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We confirm the usage of MIT license, as our data can be created with the released code. The authors
state that we bear all responsibility in case of violation of rights, etc. We will maintain the platform,
dataset, and codebase for long-term accessibility. A download of TDW’s full codebase and docu-
mentation is available at: https://github.com/threedworld-mit/tdw; the code for creating
datasets described in this paper are available at: TDW-Image, TDW-Sound, and TDW-Physics.

In this supplement, we start by discussing the broader impact of TDW. Section 2 discusses implemen-
tation details of the TDW image dataset, and explains the setup of each scenario in the Advanced
Physical Prediction Benchmark dataset described in the paper. Section 3 introduces the details of
training the HRN [14] and new proposed DRHRN for physical dynamics predictions. We then
elaborate on the lighting model used in TDW, and in Section 5 discuss in more detail how TDW
compares to other simulation environments. Lastly, Section 6 provides a detailed overview of TDW’s
system architecture, API, benchmarks and code examples showing both back-end and front-end
functionality.

1 Broader Impact

As we have illustrated, TDW is a completely general and flexible simulation platform, and as such
can benefit research that sits at the intersection of neuroscience, cognitive science, psychology,
engineering and machine learning / AI. We feel the broad scope of the platform will support research
into understanding how the brain processes a range of sensory data – visual, auditory and even tactile
– as well as physical inference and scene understanding. We envision TDW and PyImpact supporting
research into human – and machine – audio perception, that can lead to a better understanding of the
computational principles underlying human audition. This understanding can, for example, ultimately
help to create better assistive technology for the hearing-impaired. We recognize that the diversity
of “audio materials” used in PyImpact is not yet adequate to meet this longer-term goal, but we
are actively addressing that and plan to increase the scope significantly. We also believe the wide
range of physics behaviors and interaction scenarios TDW supports will greatly benefit research
into understanding how we as humans learn so much about the world, so rapidly and flexibly, given
minimal input data. While we have made significant strides in the accuracy of physics behavior
in TDW, TDW is not yet able to adequately support robotic simulation tasks. To support visual
object recognition and image understanding we constantly strive to make TDW’s image generation as
photoreal as possible using today’s real-time 3D technology. However, we are not yet at the level
we would like to be. We plan to continue improving our rendering and image generation capability,
taking advantage of any relevant technology advances (e.g. real-time hardware-assisted ray tracing)
while continuing to explore the relative importance of object variance, background variability and
overall image quality to vision transfer results.
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2 Dataset Details

2.1 TDW-image Dataset

To generate images, the controller runs each model through two loops. The first loop captures camera
and object positions, rotations, etc. Then, these cached positions are played back in the second loop to
generate images. Image capture is divided this way because the first loop will "reject" a lot of images
with poor composition; this rejection system doesn’t require image data, and so sending image data
would slow down the entire controller.

The controller relies on IdPassGrayscale data to determine whether an image has good composition.
This data reduces the rendered frame of a segmentation color pass to a single pixel and returns the
grayscale value of that pixel. To start the positional loop, the entire window is resized to 32 × 32 and
render quality is set to minimal, in order to speed up the overall process. There are then two grayscale
passes: One without occluding objects (by moving the camera and object high above the scene) and
one with occluding scenery, but the exact same relative positions and rotations. The difference in
grayscale must exceed 0.55 for the camera and object positions and rotations to be “accepted". This
data is then cached. In a third pass, the screen is resized back to 256 × 256, images and high-quality
rendering are enabled, and the controller uses the cached positional/rotational data to iterate rapidly
through the dataset.

Figure 1: Examples from the TDW pre-training dataset, to be released as part of the TDW package.

2.2 Advanced Physical Prediction Benchmark

Individual descriptions of each of the physics dataset scenarios as mentioned in the paper and shown
in the Supplementary Material video. Note that additional scenarios are included here that were not
mentioned in the paper; some are included in the video.

Binary Collisions Randomly-selected "toys" are created with random physics values. A force of
randomized magnitude is applied to one toy, aimed at another.

Complex Collisions Multiple objects are dropped onto the floor from a height, with randomized
starting positions and orientations.

Object Occlusion Random "big" and "small" models are added. The small object is at random
distance and angle from the big object. The camera is placed at a random distance and rotated such
that the "big" model occludes the "small" model in some frames. Note – not included in video.

Object Permanence A ball rolls behind an occluding object and then reemerges. The occluder is
randomly chosen from a list. The ball has a random starting distance, visual material, physics values,
and initial force.

Shadows A ball is added in a scene with a randomized lighting setup. The ball has a random initial
position, force vector, physics values, and visual materials. The force vectors are such that the ball
typically rolls through differently-lit areas, i.e. a bright spot to a shadowy spot.

Stability A stack of 4-7 objects is created. The objects are all simple shapes with random colors. The
stack is built according to a "stability" algorithm; some algorithms yield more balanced stacks than
others. The stack falls down, or doesn’t.

Containment A small object is contained and rattles around in a larger object, such as a basket or
bowl. The small object has random physics values. The bowl has random force vectors.
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Sliding/Rolling Objects are placed on a table. A random force is applied at a random point on the
table. The objects slide or roll down.

Bouncing Four "ramp" objects are placed randomly in a room. Two to six "toy" objects are added to
the room in mid-air and given random physics values and force vectors, such that they will bounce
around the scene. Note – not included in video.

Draping/Folding A cloth falls, 80 percent of the time onto another rigid body object. The cloth has
random physics values.

Dragging A rigid object is dragged or moved by pulling on a cloth under it. The cloth and the object
have random physics values. The cloth is pulled in by a random force vector.

Squishing Squishy objects deform and are restored to original shape depending on applied forces
(e.g. squished when something else is on top of them or when they impact a barrier). Note – not
included in video.

Submerging Objects sink or float in fluid. Values for viscosity, adhesion and cohesion vary by
fluid type, as does the visual appearance of the fluid. Fluids represented in the video include water,
chocolate, honey, oil and glycerin.

3 Training a Learnable Intuitive Physics Simulator

HRN Architecture. We re-implemented the HRN architecture as published [14], using the
Tensorflow-2.1 library. To predict the future physical state, the HRN resolves physical constraints
that particles connected in the hierarchical graph impose on each other. Graph convolutions are used
to compute and propagate these effects. Following [3], the HRN uses a pairwise graph convolution
with two basic building blocks: (1) A pairwise processing unit φ that takes the sender particle state
ps, the receiver particle state pr and their relation rsr as input and outputs the effect esr ∈ RE of
ps on pr, and (2) a commutative aggregation operation Σ which collects and computes the overall
effect er ∈ RE . In our case this aggregation is a simple summation over all effects on pr. Together
these two building blocks form a convolution on graphs. The HRN has access to the Flex particle
representation of each object, which is provided at every simulation step by the environment. From
this particle representation, we construct a hierarchical particle relationship scene graph representation
GH . Graph nodes correspond to either particles or groupings of other nodes and are arranged in a
hierarchy, whereas edges represent constraints between nodes. The HRN as the dynamics model
takes a history of hierarchical graphs G(t−T,t]

H as input and predicts the future particle states P t+1.
The model first computes collision effects between particles (φWC ), effects of external forces (φWF ),
and effects of past particles on current particles (φWF ) using pairwise graph convolutions. The effects
are then propagated through the particle hierarchy using a hierarchical graph convolution module ηW .
First effects are propagated from leaf to ancestor particles (L2A), then within siblings (WG), and
finally from ancestors to descendants (A2D). Finally, the fully-connected module ψW computes the
next particle states P t+1 from the summed effects and past particle states.

Dynamic Recurrent HRN (DRHRN) for large environments. Representing environment compo-
nents (floor, walls) at the particle resolution of small objects is inefficient. Decreasing the resolution
is problematic as small objects might miss environment interactions. Instead, we propose to initially
model environment components as a sparse triangular mesh. At any given time, we compute each
object particle’s contact point with the environment by intersecting a ray originating from the particle
in the direction of the mesh surface normal. If the contact point is closer than distance d, we spawn
particles onto the triangle surface at the resolution of the small object. We dynamically add these
particles to the graph Gt

H and connect them to the object particle. Conversely, we delete environment
nodes from the graph when objects move away from the environment. With this novel dynamic reso-
lution method, which we call the Dynamic Recurrent HRN (DRHRN), we can efficiently represent
large environments that can be modeled with TDW.

DRHRN also builds on the original HRN by introducing an improved training loss and recurrent
component. Specifically, the DRHRN loss predicts the position delta between current and next state
∆p = pt+1−pt using L2 loss (LDelta). To preserve object structure and shape, we additionally match
the pairwise distance between predicted particle positions within each object dij = ||pi − pj || to the
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ground truth particle distances via L2 loss (LStructure). The total loss is equal to the α weighted sum
of both loss terms: L = αLStructure + (1− α)LDelta.

Iterative physics prediction models accumulate errors exponentially. Naively trained one-step physics
predictors only operate on ground truth input and do not see their own predictions as input during
training, despite being tested via unrolling the model. To make DRHRN robust against its own
prediction errors, we therefore train the model recurrently in a state-invariant way, i.e. without using
a hidden state, as physical dynamics is state-free. The overall loss is then defined as the sum of all
per time step losses.

4 TDW Lighting Model

The lighting model for both interior and exterior environments utilizes a single primary light source
that simulates the sun and provides direct lighting, affecting the casting of shadows. In most interior
environments, additional point or spot lights are also used to simulate the light coming from lighting
fixtures in the space.

General environment (indirect) lighting comes from “skyboxes” that utilize High Dynamic Range
images (HDRI). Skyboxes are conceptually similar to a planetarium projection, while HDRI images
are a special type of photographic digital image that contain more information than a standard digital
image. Photographed at real-world locations, they capture lighting information for a given latitude and
hour of the day. This technique is widely used in movie special-effects, when integrating live-action
photography with CGI elements.

TDW’s implementation of HDRI lighting automatically adjusts:

• The elevation of the “sun" light source to match the time of day in the original image; this
affects the length of shadows.

• The intensity of the “sun" light, to match the shadow strength in the original image.
• The rotation angle of the “sun" light, to match the direction shadows are pointing in the

original image .

By rotating the HDRI image, we can realistically simulate different viewing positions, with corre-
sponding changes in lighting, reflections and shadowing in the scene (see the Supplementary Material
video for an example).

TDW currently provides over 100 HDRI images captured at various locations around the world and
at different times of the day, from sunrise to sunset. These images are evenly divided between indoor
and outdoor locations.

5 Related Simulation Environments

Recently, several simulation platforms have been developed to support research into embodied
AI, scene understanding, and physical inference. These include AI2-THOR[11], HoME[23],
VirtualHome[16], Habitat[17], Gibson[25], iGibson [24], Sapien [26] PyBullet [7], MuJuCo [20],
and Deepmind Lab [4]. However none of them approach TDW’s range of features and diversity of
potential use cases.

Rendering and Scene Types. Research in computer graphics (CG) has developed extremely photo-
realistic rendering pipelines [12]. However, the most advanced techniques (e.g. ray tracing), have yet
to be fully integrated into real-time rendering engines. Some popular simulation platforms, including
Deepmind Lab [4] and OpenAI Gym [5], do not target realism in their rendering or physics and are
better suited to prototyping than exploring realistic situations. Others use a variety of approaches
for more realistic visual scene creation – scanned from actual environments (Gibson, Habitat), artist-
created (AI2-THOR) or using existing datasets such as SUNCG [19] (HoME). However all are
limited to the single paradigm of rooms in a building, populated by furniture, whereas TDW supports
real-time near-photorealistic rendering of both indoor and outdoor environments. Only TDW allows
users to create custom environments procedurally, as well as populate them with custom object
configurations for specialized use-cases. For example, it is equally straightforward with TDW to
arrange a living room full of furniture (see Fig. 1a-b), to generate photorealistic images of outdoor
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scenes (Fig. 1c) to train networks for transfer to real-world images, or to construct a “Rube Goldberg”
machine for physical inference experiments (Fig. 1h).

Physical Dynamics. Several stand-alone physics engines are widely used in AI training, including
PyBullet and MuJuCo which support a range of accurate and complex physical interactions. However,
these engines do not generate high-quality images or audio output. Conversely, platforms with real-
world scanned environments, such as Gibson and Habitat, do not support free interaction with objects.
HoME does not provide photorealistic rendering but does support rigid-body interactions with scene
objects, using either simplified (but inaccurate) "box-collider" bounding-box approximations or the
highly inefficient full object mesh. AI2-THOR provides better rendering than HoME or VirtualHome,
with similar rigid-body physics to HoME. In contrast, TDW automatically computes convex hull
colliders that provide mesh-level accuracy with box-collider-like performance (Fig. 2). This fast-but-
accurate high-res rigid body (denoted “RF” in Table 1) appears unique among integrated training
platforms. Also unique is TDW’s support for complex non-rigid physics, based on the NVIDIA
FLeX engine (Fig. 1d). Taken together, TDW is substantially more full-featured for supporting
future development in rapidly-expanding research areas such as learning scene dynamics for physical
reasoning [28, 27] and model-predictive planning and control [2, 13, 9, 3, 6, 1, 18, 8, 15].

Audio. As with CG, advanced work in computer simulation has developed powerful methods for
physics-based sound synthesis [10] based on object material and object-environment interactions. In
general, however, such physics-based audio synthesis has not been integrated into real-time simulation
platforms. HoME and PyBullet are the only other platforms to provide audio output, generated by
user-specified pre-placed sounds. TDW, on the other hand, implements a physics-based model to
generate situational sounds from object-object interactions (Fig. 1h). TDW’s PyImpact Python
library computes impact sounds via modal synthesis with mode properties sampled from distributions
conditioned upon properties of the sounding object [21]. The mode distributions were measured
from recordings of impacts. The stochastic sound generation prevents overfitting to specific audio
sequences. In human perceptual experiments, listeners could not distinguish our synthetic impact
sounds from real impact sounds, and could accurately judge physical properties from the synthetic
audio[21]. For this reason, TDW is substantially more useful for multi-modal inference problems
such as learning shape and material from sound [22, 29].

Interaction and API All the simulation platforms discussed so far require some form of API to
control an agent, receive state of the world data or interact with scene objects. However not all support
interaction with objects within that environment. Habitat focuses on navigation within indoor scenes,
and its Python API is comparable to TDW’s but lacks capabilities for interaction with scene objects
via physics (Fig. 1e), or multi-modal sound and visual rendering (Fig. 1h). VirtualHome, iGibson
and AI2-THOR’s interaction capabilities are closer to TDW’s. In VirtualHome and AI2-THOR,
interactions with objects are explicitly animated, not controlled by physics. TDW’s API, with its
multiple paradigms for true physics-based interaction with scene objects, provides a set of tools that
enable the broadest range of use cases of any available simulation platform.
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6 System overview and API

6.1 Core components

1. The build is the 3D environment application. It is available as a compiled executable.

2. The controller is an external Python script created by the user, which communicates with
the build.

3. The S3 server is a remote server. It contains the binary files of each model, material, etc.
that can be added to the build at runtime.

4. The records databases are a set of local .json metadata files with records corresponding to
each asset bundle.

5. A librarian is a Python wrapper class to easily query metadata in a records database file.

6.2 The simulation pattern

1. The controller communicates with the build by sending a list of commands.

2. The build receives the list of serialized Commands, deserializes them, and executes them.

3. The build advances 1 physics frame (simulation step).

4. The build returns output data to the controller.

Output data is always sent as a list, with the last element of the list being the frame number:

[data, data, data, frame]

6.3 The controller

All controllers are sub-classes of the Controller class. Controllers send and receive data via the
communicate function:

from tdw.controller import Controller

c = Controller()
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# resp will be a list with one element: [frame]
resp = c.communicate({"$type": "load_scene", "scene_name": "ProcGenScene"})

Commands can be sent in lists of arbitrary length, allowing for arbitrarily complex instructions per
frame. The user must explicitly request any other output data:

from tdw.controller import Controller
from tdw.tdw_utils import TDWUtils
from tdw.librarian import ModelLibrarian
from tdw.output_data import OutputData, Bounds, Images

lib = ModelLibrarian("models_full.json")
# Get the record for the table.
table_record = lib.get_record("small_table_green_marble")

c = Controller()

table_id = 0

# 1. Load the scene.
# 2. Create an empty room (using a wrapper function)
# 3. Add the table.
# 4. Request Bounds data.
resp = c.communicate([{"$type": "load_scene",

"scene_name": "ProcGenScene"},
TDWUtils.create_empty_room(12, 12),
{"$type": "add_object",
"name": table_record.name,
"url": table_record.get_url(),
"scale_factor": table_record.scale_factor,
"position": {"x": 0, "y": 0, "z": 0},
"rotation": {"x": 0, "y": 0, "z": 0},
"category": table_record.wcategory,
"id": table_id},

{"$type": "send_bounds",
"frequency": "once"}])

The resp object is a list of byte arrays that can be deserialized into output data:

# Get the top of the table.
top_y = 0
for r in resp[:-1]:

r_id = OutputData.get_data_type_id(r)
# Find the bounds data.
if r_id == "boun":

b = Bounds(r)
# Find the table in the bounds data.
for i in range(b.get_num()):

if b.get_id(i) == table_id:
top_y = b.get_top(i)

The variable top_y an be used to place an object on the table:

box_record = lib.get_record("iron_box")
box_id = 1
c.communicate({"$type": "add_object",

"name": box_record.name,
"url": box_record.get_url(),
"scale_factor": box_record.scale_factor,
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"position": {"x": 0, "y": top_y, "z": 0},
"rotation": {"x": 0, "y": 0, "z": 0},
"category": box_record.wcategory,
"id": 1})

Then, an “avatar" can be added to the scene. In this case, the avatar is a just a camera. The avatar can
then send an image:

avatar_id = "a"
resp = c.communicate([{"$type": "create_avatar",

"type": "A_Img_Caps_Kinematic",
"avatar_id": avatar_id},

{"$type": "teleport_avatar_to",
"position": {"x": 1, "y": 2.5, "z": 2}},

{"$type": "look_at",
"avatar_id": avatar_id,
"object_id": box_id},

{"$type": "set_pass_masks",
"avatar_id": avatar_id,
"pass_masks": ["_img"]},

{"$type": "send_images",
"frequency": "once",
"avatar_id": avatar_id}])

# Get the image.
for r in resp[:-1]:

r_id = OutputData.get_data_type_id(r)
# Find the image data.
if r_id == "imag":

img = Images(r)

This image is a numpy array that can be either saved to disk or fed directly into a ML system.Put
together, the example code will create this image:

6.4 Benchmarks

CPU: Intel i7-7700K @4.2GHz GPU: NVIDIA GeForce GTX 1080
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Benchmark Quality Size FPS
Object data N/A N/A 850
Images low 256x256 380
Images high 256x256 168

6.5 Command API Backend

6.5.1 Implementation Overview

Every command in the Command API is a subclass of Command.

/// <summary>
/// Abstract class for a message sent from the controller to the build.
/// </summary>
public abstract class Command
{

/// <summary>
/// True if command is done.
/// </summary>
protected bool isDone = false;

/// <summary>
/// Do the action.
/// </summary>
public abstract void Do();

/// <summary>
/// Returns true if this command is done.
/// </summary>
public bool IsDone()
{

return isDone;
}

}

Every command must override Command.Do(). Because some commands require multiple frames to
finish, they announce that they are “done" via Command.IsDone().

///<summary>
/// This is an example command.
/// </summary>
public class ExampleCommand : Command
{

///<summary>
/// This integer will be output to the console.
/// </summary>
public int integer;

public override void Do()
{

Debug.Log(integer);
isDone = true;

}
}

Commands are automatically serialized and deserialized as JSON dictionaries In a user-made
controller script, ExampleCommand looks like this:
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{"$type": "example_command", "integer": 15}

If the user sends that JSON object from the controller, the build will deserialize it to an
ExampleCommand-type object and call ExampleCommand.Do(), which will output 15 to the console.

6.5.2 Type Inheritance

The Command API relies heavily on type inheritance, which is handled automatically by the JSON
converter. Accordingly, new commands can easily be created without affecting the rest of the API,
and bugs affecting multiple commands are easy to identify and fix.

/// <summary>
/// Manipulate an object that is already in the scene.
/// </summary>
public abstract class ObjectCommand : Command
{

/// <summary>
/// The unique object ID.
/// </summary>
public int id;

public override void Do()
{

DoObject(GetObject());
isDone = true;

}

/// <summary>
/// Apply command to the object.
/// </summary>
/// <param name="co">The model associated with the ID.</param>
protected abstract void DoObject(CachedObject co);

/// <summary>
/// Returns a cached model, given the ID.
/// </summary>
protected CachedObject GetObject()
{

// Additional code here.
}

}

/// <summary>
/// Set the object’s rotation such that its forward directional vector points
/// towards another position.
/// </summary>
public class ObjectLookAtPosition : ObjectCommand
{

/// <summary>
/// The target position that the object will look at.
/// </summary>
public Vector3 position;

protected override void DoObject(CachedObject co)
{

co.go.transform.LookAt(position);
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}
}

The TDW backend includes a suite of auto-documentation scripts that scrape the <summary> com-
ments to generate a markdown API page complete with example JSON per command, like this:
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