimodal and multimodal model design, optimization objectives, and training structures),
MULTIZOO enables easy addition of new innovations from all areas. It is easy to add new unimodal
encoders as they are developed in areas such as computer vision and natural language processing.
Similarly, it is extremely simple to add multimodal methods while ensuring compatibility with
existing unimodal encoders, fusion paradigms, optimization objectives, and training structures. Please
refer to Appendix F for code snippets changing multimodal models, optimization objectives, and
training structures.

The authors maintain a reading list for topics in multimodal ML [98] that is regularly updated for the
latest advances in the area. We plan to periodically add proposed methods to the MULTIZOO toolkit
with help from the community as well.

I.3 Evaluation

MULTIBENCH is designed with holistic evaluation in mind. Currently, MULTIBENCH supports
evaluation for prediction performance, time and space complexity, and robustness to noisy and
missing modalities. There are several other crucial evaluation dimensions that we plan to include in
the following versions of the benchmark:

I.3.1 Uncertainty Estimates
There has been important work in building ML models that return uncertainty estimates along
with their prediction targets [52, 57] along with recent interest in building multimodal models with
similar capabilities [20, 169]. As ML models are increasingly deployed in real-world sensitive
scenarios [12, 34, 160], there is an increasing need to quantify when ML models do not know the
right answer and potentially abstain [107] or defer the prediction to a human expert [86]. As future
steps, we plan to also include evaluations of uncertainty predictions into MULTIBENCH, such as using
the recently proposed Uncertainty Toolkit [2, 30, 153]. This will enable the inclusion and evaluation
of uncertainty-predicting multimodal models such as the ones proposed in [20, 169].

I.3.2 Robustness to Distribution Shifts
Distribution shifts, spanning shifts in dataset distributions and label distributions, are among core
challenges currently preventing machine learning systems from being safely deployed in real-world
settings [130]. Subtle changes in the data distribution can significantly impact performance, a
phenomenon exemplified by adversarial examples [146], and shifts in the label distribution can
significantly compromise accuracy as well [185].
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Distribution shifts in multimodal settings have not been explored by the research community. Mul-
timodal data can exhibit shifts in the marginal data distribution of each modality as well as in the
joint distribution across modalities, which makes the problem inherently more complex. To enable
research in benchmarking and analyzing distribution shift in multimodal settings, we plan to include:

1. Data: Data partitions (or new datasets) to MULTIBENCH that test for generalization across
domains and subpopulations, in a manner similar to [85]. Building on the current datasets
available in MULTIBENCH, some examples include affect recognition across different users,
robotic manipulation across different physical robots, and medical diagnosis across different
age groups.

2. Algorithms: On the algorithmic side, we plan to include currently established methods
for distribution shift in a single modality (which has been the bulk of existing work) into
MULTIZOO, which will enable both theoreticians and practitioners to analyze the new
challenges that multimodal data brings to the study of distribution shift.

3. Evaluation: Finally, to evaluate robustness to distribution shift, we plan to build a standard-
ized evaluation pipeline into MULTIBENCH (in a similar way for robustness tests currently
implemented). We will also tap into insights from the experimental protocol in [130] which
includes evaluation metrics to detect dataset shift before attempting to correct it.

I.3.3 Fairness

To safely deploy human-centric multimodal models in real-world scenarios such as healthcare, HCI,
legal systems, and social science, it is necessary to recognize the role they play in shaping social
biases and stereotypes. Recent work has shown that word-level embeddings reflect and propagate
social biases present in training corpora [18, 23]. Machine learning systems that incorporate these
word embeddings can further amplify biases [13] and unfairly discriminate against users, particularly
those from disadvantaged social groups. Similar observations have been observed for datasets and
models in the visual domain such as facial recognition [6] and image captioning [67] tasks, which has
called for immediate efforts towards better documentation and risk analysis of both ML datasets [54]
and models [115].

We believe that the ability to make fair judgments is even more important in a multimodal setting for
the following reasons:

1. Human behavior is inherently multimodal. As a result, many research problems in multi-
modal learning involve human-centric data and tasks such as healthcare, affective computing,
HCI, multimedia, human-robot interaction. As multimodal systems (such as emotion recog-
nition systems) are deployed in the real world, it is crucial to characterize possible social
biases they encode and design algorithms to mitigate these biases. Otherwise, real harm
can be brought to under-represented populations which unfair machine learning models
disproportionately harm [18].

2. While there has been a large body of work investigating the fairness of representations
learned from language and images, there is little work currently investigating this for other
modalities, as well as for the wide spectrum of multimodal models integrating multiple
modalities which can potentially compound biases stemming from each one [141].

There are many definitions of fairness and bias in ML and it is unclear which are important in which
multimodal settings. While we do not have the best answer to conclusively evaluate for fairness
in multimodal systems, we are making it a priority to include this feature in future versions of
MULTIBENCH. In reference to [113], certain dimensions of fairness we are currently exploring and
plan to add to MULTIBENCH include:

1. Data: A better fine-grained understanding of bias in data, which we plan to achieve via
human annotations for several multimodal datasets in MULTIBENCH (especially those that
involve human-centric tasks such as affect recognition).

2. Algorithms: Algorithmic fairness, including training models that satisfy individual and group
fairness, analyzing trained models from a geometric perspective (i.e., studying whether
biases are encoded in representations learned by a model [18, 99]), and methods for pre-
processing and post-processing data and models to satisfy fairness metrics.

3. Evaluation: Bias evaluation of trained multimodal models as well as those trained within a
single modality, to determine the relationship between biases in a single modality versus
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those that manifest in multimodal problems, and comparing them to current progress in this
direction on the language and vision modalities [133, 141].

These tasks tackle benchmarking and analysis of biases in multimodal methods from different
perspectives spanning data, algorithms, and evaluation, which make them compatible with our
proposed modular framework in MULTIBENCH and MULTIZOO. We plan to include additional
data annotations in the MULTIBENCH data loader, a suite of algorithms designed to mitigate bias
for unimodal and multimodal models in MULTIZOO, and evaluation metrics for fairness in the
MULTIBENCH evaluation pipeline.

I.4 Broader Outreach

In workshops and competitions: The authors have extensive experience in organizing chal-
lenges, workshops, and tutorials at leading ML, NLP, and computer vision conferences. Among
these include large-scale challenges in multimodal language analysis at NAACL 2021 (http:
//multicomp.cs.cmu.edu/naacl2021multimodalworkshop/), ACL 2020 (http:
//multicomp.cs.cmu.edu/acl2020multimodalworkshop/), and ACL 2019 (http:
//multicomp.cs.cmu.edu/acl2018multimodalchallenge/). We plan to use MULTI-
BENCH as the subject of future workshops to accelerate reproducible research in multimodal learning.
These workshops will focus on both new algorithms as well as careful analysis of existing algorithms
in the field. Both directions will be accelerated via our resources: we plan to provide MULTIBENCH
as a starting point for loading datasets and MULTIZOO as starter code for multimodal modeling,
evaluation, and analysis.

In academic courses: We plan to use the MULTIBENCH benchmark as well as the standardized
MULTIZOO codebase as an educational tool to support the Multimodal ML course taught annually at
CMU (https://cmu-multicomp-lab.github.io/mmml-course/fall2020/). Stu-
dents can choose to use one of the datasets provided in MULTIBENCH or add a new one to the current
suite of multimodal datasets. When designing new algorithmic contributions, students can implement
their approaches in the MULTIZOO toolkit which enables easy testing on multiple datasets, quick
logging and analysis of results, and reproducible testing. This method of community-based expansion
is also likely to see great leaps in the variety of datasets and models supported by this toolkit.

Community-based expansion: Finally, we plan to present a system for expanding the datasets and
models in MULTIBENCH via input from the research community. Since MULTIBENCH is publicly
released and will be regularly maintained, the existing starting benchmark, code, evaluation, and
experimental protocols can greatly accelerate the addition of new datasets and models in the future.
In the public GitHub (https://github.com/pliang279/MultiBench), we have included
a section on contributing to MULTIBENCH through either task proposals or additions of datasets
and algorithms. The readme includes detailed instructions for adding new datasets and dataloaders,
as well as new algorithms by modifying according to the code structure we have developed and
standardized. The readme also contains details for writing a main function to test new data loaders
and multimodal algorithms, and a test script to ensure compatibility with existing experiments. The
authors will regularly monitor new proposals through this channel. Periodically, the authors will
select popular task proposals (datasets and models) and add it into new versions of MULTIBENCH.
The ease of loading datasets and evaluating models will naturally encourage interest in building new
datasets and models on top of the toolkit. We further plan to encourage participants/students in our
organized workshops and courses to use MULTIBENCH and contribute task proposals as well.
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