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Abstract

This paper presents the first large-scale multi-species dataset of acoustic recordings
of mosquitoes tracked continuously in free flight. We present 20 hours of audio
recordings that we have expertly labelled and tagged precisely in time. Significantly,
18 hours of recordings contain annotations from 36 different species. Mosquitoes
are well-known carriers of diseases such as malaria, dengue and yellow fever.
Collecting this dataset is motivated by the need to assist applications which utilise
mosquito acoustics to conduct surveys to help predict outbreaks and inform inter-
vention policy. The task of detecting mosquitoes from the sound of their wingbeats
is challenging due to the difficulty in collecting recordings from realistic scenarios.
To address this, as part of the HumBug project, we conducted global experiments
to record mosquitoes ranging from those bred in culture cages to mosquitoes cap-
tured in the wild. Consequently, the audio recordings vary in signal-to-noise ratio
and contain a broad range of indoor and outdoor background environments from
Tanzania, Thailand, Kenya, the USA and the UK. In this paper we describe in
detail how we collected, labelled and curated the data. The data is provided from
a PostgreSQL database, which contains important metadata such as the capture
method, age, feeding status and gender of the mosquitoes. Additionally, we provide
code to extract features and train Bayesian convolutional neural networks for two
key tasks: the identification of mosquitoes from their corresponding background
environments, and the classification of detected mosquitoes into species. Our
extensive dataset is both challenging to machine learning researchers focusing on
acoustic identification, and critical to entomologists, geo-spatial modellers and
other domain experts to understand mosquito behaviour, model their distribution,
and manage the threat they pose to humans.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.



1 Introduction

There are over 100 genera of mosquito in the world containing over 3,500 species and they are found
on every continent except Antarctica [Harbach, 2013]. Only one genus (Anopheles) contains species
capable of transmitting the parasites responsible for human malaria. Anopheles contain over 475
formally recognised species, of which approximately 75 are vectors of human malaria, and around 40
are considered truly dangerous [Sinka et al., 2012]. These 40 species are inadvertently responsible
for more human deaths than any other creature. In 2019, for example, malaria caused around 229
million cases of disease across more than 100 countries resulting in an estimated 409,000 deaths
[World Health Organization, 2020]. It is imperative therefore to accurately locate and identify the
few dangerous mosquito species amongst the many benign ones to achieve efficient mosquito control.
Mosquito surveys are used to establish vector species’ composition and abundance, human biting
rates and thus the potential to transmit a pathogen. Traditional survey methods, such as human
landing catches, which collect mosquitoes as they land on the exposed skin of a collector, can be
time consuming, expensive, and are limited in the number of sites they can survey. They can also be
subject to collector bias, either due to variability in the skill or experience of the collector, or in their
inherent attractiveness to local mosquito fauna. These surveys can also expose collectors to disease.
Moreover, once the mosquitoes are collected, the specimens still need to undergo post sampling
processing for accurate species identification. Consequently, an affordable automated survey method
that detects, identifies and counts mosquitoes could generate unprecedented levels of high-quality
occurrence and abundance data over spatial and temporal scales currently difficult to achieve. We
therefore utilise low-cost smartphones, acting as acoustic mosquito sensors, to solve this task. The
exponential increase in smartphone ownership is a worldwide phenomenon. Governments and
independent companies are continuing to extend connectivity across the African continent [Friederici
et al., 2017]. More than half of sub-Saharan Africa is expected to be connected to a mobile service by
2025 [GSMA, 2020]. With this expanding coverage of mobile phone networks across Africa, there
is an emerging opportunity to collect huge datasets, as exemplified by the World Bank’s Listening
to Africa Initiative [World Bank Organisation, 2017]. Our target application (Section 3) uses a free
downloadable app, which means that every smartphone can be a mosquito monitor.

Our contribution In order to assist research in methods utilising the acoustic properties of
mosquitoes, as part of the HumBug project (described in Section 3) we contribute:

• Data: http://doi.org/10.5281/zenodo.4904800: A vast database of 20 hours of
finely labelled mosquito sounds, and 15 hours of associated non-mosquito control data,
constructed from carefully defined recording paradigms. Data was collected over the
course of five years in a global collaboration with mosquito entomologists. Recordings
were captured from 36 species with a mix of low-cost smartphones and professional-grade
recording devices, to capture both the most accurate noise-free representation, as well as
the sound that is likely to be recorded in areas most in need. A diverse quantity of wild and
lab culture mosquitoes is included in the database to capture the biodiversity of naturally
occurring species. Our data is stored and maintained in a PostgreSQL database, ensuring
label correctness, data integrity, and allowing efficient updates and re-release of data.

• Mosquito event detector and species classification baselines: https://github.com/
HumBug-Mosquito/HumBugDB: Detailed tutorial code for training state-of-the-art Bayesian
neural network models for two key tasks – Mosquito Event Detection (MED): distinguishing
mosquitoes of any species from their background surroundings, such as other insects, speech,
urban, and rural noise; Mosquito Species Classification (MSC): species classification of
over 1,000 individually captured wild mosquitoes. In combination, our tasks and models
are the first of their kind to use large-scale real-world data for the purpose of automating
acoustic mosquito species monitoring.

The rest of the paper is structured as follows. Section 2 details related datasets and describes how
ours contributes to the literature uniquely. Section 3 shows the intended use cases for the data and
models released in this paper. Section 4 describes in depth the sources and collection methods of data
present. The steps taken to benchmark models for MED and MSC are given in Section 5. We discuss
the results that our models achieve, and the open challenges remaining. We conclude in Section 6.

Comprehensive instructions for using our baseline models and feature extraction code are provided
in Appendix B, and additional details on all the metadata in Appendix C. The datasheet (Appendix
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D) details the dataset’s composition (D.2), acquisition process (D.3), preprocessing (D.4), past and
suggested use cases (D.5), data bias and mitigation strategies (D.6), and maintenance policies (D.7).

2 Related work

Mosquitoes have particularly short, truncated wings allowing them to flap their wings faster than any
other insect of equivalent size – up to 1,000 beats per second [Simões et al., 2016, Bomphrey et al.,
2017]. This produces their distinctive flight tone and has led many researchers to try and use their
sound to attract, trap or kill them [Perevozkin and Bondarchuk, 2015, Johnson and Ritchie, 2016,
Jakhete et al., 2017, Joshi and Miller, 2021]. Table 1 provides details of the few datasets released
to the public to aid this research. We discuss the varying sensor modalities separately, due to their
inherent differences in properties.

Table 1: Publicly available datasets. ‘Average mosquito’ is the approximate length of audible mosquito
recording per sample. Where not known, ‘Mosquito’ is estimated from the average mosquito sample
duration multiplied by the number of positive samples. ‘Type’ represents wild captured or lab grown
mosquitoes (in order of prevalence). Crowdsourced recordings or labels are marked with (*).

Dataset Sensor Mosquito
(Background)

Average
mosquito Species Type

Chen et al. [2014, UCR] Opto-acoustic 17 min (N/A) ≈ 0.02 s 6 Lab
Fanioudakis et al. [2018] Opto-acoustic 39 hr (N/A) ≈ 0.5 s 6 Lab
Vasconcelos et al. [2020] Acoustic 15 min (N/A) 0.3 s 3 Lab
Mukundarajan et al. [2017] (*) Acoustic N/A (N/A) N/A 20 Lab + wild
Kiskin et al. [2019, 2020] (*) Acoustic 2 hr (20 hr) 1 s N/A Lab + wild

HumBugDB Acoustic 20 hr (15 hr) 9.7 s 36 Wild + lab

Opto-acoustic approaches ‘Wingbeats’ [Fanioudakis et al., 2018] and ‘UCR Flying Insect Classi-
fication’ [Chen et al., 2014] are datasets collected via optical sensors with high signal-to-noise-ratio
(SNR). We note this is a different, but complementary, approach. Due to the directionality of the
recording method, typical sample durations are encountered from “only a few hundredths of a second”
[Chen et al., 2014] to approximately half a second [Fanioudakis et al., 2018]. The approach therefore
does not capture the acoustical properties of mosquito sound in free flight which aid mosquito
detection in purely acoustic approaches [Vasconcelos et al., 2020]. Furthermore, these datasets survey
lab-grown mosquito colonies which do not capture the biodiversity of mosquitoes encountered in the
wild [Huho et al., 2007, Hoffmann and Ross, 2018].

Acoustic approaches Vasconcelos et al. [2020] motivated their release by stating that none of the
published datasets include environmental noise, which is essential to fully characterise mosquitoes in
real-world scenarios. The dataset consists of 300 ms snippets, amounting to 15 minutes of recordings.
This is an excellent first step. However, for deep learning algorithms the dataset is not readily useable
due to its size. Moreover, state-of-the-art models for acoustic classification use training example sizes
of at least 0.96 seconds for a variety of audio event detection tasks [Hershey et al., 2017, Pons et al.,
2017, Shimada et al., 2020]. Our dataset consists of mosquito samples with an average duration of 10
seconds. Additionally, we supply equal quantities of background collected in the same controlled
conditions to form a balanced class distribution of mosquito occurrences and a negative control group
(see Section 4). This is to prevent the recording device or background environment from becoming a
confounding factor for the detection of acoustic events [Coppock et al., 2021].

Mukundarajan et al. [2017] released an acoustic dataset recorded in free flight with smartphones.
However, due to a lack of a rigorous protocol, the quality of the recordings is inconsistent, and there
is a lack of metadata recording external factors which influence mosquito sound. There are no labels
to timestamp the mosquito events in files where mosquito sound is only sporadic, detracting from the
overall utility of the dataset.

Kiskin et al. [2019, 2020] released 22 hours of audio, with crowdsourced labels covering overlapping
two-second sections. However, of these, only 2 hours were labelled as containing mosquito sound. In
addition, the accuracy of the labels was unknown, and the task of labelling was made difficult as clips
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MozzWear Mosquito
detector

HumBugDBVAD MongoDB Species
classifier

Figure 1: Target workflow. Our mobile phone app, MozzWear, captures audio. The app synchronises
to a central server (dashed). Voice activity is removed and data is stored in a MongoDB instance.
Audio undergoes mosquito event detection (MED) and subsequent species classification (MSC).
Successful detections are used to update HumBugDB. Information feeds back to improve the model.

were presented in isolation, lacking the relevant background information that specialists utilised for
their labels. Curated data of that release is a subset of HumBugDB, in which we improve upon the
past release thanks to a joint effort between the zoological and machine learning communities.

Nevertheless, we stress that experimentation which combines information from all of the datasets
found in the literature is highly encouraged, and may help find solutions that cover multiple recording
modalities, such as both opto-acoustic and acoustic sensors.

3 Data for mosquito-borne disease prevention

The HumBug project is a collaboration between the University of Oxford and mosquito entomologists
worldwide [HumBug, 2021]. One of the goals of the project is to develop a mosquito acoustic sensor
that can be deployed into the homes of people in malaria-endemic areas to help monitor and identify
the mosquito species, allowing targeted and effective vector control. In the following paragraphs we
describe the system of Figure 1 to be deployed for this purpose, the role of each component, and the
two key tasks (MED, MSC) our models are able to address thanks to the data of HumBugDB.

Capturing mosquito with smartphones We developed a power-efficient app to record mosquito
flight tone using the in-built microphone on a smartphone (MozzWear [Marinos et al., 2021]). We
used 16-bit mono PCM wave audio sampled at 8,000 Hz, based on prior acoustic low-cost smartphone
recording solutions for mosquitoes [Li et al., 2017b, Kiskin et al., 2018]. To ensure mosquitoes fly
close enough to a smartphone, we have developed an adapted bednet (the HumBug Net) that exploits
the inherent behaviour of host-seeking mosquitoes (Figure 2, for details refer to Sinka et al. [2021,
Sec. 2.1.2]). The combination of the bednets and smartphones constitutes the intended use case, for
which we construct MED: Test A (see Table 2).

MongoDB Following app recording, audio is synchronised by the app to a central file server for
the storage of sound recordings, and a MongoDB [MongoDB Inc, 2021] instance for the storage
of metadata. The server possesses a frontend dashboard where recordings and predictions fed back
from the model can be accessed. The unstructured nature of the NoSQL engine allows for additional
flexibility in storing metadata, especially when new information becomes available.

Mosquito Event Detection (MED) A Bayesian convolutional neural network (BCNN), which
provides predictions with uncertainty metrics [Kiskin et al., 2021] is used to detect mosquito events.
Positive predictions are then filtered by the probability, mutual information and predictive entropy
[Houlsby et al., 2011], screened, and stored in a curated database. This drastically reduces the time
spent labelling by domain experts – for our bednet data recorded in Tanzania, we estimate 1 to 2 %
of 2,000 hours of recorded data contained mosquito events. Finding these events without assistance
from the model was infeasible due to the vast quantity of data. Section 5.1 defines two test sets to
further motivate model development for this task.

Mosquito Species Classification (MSC) A second BCNN is trained specifically for species clas-
sification. Once mosquito events have been identified, a probability distribution over species is
produced. The report is made available through an HTML dashboard and can be streamed to the app
to provide feedback to users. Section 5.2 details the MSC task.
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Atlanta, USA

Mosquito (s)
Species
Experiments

133
17

1

Thailand

Mosquito (s)
Species
Experiments

9,306
5
1

Oxford, London, UK

Mosquito (s)
Species
Experiments

7,686
5
3

IHI, Tanzania

Mosquito (s)
Species
Experiments

54,116
17

2

HumBug Net

USAMRU-Kenya

Mosquito (s)
Species
Experiments

2,475
1
1

Cup recordings

Cow-baited nets

Figure 2: Map of aggregated data acquisition sites. HumBug Net: Sinka et al. [2021, Sec. 2.1.2].

PostgreSQL database Due to the complex requirements of variables and data storage, we designed
a relational database [PostgreSQL Global Development Group, 2021] which ensures a standardisation
in the labelling and metadata process. This mitigates a major cause of data quality issues and time
costs in field studies. Data has been obtained from controlled studies in focused experiments, with
the aid of MED models where applicable. We discuss the sources of the data present in Section
4. Recordings are stored in wave format at their respective sample rates, and all the metadata in
csv format (Appendix C). For our maintenance policy, details of ethics agreements, and detailed
documentation, refer to the datasheet (Appendix D).

Privacy As a subset of data from the database may contain human speech, and other types of
personal data, we include in this paper only audio which has been assigned an explicit label of

‘mosquito’, ‘audio’, ‘background’, or otherwise full consent from members was obtained (for example
where entomology experts state a recording ID). To ensure no speech that has not had explicit consent
for is included in future releases, we perform voice activity detection (VAD) and removal using
Google’s WebRTC project, which is open-source and lightweight [Ali, 2018, Karrer, 2020]. Sahoo
[2020] tested the WebRTC VAD method over 396 hours of data, across multiple recording types. The
approach was between 77 % and 99.8 % accurate. A list of approved ethical review processes is given
in Appendix D.3.

4 The HumBugDB dataset

Our large-scale multi-species dataset contains recordings of mosquitoes collected from multiple
locations globally, as well as via different collection methods. Figure 2 shows the different locations,
with the availability of labelled mosquito sound (in seconds) and number of species, and the number
of experiments conducted at each location. In total, we present 71,286 seconds (20 hours) of labelled
mosquito data with 53,227 seconds (15 hours) of corresponding background noise to aid with the
scientific assessment process, recorded at the sites of 8 experiments. Of these, 64,843 seconds contain
species metadata, consisting of 36 species (or species complexes) with the distributions illustrated
in Appendix C, Figure 11 and Table 6. Table 2 gives a more detailed summary of the nature of
mosquitoes that were captured, and Appendix C gives a complete explanation of every field in the
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Table 2: Key audio metadata and division into train/test for the tasks of MED: Mosquito Event
Detection, and MSC: Mosquito Species Classification. ‘Wild’ mosquitoes captured and placed into
paper ‘cups’ or attracted by bait surrounded by ‘bednets’. ‘Culture’ mosquitoes bred specifically for
research. Total length (in seconds) of mosquito recordings per group given, with the availability of
species meta-information in parentheses. Total length of corresponding non-mosquito recordings,
with matching environments, given as ‘Negative’. Full metadata documented in Appendix C.

Tasks:
Train/Test

Mosquito
origin

Site
Country

Method
(year)

Device
(sample rate)

Mosquito (s)
(with species)

Negative
(s)

MSC: Train/Test
MED: Train Wild IHI

Tanzania
Cup
(2020)

Telinga
44.1 kHz

45,998
45,998 5,600

MED: Train Wild Kasetsart
Thailand

Cup
(2018)

Telinga
44.1 kHz

9,306
2,869 7,896

MED: Train Culture OxZoology
UK

Cup
(2017)

Telinga
44.1 kHz

6,573
6,573 1,817

MED: Train Culture LSTMH
(UK)

Cup
(2018)

Telinga
44.1 kHz

376
376 147

MED: Train Culture CDC
USA

Cage
(2016)

Phone
8 kHz

133
127 1,121

MED: Train Culture USAMRU
Kenya

Cage
(2016)

Phone
8 kHz

2,475
2,475 31,930

MED: Test A Culture IHI
Tanzania

Bednet
(2020)

Phone
8 kHz

4,118
4,118 3,979

MED: Test B Culture OxZoology
UK

Cage
(2016)

Phone
8 kHz

737
737 2,307

Total 71,286
64,843 53,227

metadata. We also demonstrate example spectrograms for a variety of mosquito species in Figure 8,
Appendix B.5, and supply a tool to play back and visualise audio clips1 (see Figure 9, Appendix B.5).

In the following section we break down the data sources according to the nature of mosquitoes – bred
within laboratory culture (Section 4.1.1) or wild (Section 4.1.2). We discuss the recording device and
the environment the free-flying mosquitoes were recorded in: culture cages, cups or in HumBug Nets.
We also state the methods of capture, where applicable, documented in more detail in Appendix C.

4.1 Data collection

4.1.1 Laboratory culture mosquitoes

Many institutes that conduct research into mosquito-borne diseases hold laboratory cultures of
common vector species. These include primary malaria vectors (e.g. An. arabiensis), primary vectors
of the dengue virus (Aedes albopictus), yellow fever virus (Aedes aegypti) and the West Nile virus
(Culex quinquefasciatus). The controlled conditions of laboratory cultures produce uniformly sized
fully-developed adult mosquitoes which are used for a variety of purposes, including trialling new
insecticides or examining the genome of these insects.

UK, Kenya, USA Mosquitoes were recorded by placing a recording device into the culture cages
where one or multiple mosquitoes were flying, or by placing individual mosquitoes into large cups and
holding these close to the recording devices (denoted by device_type). Recordings were captured
at the London School of Tropical Medicine and Hygiene (LSTMH), the United States Army Medical
Research Unit-Kenya (USAMRU-K), the Center for Diseases Control and Prevention (CDC), Atlanta,
as well as with mosquitoes raised from eggs at the Department of Zoology, University of Oxford.
We reserve one set of these recordings taken in culture cages by Zoology, Oxford, as MED: Test B
(Table 2). Past models were able to achieve excellent mosquito detection performance when trained

1https://github.com/HumBug-Mosquito/HumBugDB/blob/master/notebooks/spec_audio_
multispecies.ipynb
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on recordings held out from the same experiment [Kiskin et al., 2018, 2017]. In this paper we treat
this experiment as disparate from the remaining data, increasing the difficulty of the detection task.

Tanzania To achieve targeted vector control through the deployment in people’s homes, we need
to be able to passively capture the mosquito’s flight tone. Therefore, in our database we include
mosquitoes passively recorded in the Ifakara Health Institute’s (IHI) semi-field facility, that most
closely resembles the intended use of the HumBug system. It is for this reason that a labelled
subset (by an expert zoologist with the help of a BCNN) of this data forms MED: Test A (Table 2).
The facility houses six chambers containing purpose-built experimental huts, built using traditional
methods and mimicking local housing constructions, with grass roofs, open eaves and brick walls.
Four different configurations of the HumBug Net [Sinka et al., 2021], each with a volunteer sleeping
under the net, were set up in four chambers. Budget smartphones were placed in each of the four
corners of the HumBug Net (Figure 2). Each night of the study, 200 laboratory cultured An. arabiensis
were released into each of the four huts and the MozzWear app began recording.

4.1.2 Wild captured mosquitoes

Wild mosquitoes naturally exhibit far greater variability and are thus crucial to sample for real-
world detection capability assessment. To study how this affects our ability to distinguish different
species, we conducted experiments in Thailand and Tanzania. Recordings made in Thailand were
used to demonstrate that flight tone has the potential to distinguish different species [Li et al.,
2018]. In Section 5.2, we consider an extension with a greater number of species and more rigorous
experimental design with data recorded in Tanzania, forming the MSC dataset of Table 2.

Thailand Across the malaria endemic world, Asia has more dominant vector species (mosquitoes
whose abundance or propensity to bite humans makes them particularly efficient vectors of disease)
than anywhere else. Mosquitoes were sampled using ABNs (animal-baited nets in Figure 2), human-
baited nets (HBNs) and larval collections (LC) over a period of two months during peak mosquito
season (May to October 2018). Sampling was conducted in Pu Teuy Village at a vector monitoring
station owned by the Kasetsart University, Bangkok. The mosquito fauna at this site include a
number of dominant vector species, including An. dirus and An. minimus alongside their siblings
An. baimaii and An. harrisoni respectively (Appendix C, Figure 11 and Table 6 show the exact
species distribution). Mosquitoes were collected at night, carefully placed into large sample cups
and recorded the following day using a high-spec Telinga EM23 field microphone and a budget
smartphone (see Appendix D.3 for device details).

Tanzania While Asia has the most diverse vectors, sub-Saharan Africa has the most dangerous
mosquito species (An. gambiae), responsible for the highest transmission of human malaria in the
world, and the highest number of deaths [World Health Organization, 2020]. In collaboration with the
IHI, HBNs, larval collections and CDC-LTs (metadata method, Appendix C) were used to sample
wild mosquitoes in the Kilombero Valley, Tanzania, and record them in sample cups in the laboratory.
An. gambiae and An. funestus (another highly dangerous mosquito found across sub-Saharan Africa),
are also siblings within their respective species complexes. Thus, standard polymerase chain reaction
(PCR) identification techniques [Scott et al., 1993] were used to fully identify mosquitoes from these
groups.2 For all the cup recordings in Thailand and Tanzania, environmental conditions (temperature,
humidity) were monitored throughout the recording process. The Tanzanian sampling has collected
17 different species (Figure 11, Table 6 show a full breakdown). Example spectrograms are shown
for the eight most populated species in Appendix B.5 Figure 8.

5 Benchmark

To showcase the utility of the data, we supply baseline models for MED in Section 5.1, and MSC in
Section 5.2. For both tasks, we discuss possible data biases arising from species imbalance, mosquito
types, and multiple recording devices, and suggest mitigation strategies in Appendix D.6. Detailed
instructions for code use are given in Appendix B. Further use cases are discussed in Appendix D.5.

2The database gives the PCR identification within the species column, or the genus/complex if not available.
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Models BNNs provide estimates of uncertainty, alongside strong supervised classification perfor-
mance, which is desirable for real-world use cases such as ours. BNNs are also naturally suited
to Bayesian decision theory, which benefits decision-making applications with different costs on
error types (e.g. Anopholes species are more critical to classify correctly) [Vadera et al., 2021, Cobb
et al., 2018]. We thus supply three benchmark BNN model classes for this dataset, noting that
their equivalent deterministic counterparts achieved either equal or marginally worse classification
performance. Details of the training hardware, hyperparameters, and modifications to the models are
given in Appendix B.4.

1. MozzBNNv2: A CNN with four convolutional, two max-pooling, and one fully connected
layer augmented with dropout layers (shown in Appendix B.4, Figure 3). Its structure is
based on prior models that have been successful in assisting domain experts in curating parts
of this dataset with uncertainty metrics [Kiskin et al., 2021].

2. ResNet BNN: ResNet has achieved state-of-the-art performance in audio tasks [Palanisamy
et al., 2020] motivating its use as a baseline model in this paper. We augment the model with
dropout layers in the building blocks to approximate a BNN. We opt to use the pre-trained
model for a warm start to the weight approximations.

3. VGGish BNN: VGGish has become a benchmark in a variety of audio recognition tasks
[Hershey et al., 2017]. We use the full pre-trained features and embeddings model, adding a
single dropout and final linear layer to perform MC dropout for classification. We describe
further modifications to the model class in Appendix B.4.

Features We provide the following features for our models (see Appendix B.3 for details):

1. Feat. A: Features with default configuration from the VGGish GitHub intended for use with
VGGish: 64 log-mel spectrogram coefficients using 96 feature frames of 10 ms duration
forming a single example Xi ∈ R64×96 with a temporal window of 0.96 s.

2. Feat. B: Features originally designed for MozzBNNv2 (previous mosquito detection work
[Kiskin et al., 2021]): 128 log-mel spectrogram coefficients with a reduced time window of
30 (from 40) feature frames and a stride of 5 frames for training. Each frame spans 64 ms,
forming a single training example Xi ∈ R128×30 with a temporal window of 1.92 s.

Performance metrics We define the test performance with four metrics: the receiver operating
characteristic area-under-curve score (ROC AUC), the precision-recall area-under-curve score (PR
AUC), the true positive rate (TPR), also known as the recall, and the true negative rate (TNR), to
account for class imbalances in the test sets. These are evaluated over non-overlapping feature
windows of 1.92 seconds. To compare the feature sets fairly, Feat. A test data is aggregated over
neighbouring windows to form decisions over 1.92 s intervals. Edge cases where the data cannot be
partitioned into full examples are removed from the test sets.

5.1 Task 1: Mosquito Event Detection (MED)

For mosquito event detection, we hold out Test A of labelled field data which most closely resembles
the recording configuration of our system in Figure 1. Achieving good performance on that set does
not guarantee good scalability to other use cases in itself. Therefore, we also evaluate over Test B,
recorded in a cage placed in a highly noisy domestic environment. As a result, the SNR is much
lower than that of Test A. The statistics of the training and test sets are given in the rows of Table 2.

For the intended use case of Test A, all of the model and feature combinations were able to achieve
ROC AUC above 0.93 and PR AUC above 0.90 (Table 3). Furthermore, all of the models improve in
performance when utilising Feat. A over Feat. B. However, performance on Test B is significantly
lower for all models with no clear preference for features. The highest AUCs are achieved by
BNN-ResNet when trained on Feat. B (ResNet18: ROC: 0.770, PR: 0.749, ResNet50: ROC: 0.76,
PR: 0.750). To verify that the issue does not lie in the test set, after manually verifying each label
resulting from feature extraction, we trained a model on half of Test B to achieve an ROC AUC of
0.915 on the second half of Test B. (Appendix B.5, Figure 4). Furthermore, prior work was able
to achieve ROC AUCs of 0.871 to 0.952 with smaller neural networks which were optimised for
use with scarce data [Kiskin et al., 2017]. The task presented in this paper, however, is to be able
to achieve good performance over Test B, in addition to Test A, without the model having access
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Table 3: Mosquito Event Detection (MED). Test A: IHI Tanzania with HumBug Net. Test B:
Oxford Zoology caged. Evaluated over Nmozz mosquito, and Nnoise background 1.92 second samples.
30 samples drawn from each BNN to estimate the posterior. ROC AUC, PR AUC, TPR and TNR
scores given as percentages (×102). The baseline ROC AUC score is given by 50 (completely random
classifier). PR AUCs are relative to the prevalence of the classes, given by Nmozz/(Nmozz +Nnoise).

Data Metric MozzBNNv2 BNN-ResNet50 BNN-ResNet18 BNN-VGGish

Feat. A Feat. B Feat. A Feat. B Feat. A Feat. B Feat. A Feat. B

Test A
Nmozz: 1,714
Nnoise: 2,068

ROC 98.1 96.4 98.3 93.0 98.1 92.5 98.5 97.3
PR 97.9 97.1 98.2 93.6 98.0 89.5 98.1 97.6
TPR 79.5 79.9 76.9 79.1 67.0 76.1 85.6 87.3
TNR 98.3 98.4 99.0 91.2 99.5 89.1 98.4 97.4

Test B
Nmozz: 616
Nnoise: 1,084

ROC 71.1 58.4 74.8 76.1 71.1 77.0 74.1 57.4
PR 64.0 63.2 72.0 75.0 68.5 74.9 70.7 61.3
TPR 30.1 30.9 31.0 34.1 30.6 32.8 30.8 31.7
TNR 99.3 99.2 100.0 98.8 100.0 99.3 100.0 99.3

to any data (or covariates) from either test set during training. This task therefore poses a challenge
to promote the development of generalisable deep learning models, which we require for robust
deployment.

5.2 Task 2: Mosquito Species Classification (MSC)

This task utilises data collected with a wide range of well-populated species of wild captured
mosquitoes at IHI Tanzania. We split the 8 most populated species by recordings (each audio_id
records a unique mosquito) into a 75-25 % train-test partition through a range of 5 fixed random
seeds. To address data imbalance, upon training, we supply class weights as the inverse of the class
frequency. From our experiments, this strategy has produced better results versus downsampling
majority or oversampling minority classes, but there is likely room for improvement to be found here
with paradigms such as few-shot learning [Sun et al., 2019], loss-calibrated inference [Cobb et al.,
2018], and many more. To further motivate our two-stage pipeline, we note that the start and stop
time tags for this dataset were auto-generated with a prior BCNN [Kiskin et al., 2021]. These factors
contribute to a realistic test-bed for our pipeline of Figure 1, and hence any models developed for this
dataset are candidates for real-world deployment.

The ROC AUC of 0.927 and PR AUC of 0.716 produced for this classification problem (Table 4)
by the best-performing baseline model, MozzBNNv2-FeatB, demonstrate the ability to discriminate
between different species of mosquitoes that have been sampled individually in the wild.

The results also show how our dataset is well suited for training multi-species classifiers to a degree
that was not available previously. From the total ROC and PR AUCs, there is a slight preference for
Feat. B for all models, except VGGish (as Feat. A were naturally made to be used with the model).

When interpreting PR AUC scores, a good indication of model performance is given by the increase
in PR AUC over the baseline prevalence, given in the first column of Table 4. Due to the heavy class
imbalance, the PR AUC scores are significantly lower on the minority classes, except for Ae. aegypti
mosquitoes, which may be due to their larger size and hence more distinct difference in acoustic
properties. The model confusion occurs in species with similar physical characteristics (see Appendix
B.5, Figure 8 for a visualisation of spectra for each species). Example class-specific softmax outputs,
ROC and PR curves, as well as confusion matrices are discussed in further detail in Appendix B.5.

Maximising PR performance of the under-represented, lower-scoring, classes, is the primary area in
need of improvement in this task, which we encourage researchers to explore further.

9



Table 4: Mosquito Species Classification (MSC): Statistics, ROC AUC and PR AUC scores on the
cup recordings conducted at IHI Tanzania. The total AUCs are given by the micro average. The
baseline ROC AUC score is given by 50 (completely random classifier). PR AUC scores are relative
to the prevalence of the classes, given by the number of (test) mosquitoes per class divided by the
total number of mosquitoes (test). All scores are reported as mean (standard deviation) over 5 random
train-test partitions (×102) of unique wild ‘mosquitoes’, with the distribution of column 1 in the form
of train (test), prevalence (%).
Mosquito
Train (test),
Prevalence

Metric MozzBNNv2 BNN-ResNet50 BNN-ResNet18 BNN-VGGish

Feat. A Feat. B Feat. A Feat. B Feat. A Feat. B Feat. A Feat. B

An. arabiensis ROC 83.7 (1.2) 86.6 (1.0) 75.8 (7.3) 84.9 (2.4) 75.6 (7.7) 83.4 (8.7) 85.7 (2.2) 84.1 (1.5)
385 (129), 36% PR 77.5 (2.5) 80.9 (1.6) 71.8 (5.8) 80.3 (4.4) 67.9 (9.7) 78.5 (8.8) 80.2 (3.9) 77.3 (2.2)
Culex pipiens ROC 81.4 (1.2) 86.7 (1.4) 85.0 (2.2) 84.0 (3.3) 85.0 (2.5) 85.6 (4.8) 82.1 (1.7) 81.4 (1.6)
252 (84), 24% PR 57.3 (3.3) 66.9 (2.3) 61.4 (4.4) 60.1 (5.6) 60.3 (7.6) 67.6 (8.3) 59.0 (3.6) 59.0 (3.0)
Ae. aegypti ROC 95.0 (0.8) 96.4 (1.9) 98.8 (0.6) 97.1 (1.8) 98.2 (0.3) 94.5 (1.1) 96.6 (1.0) 96.3 (2.3)
36 (13), 3.6% PR 53.8 (7.2) 74.4 (5.1) 83.0 (2.7) 78.0 (11) 76.6 (3.9) 75.9 (3.1) 66.6 (7.7) 76.0 (4.9)
An. funestus ss ROC 91.7 (0.6) 92.3 (1.3) 93.8 (2.1) 84.7 (7.2) 85.5 (7.7) 90.6 (4.9) 93.5 (1.4) 91.0 (1.5)
186 (62), 17.5% PR 78.2 (1.9) 80.9 (1.1) 84.6 (4.5) 70.9 (10) 67.2 (14) 77.4 (9.6) 83.3 (3.3) 76.0 (4.2)
An. squamosus ROC 78.2 (1.9) 85.2 (2.4) 88.8 (4.4) 85.2 (5.3) 86.5 (3.2) 83.5 (3.9) 83.6 (3.3) 86.4 (2.9)
68 (23), 6.5% PR 21.1 (3.3) 35.6 (5.8) 39.4 (10) 34.5 (8.5) 36.0 (6.2) 40.3 (9.8) 28.6 (8.1) 35.6 (6.1)
An. coustani ROC 90.8 (2.3) 88.4 (3.2) 93.4 (1.4) 85.1 (4.6) 92.2 (2.3) 83.6 (5.5) 89.9 (4.6) 85.2 (4.1)
37 (13), 3.6% PR 32.7 (8.0) 26.6 (8.4) 35.2 (8.5) 23.4 (11) 32.5 (16) 26.4 (9.8) 33.2 (10) 25.7 (8.2)
Ma. uniformis ROC 82.5 (7.6) 82.0 (6.4) 84.7 (6.9) 83.6 (9.4) 87.5 (4.5) 80.1 (8.8) 83.4 (2.2) 77.2 (8.3)
57 (19), 5.4% PR 33.9 (8.7) 29.6 (9.0) 35.4 (10) 34.5 (13) 35.9 (7.8) 35.4 (13) 29.1 (4.5) 23.4 (5.2)
Ma. africanus ROC 91.2 (3.0) 91.3 (1.7) 93.0 (2.4) 84.5 (8.9) 89.9 (4.6) 85.8 (4.3) 92.0 (2.6) 91.1 (2.2)
28 (10), 2.8% PR 26.8 (9.7) 22.3 (5.0) 29.0 (10) 22.7 (19) 24.3 (11) 21.9 (4.2) 33.5 (8.8) 23.4 (3.2)

Total ROC 91.4 (0.8) 92.7 (0.9) 89.9 (2.5) 90.4 (2.1) 90.1 (2.1) 90.8 (3.1) 92.1 (1.2) 91.4 (0.7)
1049 (353) PR 66.9 (2.1) 71.6 (2.2) 63.4 (4.8) 65.0 (3.8) 57.7 (7.3) 69.2 (8.4) 68.1 (3.9) 66.2 (2.0)

6 Conclusion

In this paper we present a database of 20 hours of finely labelled mosquito sounds and 15 hours
of associated non-mosquito control data, constructed from carefully defined recording paradigms.
Our recordings capture a diverse mixture of 36 species of mosquitoes from controlled conditions
in laboratory cultures, as well as mosquitoes captured in the wild. The dataset is a result of a
global co-ordination as part of the HumBug project. Our paper makes the significant contribution of
providing both the large multi-species dataset and the infrastructure surrounding it, designed to make
it straightforward for researchers to experiment with.

Despite decades of work, mosquito-borne diseases are still dangerous and prevalent, with malaria
alone contributing to hundreds of thousands of death each year. Therefore a further contribution of
this work is to make available mosquito data that is still a scarce commodity. In addition, we have
highlighted that our dataset contains real field data collected from smartphones, as well as varying
background environments and different experimental settings. As a result, this multi-species data
set will continue to help domain-experts in the bio-sciences study the spread of mosquito-carrying
diseases, as well as the myriad of factors that affect acoustic flight tone.

Finally, HumBugDB will be of interest to machine learning researchers working with acoustic data,
both in the challenges posed by real-world acoustic data, as well as in the way that we use Bayesian
neural networks for mosquito event detection and species classification. We provide baseline models
alongside extensive documentation. As a result, we make it easy for researchers to start building their
own models. It is our aim, by releasing this dataset and identifying areas for improvement in our
baseline tasks, to encourage further work in the detection of mosquitoes. We hope this in turn leads
to improved future detection and classification algorithms.
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