
Personalized Benchmarking with the
Ludwig Benchmarking Toolkit

Avanika Narayan, Piero Molino, Karan Goel, Willie Neiswanger, Christopher Ré
Department of Computer Science

Stanford University
{avanika, pmolino, kgoel, neiswanger, chrismre}@cs.stanford.edu,

Abstract
The rapid proliferation of machine learning models across domains and deploy-
ment settings has given rise to various communities (e.g. industry practitioners)
which seek to benchmark models across tasks and objectives of personal value.
Unfortunately, these users cannot use standard benchmark results to perform such
value-driven comparisons as traditional benchmarks evaluate models on a single
objective (e.g. average accuracy) and fail to facilitate a standardized training
framework that controls for confounding variables (e.g. computational budget),
making fair comparisons difficult. To address these challenges, we introduce the
open-source Ludwig Benchmarking Toolkit (LBT), a personalized benchmarking
toolkit for running end-to-end benchmark studies (from hyperparameter optimiza-
tion to evaluation) across an easily extensible set of tasks, deep learning models,
datasets and evaluation metrics. LBT provides a configurable interface for con-
trolling training and customizing evaluation, a standardized training framework
for eliminating confounding variables, and support for multi-objective evaluation.
We demonstrate how LBT can be used to create personalized benchmark studies
with a large-scale comparative analysis for text classification across 7 models and
9 datasets. We explore the trade-offs between inference latency and performance,
relationships between dataset attributes and performance, and the effects of pre-
training on convergence and robustness, showing how LBT can be used to satisfy
various benchmarking objectives.

Code Repository: https://github.com/HazyResearch/ludwig-benchmarking-toolkit

1 Introduction
Benchmarking has emerged as an important practice to measure progress in machine learning.
Typically, benchmarking is done through leaderboards, where a participant’s objective is to maximize
a performance criterion on a challenging task or dataset. Prominent examples of these benchmarks
include GLUE [1], SuperGLUE [2], ImageNet [3] and SQuAD [4].

As deep learning models become increasingly proficient at maximizing performance criteria like
average accuracy, attention has shifted towards the need for more personalized, thorough, and
thoughtful benchmarking that emphasizes a community or individual’s needs [5]. In this work,
we focus in particular on what we term value-driven communities—communities whose utility is
aligned with optimizing and understanding model evaluation objectives beyond average performance.
Examples of such communities include researchers interested in understanding the effects of model
pretraining on robustness and industry practitioners interested in the tradeoffs between inference
latency and performance. However, standard benchmarking practices carry several limitations that
makes personalizing benchmarks difficult for these communities.

First, the shift to personalized benchmarks changes the nature of benchmark design, turning users into
benchmark designers. The major burden on benchmark designers so far has been in formulating a
challenging task, collecting and preparing data, and selecting an appropriate performance criterion to
capture progress on the task. Personalization transforms this burden from managing dataset collection

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://github.com/HazyResearch/ludwig-benchmarking-toolkit

MODELS

TASKS

1. SET-UP 2. TRAIN 3. EVALUATEMETRICS

TOOLS

VISUALIZATIONS

DATASETS

1. Set training parameters

2. Specify hyperparameters

3. Train models

MNIST
CiFAR10
DBPedia

AGNews
SST
….

Text classification
Image

classification
Sequence

classification

Machine
Translation
Regression

…

CNN
LSTM

RoBERTa

BERT
T5
...

Add your
own

Add your
own

Accuracy
Training
Speed

Latency

Cost
Carbon
footprint

…

Add your
own

Robustness Gym
(Sub-population

performance)

Learning behavior
Performance

Hyperparameters
...

TextAttack
(Robustness)

Figure 1: Ludwig Benchmarking Toolkit. LBT supports multi-objective evaluation, provides a
standardized training framework, and includes an extensible set of datasets, models and metrics.

and curation to also managing careful training and evaluation. This shift requires new tools that
permit finer-grained control over benchmarking studies, where users can customize training and
evaluation based on their needs while automating as much of this burden as possible.

Second, a general goal for benchmarking is to help researchers and practitioners make apples-to-
apples model comparisons and draw accurate conclusions about why some models perform better or
worse. The mechanism adopted by leaderboard benchmarks limits the ability to precisely answer
such questions. This is because submitted models vary substantially in their training data, compute
resources, preprocessing, training protocol, and implementations [6]. These confounding factors
make it difficult to draw any conclusion about what parts of an implementation were ultimately
responsible for its performance, especially since these factors may matter even more than architecture
differences [7, 8, 9, 10, 11].

Lastly, existing benchmarks provide relatively little utility to an individual who wants to compare a
collection of models on multiple objectives such as robustness, training speed, inference latency, size,
or other properties—all aspects that are of interest to the value-driven communities of researchers
and practitioners that we focus on [5, 12]. Instead, leaderboards excel at catalyzing progress in the
larger research community (e.g. moving from 70% to 90% accuracy on GLUE in 2 years) [13].

Taken together, these challenges highlight the need for personalized benchmarking tools that comple-
ment existing leaderboard-style benchmarks and allow researchers and practitioners in value-driven
communities to (i) configure benchmark training and evaluation, (ii) fairly compare models by
controlling for confounding variables, and (iii) perform multi-objective evaluation.

We take a first step in this direction and introduce the Ludwig Benchmarking Toolkit (LBT), a
personalized benchmarking toolkit for creating and running configurable, standardized, and multi-
objective benchmarking studies with ease. To create a benchmark suite in LBT, users specify a task,
a set of models to compare and datasets for evaluation, configure training and hyperparameter search
spaces for model training, and evaluate and compare the trained models, as depicted in Figure 1. In
particular, LBT has the following properties:

Configurable. To support configurability, LBT provides out-of-the-box support for training cutting-
edge deep learning models that span classification, regression, and generation tasks across multiple
modalities. LBT enables users to control training conditions by providing a simple configuration
file interface for specifying training parameters and the hyperparameter search space. To support
personalization, LBT makes it simple to extend the toolkit, and gives users explicit mechanisms
for introducing custom models, datasets, and metrics. This is particularly useful for benchmarking
models in application-specific scenarios.

Standardized. To enable fair comparisons between models trained using the toolkit, LBT implements
a standardized training framework that ensures every model can be trained using the same dataset
splits, preprocessing, training loop, and hyperparameters. During configuration, users choose which
variables to hold constant across models (e.g., training time, the optimizer, preprocessing techniques,
and the hyperparameter tuning budget), controlling for any potential confounders.

Multi-objective. To provide greater support for varied evaluation metrics, LBT expands the set of
evaluation criteria beyond standard performance-based evaluation (e.g., average accuracy, F1 score)
to include fiscal cost, size, training speed, inference latency, and carbon footprint [14]. Furthermore,

2

to enable developers to compare models on the basis of robustness and critical subpopulation
performance (evaluation factors relevant for application deployment), LBT includes integrations with
two popular open-source evaluation toolkits, TextAttack [15] and Robustness Gym [16].

We validate that value-driven communities can use LBT to conduct personalized benchmarking
studies by performing a large-scale, multi-objective comparative analysis of 7 deep learning models
across a diverse set of 9 text classification datasets. We explore hypotheses of interest to researchers
and practitioners on the tradeoffs between inference latency and performance, relationships between
dataset attributes and performance, and the effects of pretraining on convergence and robustness, all
while controlling for important confounding factors. Our results show that DistilBERT has the best
inference efficiency and performance trade-off, BERT is the least robust to adversarial attacks, and
that pretrained models do not always converge faster than models trained from scratch.

2 Related Work

There have been several impactful works contributing to the landscape of model benchmarking. We
provide a brief overview of these efforts and discuss how they relate to our work.

Critiques of leadboard-style benchmarks. Recently, leaderboard-style benchmarks have been
critiqued extensively. Ethayarajh and Jurafsky [5] argue that existing leaderboards are poor proxies
for the natural language processing (NLP) community and advocate that they report additional metrics
of practical concern (e.g. model size) to enable users to build personal leaderboards. Furthermore,
Rogers [6] critiques the lack of standardization in entries submitted to leaderboards suggesting that
inequity in compute and data used at training time makes fairly comparing models on the basis of
these reported results difficult. The aforementioned critiques are key motivations for our work.

Flexible leaderboards. Earlier this year, Liu et al. [17] introduced ExplainaBoard, an interactive
leaderboard and evaluation software for interpreting 300 NLP models. Like LBT, Explainaboard
provides tooling for fine-grained analysis and seeks to make the evaluation process more interpretable.
However, it does not provide a standardized training and implementation framework that addresses
the challenge of confounds when making model comparisons. Another flexible leaderboard is
DynaBench [18], a platform for dynamic data collection and benchmarking for NLP tasks that
addresses the problem of static datasets in benchmarks. DynaBench dynamically crowdsources
adversarial datasets to evaluate model robustness. While LBT focuses on the model implementation
and evaluation challenges of benchmarking, Dynabench’s focus is on data curation. Most recently,
Facebook introduced Dynaboard [19], an interface for evaluating models across a holistic set of
evaluation criteria including accuracy, compute, memory, robustness, and fairness. Similar to LBT,
Dynaboard enables multi-objective evaluation. However, Dynaboard focuses less on helping users
configure personalized benchmark studies, as users cannot introduce their own evaluation criteria or
datasets.

Benchmarking deep learning systems. Performance oriented benchmarks like DAWNBench [20]
and MLPerf [21] evaluate end-to-end deep learning systems, reporting many efficiency metrics
such as training cost and time, and inference latency and cost. They demonstrate that fair model
comparisons are achievable with standardized training protocols, and our work is motivated by these
insights.

Benchmarking tools. To our knowledge, there is a limited set of toolkits for configuring and running
personalized benchmarking studies. ShinyLearner [22] is one such solution that provides an interface
for benchmarking classification algorithms. However, ShinyLearner only supports classification tasks,
a small number of deep learning architectures (e.g. does not support any pretrained language models)
and only reports performance-based metrics.

3 The Ludwig Benchmarking Toolkit (LBT)

In Section 3.1 we describe the communities that LBT is intended to serve. In Section 3.2 we provide
an overview of LBT and an example of how it is used. Lastly, in Section 3.3, we provide a more
detailed discussion of the properties and features of LBT, including how LBT addresses the needs of
the communities described in Section 3.1.

3

3.1 Benchmarking for Value-Driven Communities

We start by describing the users that LBT primarily targets. In particular, LBT best supports the needs
of communities that satisfy the following characteristics:

1. Value driven. The community is aligned around objectives (e.g. training speed) for which
average accuracy alone is not a good proxy. Users’ goals are primarily to compare models using
evaluations that align with their objectives.

2. Prefer automation. Users value the ability to control and configure their benchmarks, but do not
want or do not know how to implement a full experimental framework from scratch.

3. Require standardization. Users place strong emphasis on conducting clear, standardized anal-
yses where the training and hyperparameter optimization processes are carefully controlled, in
order to advance understanding and draw accurate conclusions.

Taken together, these characteristics allow us to more precisely target communities that remain
underserved by traditional benchmarks [5]. To ground this discussion, we provide examples of three
communities that satisfy the characteristics we outlined:

• ML researchers interested in performing comparative meta-analyses. These users are re-
searchers with extensive experience in training and evaluating ML models. Their goal is to compare
models across various objectives (e.g., learning dynamics, bias, fairness, robustness, efficiency) and
tease apart the effects of preprocessing, hyperparameters, and modeling choices (e.g., pretraining,
model architectures) on performance. They would benefit from a standardized pipeline for training
and evaluation (for fair comparison and accurate analyses), access to robust training metadata and
evaluation metrics, and tooling to perform fine-grained evaluation. Since these users are experts,
they require explicit mechanisms for customization (e.g., custom datasets, models and metrics).

• Industry practitioners interested in deployment-readiness. These users are engineers with low
to medium experience training and evaluating ML models. Their goal is to find the best model
for their task of interest as quickly as possible, taking into account deployment-specific criteria
such as inference latency and training speed. They would benefit from a simple user-interface that
removes the need to write any deep learning code, provides extensive reporting of metrics, and
provides out-of-the-box support for common ML tasks and architectures. They value the ability to
add application specific datasets and evaluation criterea to their benchmark study.

• Subject-matter experts interested in task-specific performance. These users are domain experts
(e.g. cardiologists) with limited experience training and evaluating deep learning models. Their
goal is to find the best model for their task of interest based on performance on domain-specific
data (e.g. ECG data for arrhythmia classification) and specific error metrics. Similar to the previous
example, they would prefer a low-code, simple user interface and necessitate configurability to
introduce domain-specific datasets and metrics.

In the following sections, we describe LBT’s configurable, standardized, and multi-objective toolkit,
and show how it can enable value-driven communities to create personalized benchmark studies.

3.2 Toolkit Overview and Usage

First, we provide a brief overview of LBT and describe how it is used. LBT enables users to run
end-to-end model benchmarking studies and is composed of four main components: off-the-shelf task,
model, and dataset support, model training, evaluation, and a shared research database. Users can
choose from a large number of tasks, train models with a pipeline that provides standardization (e.g.,
of preprocessing, training loops, and hyperparameter searches), evaluate results across objectives of
interest, and publish benchmark outcomes to a shared Elasticsearch database. All components in this
toolkit are configurable from a set of simple files.

Running benchmarking experiments in LBT is an easy five-step process. In each experiment, users
populate three configuration files: one for their task, model, and hyperparameter space. We describe
these configuration files and the five-step process next.

1. Define the experiment: Users can choose from any of the supported tasks, models, and datasets
already available in LBT or easily add their own. Each supported task has an associated task config
file that specifies the end-to-end model structure corresponding to the task.

4

Figure 2: Sample LBT configuration files. Setting-up an experiment in LBT requires populating 3
configuration files that define task, model / training parameters and hyperparameter optimization.

Example: Consider a text classification experiment comparing the performance of an RNN and the
ELECTRA model. We will run the experiment across 2 datasets: Social Bias Frames and Hate Speech
and Offensive Language. Figure 2 (center) presents a sample task config file.

2. Specify the training parameters and hyperparameter search: Users specify values for the hyperpa-
rameters that should be constant across all training runs, as well as the hyperparameters they would
like to optimize.

Example: We specify model-specific parameters and their search space in the model config files
(Figure 2; right). To control for the optimizer, learning rate, and training epochs, we set their values
to “adam”, “0.0001”, and “15” in the task configuration file. We specify our optimization metric
(validation accuracy), parameters we would like to optimize (batch size) and our search algorithm
(skopt) in the hyperparameter config file (Figure 2; left).

3. Run the optimization experiment: Running an experiment is a simple one-line command. When
an experiment is run, a configuration file for each task, model, and dataset combination is saved
(See Figure A.4 for an example). The saved file records the model architecture, training variables,
and hyperparameter settings and can be used to reproduce an experiment with a single command:
python experiment_driver.py -reproduce <path to experiment config file>

Example: We choose to run our experiment on a GCP cluster across four machines. We specify our
compute environment by passing in a flag at runtime and by specifying the name of our Kubernetes
cluster in the hyperparameter configuration file (Figure 2; left).

4. Evaluate the results: Users can perform an in-depth meta-analysis using the set of performance-
based evaluation metrics recorded by Ludwig during model training, along with the additional metrics
logged by LBT. On top of analyses performed using the reported metrics, users can use the TextAttack
and Robustness Gym APIs to better understand fine-grained aspects of model performance.

Example: We want to gain a better understanding of bias in our offensive language detection
classifiers. We test if these models classify text with African American Vernacular English (AAVE) as
offensive more frequently than without [23]. We define a Robustness Gym slice for samples containing
words unique to AAVE, and compare model performance on this subpopulation to identify bias.

5. Publish the experiment: All experiments run using LBT can be uploaded to a shared Elasticsearch
research database. Due to the flexible nature of Elasticsearch, users can update experiments with any
additional metrics and analyses over the duration of their study.

Example: To publish results to the database we add one command-line flag at runtime:
python experiment_driver.py ... -esc elasticsearch_config.yaml

3.3 Toolkit Design and Features

Next, we describe the key design choices and features of LBT which enable value-driven communities
to create personalized benchmarks.

5

Configurable
Out-of-the-box support for tasks, datasets, and models. LBT integrates directly with the popular
Ludwig Deep Learning Toolbox (Ludwig) [24], enabling LBT to use the existing models, datasets,
and hyperparameter tuning methods available in Ludwig. Thus, LBT can support several tasks out-of-
the-box like multi-class and multi-label classification, regression, sequence tagging, and sequence
generation over a diverse set of input data types such as tabular, image, text, audio, and time series.

Simple user-interface for configuration. Configuring a benchmark study in LBT is as simple as
specifying a task (e.g. image classification), choosing a set of models to compare from the ones
available (or implementing a new one), selecting datasets for evaluation and declaring training
parameters. This is achieved by populating declarative configuration files for the benchmark task,
training parameters, model-specific parameters, and hyperparameter search space (see Figure 2).

Extensible to new tasks, datasets, models and evaluations. LBT provides explicit mechanisms for
users to personalize and extend the toolkit to their needs. Figure A.1 illustrates how to register a
new dataset and custom evaluation metric. Adding new models and tasks is simple, and requires
implementing a new instance of an encoder or decoder in Ludwig (functions mapping from input
data to hidden representation and from hidden representation to predictions respectively).

Standardized
Standardized model training. To ensure that models trained in LBT can be compared fairly, LBT
includes a standardized framework for training and hyperparameter optimization. Using this frame-
work, models can be trained using the same dataset splits, preprocessing techniques, training loop,
and hyperparameter search space if necessary. LBT harnesses the extensive hyperparameter tuning
support in Ludwig to provide automated hyperparameter optimization when training benchmark
models. LBT supports running distributed, multi-node experiments both locally or on remote clusters
such as Google Cloud Provider (GCP), Amazon Web Services (AWS), and SLURM.

Shared research database. To support communities in sharing, replicating, and extending experiments,
we provide access to a shared research database that stores the results, reported metrics, and metadata
of experiments run in LBT. Experiments are uploaded to the database along with their configuration
files. Users can search the database to view and download experiments run by other users, and
reproduce them using the experiment’s configuration file.

Multi-Objective LBT exposes three flavors of evaluation support: metrics, tools, and visualizations.

Metrics for multi-objective evaluation. With respect to metrics, LBT expands the scope of traditionally
reported evaluation metrics (e.g. average accuracy) to include cost, efficiency, training speed,
inference latency, model size, and more. Table A.1 details the additional metrics supported in LBT.

Integrations for fine-grained evaluation. To further support custom evaluations, LBT enables users to
compare models based on robustness. In this work, we define robustness as critical subpopulation
performance [16] and sensitivity to adversaries and input perturbations [15, 25], acknowledging that
this is not a universal definition of robustness as other dimensions of robustness exist (e.g. robustness
to online distributional shift). Nonetheless, LBT integrates with two open-source evaluation tools for
measuring robustness: Robustness Gym (RG) [16] and TextAttack [15]. LBT’s API for RG lets users
inspect model performance on a set of pre-built subpopulations (e.g., sentence length, image color
etc.), as well as add more subpopulations for their data and use cases (see Figure A.2 for an example).
The TextAttack integration helps LBT users evaluate model robustness to input perturbations (see
Figure A.3 for sample API usage.

Visualizations. Finally, LBT provides an API to generate visualizations for learning behavior, model
performance, and hyperparameter optimization, using statistics generated during model training.

4 Case Study: Large-Scale Text Classification Analysis

Next, we demonstrate how users with diverse benchmarking objectives can configure personalized
benchmarks and conduct deep, comparative meta-analyses using LBT. The goal of this case study is
twofold. First, we seek to show that when using LBT we can replicate previously reported experi-
mental results accurately. Second, we want to demonstrate how LBT can address the unmet needs
of value-driven communities in running configurable, standardized, and multi-objective benchmark
studies. As such, the goal is not to show novel insights into models but rather to demonstrate the

6

Table 1: Overall Performance. The table reports the accuracy of the top performing models for each
dataset and model pair.

Dataset

Model HS AG SST5 MGB IR GE YR DBP SBF

RNN 0.875 0.910 0.476 0.879 0.769 0.458 0.954 0.986 0.653
Stacked Parallel CNN 0.883 0.911 0.468 0.883 0.753 0.448 0.948 0.986 0.640
DistilBERT-base 0.915 0.934 0.528 0.888 0.758 0.549 0.965 0.991 0.675
BERT-base 0.919 0.943 0.530 0.892 0.801 0.546 0.969 0.992 0.687
ELECTRA-base 0.911 0.932 0.540 0.896 0.747 0.542 0.969 0.990 0.663
T5-small 0.912 0.935 0.541 0.894 0.769 0.535 0.968 0.991 0.680
RoBERTa-base 0.918 0.940 0.551 0.898 0.780 0.541 0.973 0.991 0.687

practicality and usability of the toolkit. With these goals in mind, we use LBT to conduct a large-scale
text classification benchmark study that spans 4 tasks, 9 datasets, and 7 models with a total of 1260
trained models, all evaluated across a variety of metrics. To ground our benchmarking, we use the
metrics and tools supported by LBT to study a few relationships in particular: the tradeoff between
efficiency and performance, effects of dataset attributes on performance, and the effects of pretraining
on performance. We provide experimental details in Section 4.1 and describe our hypotheses and
findings in Section 4.2.

4.1 Experimental Setup

We conduct benchmarking on text classification tasks due to the abundance of available datasets,
models suitable for the task and published results [26, 27, 28].

Datasets. We chose the following nine classification datasets: Hate Speech and Offensive Language
(HS) [29], AGNews (AG) [30], DBPedia (DBP) [30], Yelp Review Polarity (YR) [30], SST5 (SST5)
[31], MD Gender Bias (MGB) [32], Irony Classification (IR) [33], GoEmotions (GE) [34] and Social
Bias Frames (SBF) [35]. The datasets were chosen based on their diversity in average sentence length
(ranging from 5 to 132), dataset size (ranging from 1364 to 56000), number of classes (ranging from
2 to 27), and language type (e.g. formal vs. informal language). The datasets cover four common
text classification tasks: sentiment analysis, emotion classification, topic classification, and hate and
offensive speech detection, and span both binary and multi-way classification.

Models. We analyze five pretrained language models and two text encoders trained from scratch. The
pretrained models are BERT-base [36], DistilBERT-base [37], Electra-base [38], RoBERTa-base [39],
T5-small [40] and were chosen due to variance in size and pre-training strategies. The text encoders
are a stack of bidirectional RNN layers (with the cell type chosen to be RNN, Long Short-Term
Memory layer (LSTM) [41], or Gated Recurrent Unit (GRU) [42]) and a stacked implementation of
the CNN for sentence classification [43] (Stacked Parallel CNN or SP-CNN).

Hyperparameters. Across all experiments we use the Adam optimizer [44] and the Scikit Optimize
(skopt) hyperparameter search algorithm [45], sampling 20 hyperparameter settings per dataset and
model pair (e.g. BERT and SST5). We optimize over learning rate, model hidden dimension size,
and model-specific parameters such as cell type for the RNN model and size and number of stacked
layers for the SP-CNN. All experiments used Tesla T4 GPUs on GCP.

4.2 Results and Analysis

Average Accuracy Analysis. First, we compare models on the basis of average accuracy to demon-
strate that standard, accuracy-based benchmark comparisons are possible in LBT. Table 1 shows the
performance of the best hyperparameter configuration for each model-dataset pair. We verify that
these results are aligned with previously reported experimental results [27, 28]. Based on average
accuracy alone, RoBERTa-base and BERT-base have the best performance across all nine datasets.
We note that on some datasets, the accuracy gap between the best and worst model is as large as 0.09
(GE, SST5) while only 0.02 on others (MGB, DBP).

Value-driven Analysis. Next, we aim to validate the efficacy of LBT in enabling value-driven
communities to create personalized benchmark studies. We do this by structuring our analysis into
three themes: efficiency and performance tradeoffs, effects of dataset attributes on performance, and

7

(a) Model size and inference latency are not directly
correlated.

(b) Larger models perform better than smaller ones,
regardless of dataset size.

Figure 3: Mean Reciprocal Rank & Accuracy. In (a) and (b) numbers are accuracy scores and the
colors represent the MRR of a model for each dataset (darker indicates better performance).

(a) DistilBERT and T5 take the longest to converge. (b) BERT and ELECTRA are the least robust to ad-
versarial attacks.

Figure 4: Effects of Pretraining. In (a), the numbers are accuracy scores and the colors represent
the MRR of a model for each dataset (darker indicates better performance). In (b), the numbers are
the average attack success rate of an attack strategy across all datasets.

effects of pretraining on performance. We use LBT to test multiple hypotheses related to these themes.
The proposed hypotheses and associated analysis demonstrate how users with various objectives can
effectively use LBT to achieve their benchmarking objectives.

1. Inference Latency and Performance Tradeoffs: For an engineer looking to deploy a text-
classification model in production, comparing models based on their size and inference efficiency
is of significant interest as low latency is critical to delivering real-time, inference-based services.
To demonstrate that LBT supports such a benchmark comparison, we investigated whether there is
a trade-off between performance and latency and if better-performing models, which are typically
larger, have slower inference speeds. In Figure 3a, we see that BERT, which obtains the best perfor-
mance on the largest number of datasets, has lower latency than RoBERTa and T5-small, suggesting
that inference efficiency and performance are not directly related. Our results also indicate that
DistilBERT has a very convincing tradeoff between inference speed and performance.

2. Dataset Attributes and Performance: For practitioners trying to find the best model for their
datasets, it is useful to better understand how model performance differs as a function of dataset
attributes such as number of samples or average sentence length. We show how LBT can be used to
understand these relationships by testing the following hypotheses. Based on existing works in the
literature [46], we hypothesized that simpler models would perform better on smaller datasets as they
overfit less. Figure 3b indicates that larger models outperform the smaller, simpler models across
all datasets. Furthermore, we hypothesized that evaluating on smaller datasets would result in the
most variance in model performance. However, Figure 5b shows that the datasets with the highest

8

(a) Datasets which are hardest to learn have the great-
est variance in performance.

(b) Variance in performance is greatest for midsize
datasets, not small datasets.

(c) Variance in performance across models is greatest
for GE and SST5.

(d) Model performance is positively correlated with
sentence length.

Figure 5: Dataset Attributes and Performance. In (a), (b), and (c), the numbers are accuracy scores
and the colors represent z-score.

variance are the midsize ones. This is contrary to common belief that pretrained models have a greater
advantage over models trained from scratch in data-constrained settings [47]. Figure 5a illustrates
that the datasets with the highest variance in performance (where pretraining provides the biggest
advantages) are those that are the most difficult (based on average accuracy). Lastly, we hypothesized
that performance is positively correlated with sentence length. Figure 5d suggests that there is a
positive correlation between average sentence length and performance, confirming our hypothesis.

3. Effects of Pretraining: For a researcher trying to better understand the effects of pretraining,
exploring the impact of pretraining on robustness and model convergence is an interesting research
direction [48, 49]. We demonstrate how the features of LBT make exploring the aforementioned
relationships feasible. Inspired by prior work on the impact of pretraining on robustness and model
convergence [48], we hypothesized that (i) pretrained models are more robust to adversarial attacks
and that (ii) pretrained models should converge faster than models trained from scratch [49].

To test (i), we used the LBT TextAttack integration to compare the robustness of models to three
different types of attack. The three attacks we used were DeepWordBug [50] (character insertion,
swap, deletion, and substitution), PWWS [51] (synonym swap), and Input Reduction [52] (word
deletion). As shown in Figure 4b, we see that the average successful attack rate is high for fine-tuned
BERT models which suggests that these models are less robust to input perturbations. In contrast,
RoBERTa and the RNN model have surprisingly low attack success rates. These results disprove our
hypothesis and warrant further analysis.

To test (ii), we used the number of epochs elapsed until the best checkpoint as a proxy metric for
model convergence. Figure 4a shows that some pretrained models do indeed converge fast (BERT
and RoBERTa), while others (T5 and DistilBERT) are actually the slowest to converge.

5 Limitations and Conclusion
Limitations. We begin by acknowledging the limitations of LBT. First, the standardized training
framework used to run experiments in LBT results in a trade-off between making fair comparisons
on a limited model input space and making inaccurate comparisons on an unconstrained model

9

input space. Second, while dataset curation is a key challenge in constructing benchmark studies,
LBT doesn’t currently provide tooling for curating robust and comprehensive evaluation datasets.
Finally, we identify LBT’s dependence on Ludwig for task, model, and training support as a potential
drawback. Currently, Ludwig focuses on supervised models and does not support tasks such as
question answering or summarization. However, Ludwig is a growing platform supported by an
active developer community, so expanded support for new tasks is likely. Moreover, while Ludwig is
designed to be extensible to new models, doing so could be time consuming (take on the order of
a few hours) and might serve as a potential bottleneck for users who want to spin up a benchmark
study on a more expedient timeline.

Conclusion. In this work, we present LBT: an extensible toolkit for creating personalized model
benchmark studies across a wide range of machine learning tasks, deep learning models, and datasets.
We demonstrate how LBT helps value-driven communities more appropriately benchmark models
by (i) providing configurable interface for creating custom benchmarks studies, (ii) implementing
a standardized training framework that helps users study the tradeoffs and effects of the variables
they care about by controlling for confounding variables, and (iii) providing access to a diverse set of
evaluation metrics useful for multi-objective evaluation.

6 Ethical Considerations
We acknowledge that there are several ethical considerations pertaining to our work. Firstly, as a
benchmarking toolkit, we make use of a variety of open-source datasets. In some cases, we have
limited knowledge as to how the datasets were curated and if the data was collected in an ethical
manner [53, 54]. Moreover, these datasets can contain several harmful biases (e.g., gender, race)
that can be further propagated by models trained on their contents [53]. Another concern is data
poisoning, where datasets are tampered with the intent of biasing a downstream trained model [55].
Secondly, LBT makes use of several pretrained language models. An abundance of recent work has
highlighted a variety of biases that exist in these models [56, 57]. That being said, because the toolkit
is modular, users have the agency to replace any datasets and models in their benchmark studies
that they believe might have ethical issues. Moreover, LBT also provides the community with the
necessary tools to compare models and datasets based on bias. We hope that the community will use
LBT for these objectives.

Acknowledgments and Disclosure of Funding

We are thankful to Michael Zhang, Laurel Orr, Sarah Hooper, Dan Fu, Arjun Desai and many other
members of the Stanford AI Lab for helpful discussions and feedback. We would also like to thank
Richard Liaw (Ray) and Travis Addair (Horovod) for their support and guidance in building LBT.
We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF under Nos.
CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR
under No. N000141712266 (Unifying Weak Supervision); ONR N00014-20-1-2480: Understanding
and Applying Non-Euclidean Geometry in Machine Learning; N000142012275 (NEPTUNE); the
Moore Foundation, NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM,
Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, the Okawa Foundation, American
Family Insurance, Google Cloud, Salesforce, Total, the HAI-AWS Cloud Credits for Research
program, the Stanford Data Science Initiative (SDSI), and members of the Stanford DAWN project:
Facebook, Google, and VMWare. The Mobilize Center is a Biomedical Technology Resource
Center, funded by the NIH National Institute of Biomedical Imaging and Bioengineering through
Grant P41EB027060. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views, policies, or endorsements, either expressed or implied, of NIH, ONR, or
the U.S. Government.

References
[1] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.

Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.

10

[2] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems, 2020.

[3] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge, 2015.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016.

[5] Kawin Ethayarajh and Dan Jurafsky. Utility is in the eye of the user: A critique of nlp
leaderboards. arXiv preprint arXiv:2009.13888, 2020.

[6] Anna Rogers. How the transformers broke nlp leaderboards, Jun 2019.
[7] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Models matter, so does training:

An empirical study of cnns for optical flow estimation, 2018.
[8] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley

– benchmarking deep learning optimizers, 2021.
[9] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christo-

pher R. Collins, Jeff Schneider, Barnabas Poczos, and Eric P. Xing. Tuning hyperparameters
without grad students: Scalable and robust bayesian optimisation with dragonfly, 2020.

[10] Matthias Aßenmacher and Christian Heumann. On the comparability of pre-trained language
models, 2020.

[11] Jishnu Mukhoti, Pontus Stenetorp, and Yarin Gal. On the importance of strong baselines in
bayesian deep learning. arXiv preprint arXiv:1811.09385, 2018.

[12] Tal Linzen. How can we accelerate progress towards human-like linguistic generalization?
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 5210–5217, Online, July 2020. Association for Computational Linguistics.

[13] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[14] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau.
Towards the systematic reporting of the energy and carbon footprints of machine learning, 2020.

[15] John X Morris, Eli Lifland, Jin Yong Yoo, and Yanjun Qi. Textattack: A framework for
adversarial attacks in natural language processing. arXiv preprint arXiv:2005.05909, 2020.

[16] Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan Zheng, Caiming
Xiong, Mohit Bansal, and Christopher Ré. Robustness gym: Unifying the nlp evaluation
landscape. arXiv preprint arXiv:2101.04840, 2021.

[17] Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan, Shuaicheng Chang, Junqi Dai, Yixin Liu,
Zihuiwen Ye, and Graham Neubig. Explainaboard: An explainable leaderboard for nlp. arXiv
preprint arXiv:2104.06387, 2021.

[18] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela.
Adversarial nli: A new benchmark for natural language understanding, 2020.

[19] Douwe Kiela, Zhiyi Ma, Tristan Thrush, Somya Jain, Ledell Wu, Robin
Jia, and Adina Williams. Dynaboard: Moving beyond accuracy to
holistic model evaluation in nlp. https://ai.facebook.com/blog/
dynaboard-moving-beyond-accuracy-to-holistic-model-evaluation-in-nlp/,
2021.

[20] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter
Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An end-to-end deep learning
benchmark and competition. Training, 100(101):102, 2017.

[21] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos, David
Kanter, Paulius Micikevicius, David Patterson, Guenther Schmuelling, Hanlin Tang, et al.
Mlperf: An industry standard benchmark suite for machine learning performance. IEEE Micro,
40(2):8–16, 2020.

11

https://ai.facebook.com/blog/dynaboard-moving-beyond-accuracy-to-holistic-model-evaluation-in-nlp/
https://ai.facebook.com/blog/dynaboard-moving-beyond-accuracy-to-holistic-model-evaluation-in-nlp/

[22] Stephen R Piccolo, Terry J Lee, Erica Suh, and Kimball Hill. Shinylearner: A container-
ized benchmarking tool for machine-learning classification of tabular data. GigaScience,
9(4):giaa026, 2020.

[23] Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. Demoting racial bias in hate speech detection.
In Proceedings of the Eighth International Workshop on Natural Language Processing for Social
Media, pages 7–14, Online, July 2020. Association for Computational Linguistics.

[24] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Ludwig: a type-based declarative
deep learning toolbox. arXiv preprint arXiv:1909.07930, 2019.

[25] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328, 2017.

[26] Kowsari, Jafari Meimandi, Heidarysafa, Mendu, Barnes, and Brown. Text classification algo-
rithms: A survey. Information, 10(4):150, Apr 2019.

[27] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for text classifica-
tion? In China National Conference on Chinese Computational Linguistics, pages 194–206.
Springer, 2019.

[28] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, and
Jianfeng Gao. Deep learning based text classification: A comprehensive review, 2021.

[29] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech
detection and the problem of offensive language. In Proceedings of the 11th International AAAI
Conference on Web and Social Media, ICWSM ’17, pages 512–515, 2017.

[30] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification, 2016.

[31] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[32] Emily Dinan, Angela Fan, Ledell Wu, Jason Weston, Douwe Kiela, and Adina Williams.
Multi-dimensional gender bias classification, 2020.

[33] Byron C. Wallace, Do Kook Choe, Laura Kertz, and Eugene Charniak. Humans require context
to infer ironic intent (so computers probably do, too). In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
512–516, Baltimore, Maryland, June 2014. Association for Computational Linguistics.

[34] Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. Goemotions: A dataset of fine-grained emotions, 2020.

[35] Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Jurafsky, Noah A. Smith, and Yejin Choi. Social
bias frames: Reasoning about social and power implications of language, 2020.

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[37] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[38] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[40] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934, 2020.

[41] Jürgen Schmidhuber and Sepp Hochreiter. Long short-term memory. Neural Comput, 9(8):1735–
1780, 1997.

12

[42] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation, 2014.

[43] Yoon Kim. Convolutional neural networks for sentence classification, 2014.
[44] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
[45] Tim Head, MechCoder, Gilles Louppe, Iaroslav Shcherbatyi, fcharras, Zé Vinícius, cmmalone,

Christopher Schröder, nel215, Nuno Campos, Todd Young, Stefano Cereda, Thomas Fan,
rene rex, Kejia (KJ) Shi, Justus Schwabedal, carlosdanielcsantos, Hvass-Labs, Mikhail Pak,
SoManyUsernamesTaken, Fred Callaway, Loïc Estève, Lilian Besson, Mehdi Cherti, Karlson
Pfannschmidt, Fabian Linzberger, Christophe Cauet, Anna Gut, Andreas Mueller, and Alexander
Fabisch. scikit-optimize/scikit-optimize: v0.5.2, mar 2018.

[46] Aysu Ezen-Can. A comparison of lstm and bert for small corpus, 2020.
[47] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics.

[48] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model
robustness and uncertainty. In International Conference on Machine Learning, pages 2712–
2721. PMLR, 2019.

[49] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4918–4927, 2019.

[50] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops
(SPW), pages 50–56. IEEE, 2018.

[51] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural language adversarial
examples through probability weighted word saliency. In Proceedings of the 57th annual
meeting of the association for computational linguistics, pages 1085–1097, 2019.

[52] Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, and Jordan
Boyd-Graber. Pathologies of neural models make interpretations difficult. arXiv preprint
arXiv:1804.07781, 2018.

[53] Emily M Bender and Batya Friedman. Data statements for natural language processing:
Toward mitigating system bias and enabling better science. Transactions of the Association for
Computational Linguistics, 6:587–604, 2018.

[54] Jack Bandy and Nicholas Vincent. Addressing" documentation debt" in machine learning
research: A retrospective datasheet for bookcorpus. arXiv preprint arXiv:2105.05241, 2021.

[55] Hongyan Chang, Ta Duy Nguyen, Sasi Kumar Murakonda, Ehsan Kazemi, and Reza Shokri. On
adversarial bias and the robustness of fair machine learning. arXiv preprint arXiv:2006.08669,
2020.

[56] Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology) is
power: A critical survey of" bias" in nlp. arXiv preprint arXiv:2005.14050, 2020.

[57] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021.

[58] Giampaolo Rodola. Psutil package: a cross-platform library for retrieving information on
running processes and system utilization. Google Scholar, 2016.

[59] Python module for getting the gpu status from nvida gpus.
[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.
[61] Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning, 2020.
[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual

networks, 2016.

13

[63] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021.

[64] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[65] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding, 2020.

[66] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining, 2019.
[67] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language

understanding by generative pre-training. 2018.
[68] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language

models are unsupervised multitask learners. 2019.
[69] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu

Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019.

[70] Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux,
Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, and Didier Schwab. Flaubert: Unsuper-
vised language model pre-training for french, 2020.

[71] Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric
de la Clergerie, Djamé Seddah, and Benoît Sagot. Camembert: a tasty french language model.
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[72] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation, 2019.

[73] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov.
Unsupervised cross-lingual representation learning at scale, 2020.

[74] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

[75] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

[76] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
[77] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs

[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.
[78] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion

Stoica. Tune: A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

14

	Introduction
	Related Work
	The Ludwig Benchmarking Toolkit (LBT)
	Benchmarking for Value-Driven Communities
	Toolkit Overview and Usage
	Toolkit Design and Features

	Case Study: Large-Scale Text Classification Analysis
	Experimental Setup
	Results and Analysis

	Limitations and Conclusion
	Ethical Considerations
	Appendix
	Metrics
	Evaluation Tools
	Off-the-shelf Models
	Text Classification Case Study: Additional Experimental Details
	Additional Case Study: Image Classification Benchmark Experiment
	Lessons Learned
	Additional Figures

