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Abstract

Progress toward the United Nations Sustainable Development Goals (SDGs) has
been hindered by a lack of data on key environmental and socioeconomic indicators,
which historically have come from ground surveys with sparse temporal and
spatial coverage. Recent advances in machine learning have made it possible to
utilize abundant, frequently-updated, and globally available data, such as from
satellites or social media, to provide insights into progress toward SDGs. Despite
promising early results, approaches to using such data for SDG measurement thus
far have largely evaluated on different datasets or used inconsistent evaluation
metrics, making it hard to understand whether performance is improving and where
additional research would be most fruitful. Furthermore, processing satellite and
ground survey data requires domain knowledge that many in the machine learning
community lack. In this paper, we introduce SUSTAINBENCH, a collection of 15
benchmark tasks across 7 SDGs, including tasks related to economic development,
agriculture, health, education, water and sanitation, climate action, and life on
land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our
goals for SUSTAINBENCH are to (1) lower the barriers to entry for the machine
learning community to contribute to measuring and achieving the SDGs; (2) provide
standard benchmarks for evaluating machine learning models on tasks across a
variety of SDGs; and (3) encourage the development of novel machine learning
methods where improved model performance facilitates progress towards the SDGs.

1 Introduction

In 2015, the United Nations (UN) proposed 17 Sustainable Development Goals (SDGs) to be achieved
by 2030, for promoting prosperity while protecting the planet [2]. The SDGs span social, economic,
and environmental spheres, ranging from ending poverty to achieving gender equality to combating
climate change (see Table A1). Progress toward SDGs is traditionally monitored through statistics
collected by civil registrations, population-based surveys and censuses. However, such data collection
is expensive and requires adequate statistical capacity, and many countries go decades between
making ground measurements on key SDG indicators [20]. Only roughly half of SDG indicators
have regular data from more than half of the world’s countries [94]. These data gaps severely limit
the ability of the international community to track progress toward the SDGs.
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Figure 1: Datasets and tasks included in SUSTAINBENCHranging from poverty prediction to land
cover classification (described in Section 3 with additional details in Appendix D). Data for 11 out of
15 tasks are publicly released for the first time.

Advances in machine learning (ML) have shown promise in helping plug these data gaps, demonstrat-
ing how sparse ground data can be combined with abundant, cheap and frequently updated sources
of novel sensor data to measure a range of SDG-related outcomes [70, 20]. For instance, data from
satellite imagery, social media posts, and/or mobile phone activity can predict poverty [15, 52, 109],
annual land cover [35, 18], deforestation [42, 50], agricultural cropping patterns [69, 103], crop yields
[11, 110], and the location and impact of natural disasters [25, 92]. As a timely example of real-world
impact, the governments of Bangladesh, Mozambique, Nigeria, Togo, and Uganda used ML-based
poverty and cropland maps generated from satellite imagery or phone records to target economic
aid to their most vulnerable populations during the COVID-19 pandemic [14, 38, 56, 66]. Other
recent work demonstrates using ML-based poverty maps to measure the effectiveness of large-scale
infrastructure investments [78].

But further methodological progress on the “big data approach” to monitoring SDGs is hindered by a
number of key challenges. First, downloading and working with both novel input data (e.g., from
satellites) and ground-based household surveys requires domain knowledge that many in the ML
community lack. Second, existing approaches have been evaluated on different datasets, data splits,
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or evaluation metrics, making it hard to understand whether performance is improving and where
additional research would be most fruitful [20]. This is in stark contrast to canonical ML datasets like
MNIST, CIFAR-10 [60], and ImageNet [81] that have standardized inputs, outputs, and evaluation
criteria and have therefore facilitated remarkable algorithmic advances [43, 28, 57, 44, 47]. Third,
methods used so far are often adapted from methods originally designed for canonical deep learning
datasets (e.g., ImageNet). However, the datasets and tasks relevant to SDGs are unique enough to
merit their own methodology. For example, gaps in monitoring SDGs are widest in low-income
countries, where only sparse ground labels are available to train or validate predictive models.

To facilitate methodological progress, this paper presents SUSTAINBENCH, a compilation of datasets
and benchmarks for monitoring the SDGs with machine learning. Our goals are to

1. lower the barriers to entry by supplying high-quality domain-specific datasets in development
economics and environmental science,

2. provide benchmarks to standardize evaluation on tasks related to SDG monitoring, and
3. encourage the ML community to evaluate and develop novel methods on problems of global

significance where improved model performance facilitates progress towards SDGs.

In SUSTAINBENCH, we curate a suite of 15 benchmark tasks across 7 SDGs where we have relatively
high-quality ground truth labels: No Poverty (SDG 1), Zero Hunger (SDG 2), Good Health and
Well-being (SDG 3), Quality Education (SDG 4), Clean Water and Sanitation (SDG 6), Climate
Action (SDG 13), and Life on Land (SDG 15). Figure 1 summarizes the datasets in SUSTAINBENCH.
Although results for some tasks have been published previously, data for 11 of the 15 tasks are being
made public for the first time. We provide baseline models for each task and a public leaderboard3.

To our knowledge, this is the first set of large-scale cross-domain datasets targeted at SDG monitoring
compiled with standardized data splits to enable benchmarking. SUSTAINBENCH is not only valuable
to improving sustainability measurements but also offers tasks for ML challenges, allowing for
the development of self-supervised learning (Section 3.7), meta-learning (Section 3.7), and multi-
modal/multi-task learning methods (Sections 3.1 and 3.3 to 3.5) on real-world datasets.

In the remainder of this paper, Section 2 surveys related datasets; Section 3 introduces the SDGs and
datasets covered by SUSTAINBENCH; Section 4 summarizes state-of-the-art models on each dataset
and where methodological advances are needed; and Section 5 highlights the impact, limitations, and
future directions of this work. The Appendix includes detailed information about the inputs, labels,
and tasks for each dataset.

2 Related Work

Our work builds on a growing body of research that seeks to measure SDG-relevant indicators,
including those cited above. These individual studies typically focus on only one SDG-related task,
but even within a specific SDG domain (e.g., poverty prediction), most tasks lack standardized
datasets with clear replicate-able benchmarks [20]. In comparison, SUSTAINBENCH is a compilation
of datasets that covers 7 SDGs and provides 15 standardized, replicate-able tasks with established
benchmarks. Table 1 compares SUSTAINBENCH against existing datasets that pertain to SDGs, are
publicly available, provide ML-friendly inputs/outputs, and specify standardized evaluation metrics.

Perhaps the most closely-related benchmark dataset is WILDS [59], which provides a comprehensive
benchmark for distribution shifts in real-world applications. However, WILDS is not focused on
SDGs, and although it includes a poverty mapping task, our poverty dataset covers 5×more countries.

There also exist a number of datasets for performing satellite or aerial imagery tasks related to the
SDGs [23, 86, 89, 108, 96, 62, 41, 4, 26, 96] which share similarities with the inputs of SUSTAIN-
BENCH on certain benchmarks. For example, [86] compiled imagery from the Sentinel-1/2 satellites,
which we also use for SDG monitoring tasks, and the Radiant Earth Foundation has compiled datasets
for crop type mapping [77], a task we also include. However, SUSTAINBENCH’s goal is to provide
a broader view of what ML can do for SDG monitoring; it is differentiated in its focus on multiple
SDGs, multiple inputs, and on low-income regions in particular. For tasks where existing datasets
are abundant (e.g., cropland and land cover classification), SUSTAINBENCH has tasks that address

3https://sustainlab-group.github.io/sustainbench/leaderboard
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Table 1: A comparison of SUSTAINBENCH with related datasets and benchmarks. A dataset is
only included if it is relevant for an SDG, is publicly available, provides both inputs and outputs in
ML-friendly formats, defines train/test sets, and standardizes evaluation metrics.

Relevant for SDGs
Name Purpose Geography Time Inputs 1 2 3 4 6 11 13 14 15
SUSTAINBENCH SDG monitoring 1-105

countries/task
(119 total)

1-24
years/task
in 1996-2019

Sat. images,
street-level
images, and/or
time series

X X X X X X X

Yeh et al. / WILDS [109, 59] Poverty mapping 23 countries 2009-16 Sat. images X

Radiant MLHub [77] Crop type mapping 8 countries 1-3 years/task
in 2015-21

Sat. time series or
drone images

X

SpaceNet [96] Building & road
detection

10+ cities Unknown Sat. images &
time series

X

DeepGlobe [26] Building & road
detection,
land cover
classification

3 countries,
4 cities

Unknown Sat. images X X

fMoW / WILDS [23, 59] Object detection 207 countries 2002-17 Sat. images X

xView [62] Object classification 30+ countries Unknown Sat. images X

xBD (xView2) [41] Disaster damage
assessment

10 countries 2011-19 Sat. images X

xView3 [4] Illegal fishing
detection

Oceans Unknown Sat. images X

BigEarthNet [89] Land cover
classification

10 countries
in Europe

2017-18 Sat. images X

ForestNet [50] Deforestation drivers Indonesia 2001-16 Environ. data &
sat. images

X X

iWildCam2020 /
WILDS [13, 59]

Wildlife monitoring 12 countries 2013-15 Camera trap
images

X

remaining challenges in the domain (e.g., learning from weak labels, sharing knowledge across the
globe). Appendix D provides task-by-task comparisons of SUSTAINBENCH datasets with prior work.

3 SUSTAINBENCH Datasets and Tasks

In this section, we introduce the SUSTAINBENCH datasets and provide background on the SDGs
that they help monitor. Seven SDGs are currently covered: No Poverty (SDG 1), Zero Hunger (SDG
2), Good Health and Well-being (SDG 3), Quality Education (SDG 4), Clean Water and Sanitation
(SDG 6), Climate Action (SDG 13), and Life on Land (SDG 15). We describe how progress toward
each goal is traditionally monitored, the gaps that currently exist in monitoring, and how certain
indicators can be monitored using non-traditional datasets instead. Figure 1 summarizes the SDG,
inputs, outputs, tasks, and original reference of each dataset, and Figures 2 and A1 visualize how
many SDG indicators are covered by SUSTAINBENCH in each country. All of the datasets are easily
downloaded via a Python package that integrates with the PyTorch ML framework [75].

# SDGs
covered in
SUSTAINBENCH

5

4

3

2

1

0

6

Figure 2: A map of how many SDGs are covered in SUSTAINBENCH for every country. SUSTAIN-
BENCH has global coverage with an emphasis on low-income countries. In total, 119 countries have
at least one task in SUSTAINBENCH.
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3.1 No Poverty (SDG 1)

Despite decades of declining poverty rates, an estimated 8.4% of the global population remains in
extreme poverty as of 2019, and progress has slowed in recent years [93]. But data on poverty remain
surprisingly sparse, hampering efforts at monitoring local progress, targeting aid to those who need it,
and evaluating the effectiveness of antipoverty programs [20]. In most African countries, for example,
nationally representative consumption or asset wealth surveys, the key source of internationally
comparable poverty measurements, are only available once every four years or less [109].

For SUSTAINBENCH, we processed survey data from two international household survey programs:
Demographic and Health Surveys (DHS) [48] and the Living Standards Measurement Study (LSMS).
Both constitute nationally representative household-level data on assets, housing conditions, and
education levels, among other attributes. Notably, only LSMS data form a panel—i.e., the same
households are surveyed over time, facilitating comparison over time. Using a a principal components
analysis (PCA) approach [31, 85], we summarize the survey data into a single scalar asset wealth
index per “cluster,” which roughly corresponds to a village or local community. We refer to cluster-
level wealth (or its absence) as “poverty”. Previous research has shown that widely-available imagery
sources including satellite imagery [52, 109] and crowd-sourced street-level imagery [64] can be
effective for predicting cluster-level asset wealth when used as inputs in deep learning models.

SUSTAINBENCH includes two regression tasks for poverty prediction at the cluster level, both using
imagery inputs to estimate an asset wealth index. The first task (Section 3.1.1) predicts poverty over
space, and the second task (Section 3.1.2) predicts poverty changes over time.

3.1.1 Poverty Prediction Over Space

The poverty prediction over space task involves predicting a cluster-level asset wealth index which
represents the “static” asset wealth of a cluster at a given point in time. For this task, the labels and
inputs are created in a similar manner as in [109], but with about 5× as many examples.

Dataset Following techniques developed in previous works [52, 109], we assembled asset wealth
data for 2,079,036 households living in 86,936 clusters across 48 countries, drawn from DHS surveys
conducted between 1996 and 2019, computing a cluster-level asset wealth index as described above.
We provide satellite and street-level imagery inputs, gathered and processed according to established
procedures [109, 64]. The 255×255×8px satellite images have 7 multispectral bands from Landsat
daytime satellites and 1 nightlights band from either the DMSP or VIIRS satellites. The images are
rescaled to a resolution of 30m/px and are geographically centered around each surveyed cluster’s
geocoordinates. Geocoordinates in the public survey data are “jittered” by up to 10km from the
true locations to protect the privacy of surveyed households [19]. For each cluster location, we
also retrieved up to 300 crowd-sourced, street-level imagery from Mapillary. We evaluate model
performance using the squared Pearson correlation coefficient (r2) between predicted and observed
values of the asset wealth index on held-out test countries. Appendix D.1 has more dataset details.

3.1.2 Poverty Prediction Over Time

For predicting temporal changes in poverty, we construct a PCA-based index of changes in asset
ownership using LSMS data. For this task, the labels and inputs provided are similar to [109], with
small improvements in image and label quality.

Dataset We provide labels for 1,665 instances of cluster-level asset wealth change from 1,287
clusters in 5 African countries. We use the same satellite imagery sources from the previous poverty
prediction task. In this task, however, for each cluster we provide images from the two points in time
(before and after) used to compute the difference in asset ownership, instead of only from a single
point in time. Because street-level images were only available for ∼1% of clusters, we do not provide
them for this task. We evaluate model performance using the squared Pearson correlation coefficient
(r2) on predictions and labels in held-out cluster locations. Appendix D.2 has more dataset details.

3.2 Zero Hunger (SDG 2)

The number of people who suffer from hunger has risen since 2015, with 690 million or 9% of the
world’s population affected by chronic hunger [93]. At the same time, 40% of habitable land on Earth
is already devoted to agricultural activities, making agriculture by far the largest human impact on
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the natural landscape [5]. The second SDG is to “end hunger, achieve food security and improved
nutrition, and promote sustainable agriculture.” In addition to ending hunger and malnutrition in all
forms, the targets under SDG 2 include doubling the productivity of small-scale food producers and
promoting sustainable food production [93]. While traditionally data on agricultural practices and
farm productivity are obtained via farm surveys, such data are rare and often of low quality [20].
Satellite imagery offers the opportunity to monitor agriculture more cheaply and more accurately,
by mapping cropland, crop types, crop yields, field boundaries, and agricultural practices like cover
cropping and conservation tillage. We discuss the SUSTAINBENCH datasets for SDG 2 below.

3.2.1 Cropland mapping with weak labels

One indicator for SDG 2 is the proportion of agricultural area under productive and sustainable
agriculture [93]. Existing state-of-the-art datasets on land cover [18, 35] are derived from satellite
time series and include a cropland class. However, the maps are known to have large errors in regions
of the world like Sub-Saharan Africa where ground labels are sparse [56]. Therefore, while mapping
cropland is largely a solved problem in settings with ample labels, devising methods to efficiently
generate georeferenced labels and accurately map cropland in low-resource regions remains an
important and challenging research direction.

Dataset We release a dataset for performing weakly supervised cropland classification in the U.S.
using data from [102], which has not been released previously. While densely segmented labels are
time-consuming and infeasible to generate for a large region like Africa, pixel-level and image-level
labels are easier to create. The inputs are image tiles taken by the Landsat satellites and composited
over the 2017 growing season, and the labels are either binary {cropland, not cropland} at single
pixels or {≥ 50% cropland, < 50% cropland} for the entire image. Labels are generated from a high-
quality USDA dataset on land cover [69]. Train, validation, and test sets are split along geographic
blocks, and we evaluate models by overall accuracy and F1-score. We also encourage the use of
semi-supervised and active learning methods to relieve the labeling burden needed to map cropland.

3.2.2 Crop type mapping in Sub-Saharan Africa

Spatially disaggregated crop type maps are needed to assess agricultural diversity and estimate yields.
In high-income countries across North America and Europe, crop type maps are produced annually by
departments of agriculture using farm surveys and satellite imagery [69]. However, no such maps are
regularly available for middle- and low-income countries. Mapping crop types in the Global South
faces challenges of irregularly shaped fields, small fields, intercropping, sparse ground truth labels,
and highly heterogeneous landscapes [83]. We release two crop type datasets in Sub-Saharan Africa
and point the reader to additional datasets hosted by the Radiant Earth Foundation [77] (Table 1). We
recommend that ML researchers use all available datasets to ensure model generalizability.

Dataset #1 We re-release the dataset from [83] in Ghana and South Sudan in a format more
familiar to the ML community. The inputs are growing season time series of imagery from three
satellites (Sentinel-1, Sentinel-2, and PlanetScope) in 2016 and 2017, and the outputs are semantic
segmentation of crop types. Ghana samples are labeled for maize, groundnut, rice, and soybean,
while South Sudan samples are labeled for maize, groundnut, rice, and sorghum. We use the same
train, validation, and test sets as [83], which preserve relative percentages of crop types across the
splits. We evaluate models using overall accuracy and macro F1-score.

Dataset #2 We release the dataset used in [58] and [54] to map crop types in three regions of Kenya.
Since the timing of growth and spectral signature are two main ways to distinguish crop types, the
inputs are annual time series from the Sentinel-2 multi-spectral satellite. The outputs are crop types (9
possible classes). There are a total of 39,762 pixels belonging to 5,746 fields. The training, validation,
and test sets are split along region rather than by field in order to develop models that generalize
across geography. Our evaluation metrics are overall accuracy and macro-F1 score.

3.2.3 Crop yield prediction in North and South America

In order to double the productivity (or yield) of smallholder farms, we first have to measure it, and ac-
curate local-level yield measurements are exceedingly rare in most of the world. In SUSTAINBENCH,
we release county-level yields collected from various government databases; these can still aid in
forecasting production, evaluating agricultural policy, and assessing the effects of climate change.
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Dataset Our dataset is based on the datasets used in [110] and [101]. We release county-level
yields for 857 counties in the U.S., 135 in Argentina, and 32 in Brazil for the years 2005-16. The
inputs are spectral band and temperature histograms over each county for the harvest season from the
MODIS satellite. The ground truth labels are the regional soybean yield per harvest, in metric tonnes
per cultivated hectare, retrieved from government data. See Appendix D.6 for more details. Models
are evaluated using root mean squared error (RMSE) and R2 of predictions with the ground truth.
The imbalance of data by country motivates the use of transfer learning approaches.

3.2.4 Field delineation in France

Since agricultural practices are usually implemented on the level of an entire field, field boundaries
can help reduce noise and improve performance when mapping crop types and yields. Furthermore,
field boundaries are a prerequisite for today’s digital agriculture services that help farmers optimize
yields and profits [98]. Statistics that can be derived from field delineation, such as the size and
distribution of crop fields, have also been used to study productivity [21, 27], mechanization [61], and
biodiversity [37]. Field boundary datasets are rare and only sparsely labeled in low-income regions,
so we release a large dataset from France to aid in model development.

Dataset We re-release the dataset introduced in Aung et al. 9. The dataset consists of Sentinel-2
satellite imagery in France over 3 time ranges: January-March, April-June, and July-September in
2017. The image has resolution 224×224 corresponding to a 2.24km×2.24km area on the ground.
Each satellite image comes along with the corresponding binary masks of boundaries and areas of
farm parcels. The dataset consists of a total of 1966 samples. We use a different data split from [9] to
remove overlapping between the train, validation and test split. Following [9], we use the Dice score
between the ground truth boundaries and predicted boundaries as the performance metric.

3.3 Good Health and Well-being (SDG 3)

Despite significant progress on improving global health outcomes (e.g., halving child mortality rates
since 2000 [93]), the lack of local-level measurements in many developing countries continues to
constrain the monitoring, targeting, and evaluation of health interventions. We examine two health
indicators: female body mass index (BMI), a key input to understanding both food insecurity and
obesity; and child mortality rate (deaths under age 5), an official SDG 3 indicator considered to be a
summary measure of a society’s health. Previous works have demonstrated using satellite imagery
[67] or street-level Mapillary imagery inputs [64] for predicting BMI. While we are unaware of any
prior works using such imagery inputs for predicting child mortality rates, “there is evidence that
child mortality is connected to environmental factors such as housing quality, slum-like conditions,
and neighborhood levels of vegetation” [51], which are certainly observable in imagery.

Dataset We provide cluster-level average labels for women’s BMI and child mortality rates com-
piled from DHS surveys. There are 94,866 cluster-level BMI labels computed from 1,781,403 women
of childbearing age (15-49), excluding pregnant women. There are 105,582 cluster-level labels for
child mortality rates computed from 1,936,904 children under age 5. As in the poverty prediction
over space task (Section 3.1.1), the inputs for predicting the health labels are satellite and street-level
imagery, and models are evaluated using the r2 metric on labels from held-out test countries.

3.4 Quality Education (SDG 4)

SDG 4 includes targets that by 2030, all children and adults “complete free, equitable and quality
primary and secondary education”. Increasing educational attainment (measured by years of schooling
completed) is known to increase wealth and social mobility, and higher educational attainment in
women is strongly associated with improved child nutrition and decreased child mortality [40].
Previous works have demonstrated the ability of deep learning methods to predict educational
attainment from both satellite images [112] and street-level images [36, 64].

Dataset We provide cluster-level average years of educational attainment by women of reproductive
age (15-49) compiled from same DHS surveys used for creating the asset wealth labels in the poverty
prediction task. The 122,435 cluster-level labels were computed from 3,013,286 women across 56
countries. As in the poverty prediction over space task (Section 3.1.1), the inputs for predicting
women educational attainment are satellite and street-level imagery, and models are evaluated using
the r2 metric on labels from held-out test countries.
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3.5 Clean Water and Sanitation (SDG 6)

Clean water and sanitation are fundamental to human health, but as of 2020, two billion people
globally do not have access to safe drinking water, and 2.3 billion lack a basic hand-washing facility
with soap and water [84]. Access to improved sanitation and clean water is known to be associated
with lower rates of child mortality [65, 33].

Dataset We provide cluster-level average years of a water quality index and sanitation index
compiled from same DHS surveys used for creating the asset wealth labels in the poverty prediction
task. The 87,938 (water index) and 89,271 (sanitation index) cluster-level labels were computed from
2,105,026 (water index) and 2,143,329 (sanitation index) households across 49 countries. As in the
poverty prediction over space task (Section 3.1.1), the inputs for predicting the water quality and
sanitation indices are satellite and street-level imagery, and models are evaluated using the r2 metric
on labels from held-out test countries. Since SUSTAINBENCH includes labels for child mortality in
many of the same clusters with sanitation index labels, we encourage researchers to take advantage
of the known associations between these variables.

3.6 Climate Action (SDG 13)

SDG 13 aims at combating climate change and its disruptive impacts on national economies and
local livelihoods [68]. Monitoring emissions and environmental regulatory compliance are key steps
toward SDG 13.

3.6.1 Brick kiln mapping

Brick manufacturing is a major source of carbon emissions and air pollution in South Asia, with an
industry largely comprised of small-scale, informal producers. Identifying brick kilns from satellite
imagery is a scalable method to improve compliance with environmental regulations and measure their
impact on nearby populations. A recent study [63] trained a CNN to detect kilns and hand-validated
the predictions, providing ground truth kiln locations in Bangladesh from October 2018 to May 2019.

Dataset The high-resolution satellite imagery used in [63] could not be shared publicly because
they were proprietary. Hence, we provide a lower resolution alternative—Sentinel-2 imagery, which
is available through Google Earth Engine [39]. We retrieved 64×64×13 tiles at 10m/pixel resolution
from the same time period and labeled each image as not containing a brick kiln (class 0) or containing
a brick kiln (class 1) based on the ground truth locations in [63]. There were 6,329 positive examples
out of 374,000 examples total; we sampled 25% of the negative examples and removed null values,
resulting in 67,284 negative examples. More details can be found in Appendix D.8.

3.7 Life on Land (SDG 15)

Human activity has altered over 75% of the earth’s surface, reducing forest cover, degrading once-
fertile land, and threatening an estimated 1 million animal and plant species with extinction [93]. Our
understanding of land cover—i.e., the physical material on the surface of the earth—and its changes
is not uniform across the globe. Existing state-of-the-art land cover maps [18] are significantly more
accurate in high-income regions than low-income ones, as the latter have few ground truth labels [56].
The following two datasets seek to reduce this gap via representation learning and transfer learning.

3.7.1 Representation learning for land cover classification

One approach to increase the performance of land cover classification in regions with few labels is to
use unsupervised or self-supervised learning to improve satellite/aerial image representations, so that
downstream tasks require fewer labels to perform well.

Dataset We release the high-resolution aerial imagery dataset from [53], which spans a 2500km2

(12 billion pixel) area of Central Valley, CA in the U.S. The output is image-level land cover (66
classes), where labels are generated from a high-quality USDA dataset [69]. The region is divided
in geographically-continuous blocks into train, validation, and test sets. The user may use the
training imagery in any way to learn representations, and we provide a test set of up to 200,000 tiles
(100×100px) for evaluation. The evaluation metrics are overall accuracy and macro F1-score.
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Table 2: Benchmark performance on 15 tasks across 7 SDGs. See details in Appendix E. For the
Model Type column, kNN = k-nearest neighbors, GP = Gaussian process. An asterisk (*) indicates a
result on a similar dataset, but not the exact SUSTAINBENCH test set.

SDG Task Countries Metric Benchmark Value Model Type Ref

No Poverty Poverty prediction over space 48 countries r2 0.63 kNN [109]
Poverty prediction over time 5 African countries r2 0.35* ResNet-18 [109]

Zero Hunger

Weakly supervised cropland
classification United States F1 score 0.88 (pixel label)

0.80 (image label) U-Net [102]

Crop type classification Ghana, South Sudan Macro F1 0.57, 0.70 LSTM [83]
Kenya Macro F1 0.30 Random forest [58]

Crop yield prediction United States RMSE 0.37 t/ha CNN+GP [110]
Argentina, Brazil 0.62 t/ha, 0.42 t/ha LSTM [101]

Field delineation France Dice score 0.61 U-Net [9]
0.87 FracTAL Res-UNet [99]

Good Health Child mortality rate 56 countries r2 0.01 kNN –
& Well-Being Women BMI 53 countries r2 0.42 kNN –

Quality Education Women education 53 countries r2 0.26 kNN –

Clean Water Water index 49 countries r2 0.40 kNN –
and Sanitation Sanitation index 49 countries r2 0.36 kNN –

Climate Action Brick kiln detection Bangladesh Accuracy 0.94* ResNet-50 [63]

Life on Land

Representation learning for
land cover United States Accuracy 0.55 (n = 1, 000)

0.58 (n = 10, 000)
Tile2Vec with
ResNet-50 [53]

Out-of-domain land cover
classification Global Kappa 0.32 (1-shot,

2-way)
MAML with
shallow 1D CNN [104]

3.7.2 Out-of-domain land cover classification

A second strategy for increasing performance in label-scarce regions is to transfer knowledge learned
from classifying land cover in high-income regions to low-income ones.

Dataset We release the global dataset of satellite time series from [104]. The dataset samples 692
regions of size 10km× 10km around the globe; for each region, 500 latitude/longitude coordinates
are sampled. The input is time series from the MODIS satellite over the course of a year, and the
output is land cover type (17 possible classes). Users have the option of splitting regions into train,
validation, and test sets at random or by continent. The evaluation metrics are overall accuracy,
F1-score, and kappa score. The results from [104] are reported with all regions from Africa as the test
set, but the user can choose to hold out other continents, for which the label quality will be higher.

4 Results for Baseline Models

SUSTAINBENCHprovides a benchmark and public leaderboard website for the datasets described in
Section 3. Each dataset has standard train-test splits with well-defined performance metrics detailed
in Appendix E. We also welcome community submissions using additional data sources beyond what
is provided in SUSTAINBENCH, such as for pre-training or regularization. Table 2 summarizes the
baseline models and results. Code to reproduce our baseline models is available on GitHub4.

Here, we highlight some main takeaways from our baseline models. First, there is significant room
for improvement for models that can take advantage of multi-modal inputs. Specifically, our baseline
model for the DHS survey-based tasks only uses the satellite imagery inputs, and its poor performance
on predicting child mortality and women educational attainment demonstrates the need to leverage
additional data sources, such as the street-level imagery we provide. Second, ML model development
can lead to significant gains in performance for SDG-related tasks. While the original paper that
compiled SUSTAINBENCH’s field delineation dataset achieved a Dice score of 0.61 with a standard
U-Net [9], we applied a new attention-based CNN developed specifically for field delineation [99]
and achieved a 0.87 Dice score. For more task-specific discussions, please see Appendix E.

5 Impact, Limitations, and Future Work

This paper introduces SUSTAINBENCH, which, to the best of our knowledge, is the largest compilation
to date of datasets and benchmarks for monitoring the SDGs with machine learning (ML). The SDGs

4https://github.com/sustainlab-group/sustainbench/
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are arguably the most urgent challenges the world faces today, and it is important that the ML
community contribute to solving these global issues. As progress towards SDGs is often hindered
by a lack of ground survey data especially in low-income countries, ML algorithms designed for
monitoring SDGs are important for leveraging non-traditional data sources that are cheap, globally
available, and frequently-updated to fill in data gaps. ML-based estimates provide policymakers from
governments and aid organizations with more frequent and comprehensive insights [109, 20, 52].

The tasks defined in SUSTAINBENCH can directly translate into real-world impact. For example,
during the COVID-19 pandemic, the government of Togo collaborated with researchers to use satellite
imagery, phone data, and ML to map poverty [14] and cropland [56] in order to target cash payments
to the jobless. Recent work in Uganda demonstrates how ML-based poverty maps can be used
to measure the effectiveness of large-scale infrastructure investments [78]. ML-based analyses of
satellite images in Kenya (using the labels described in Section 3.2.2) were recently used to identify
soil nitrogen deficiency as the limiting factor in maize yields, thereby facilitating targeted agriculture
intervention [54]. And as a last example, the development of a new attention-based neural network
architecture enabled the delineation of 1.7 million fields in Australia from satellite imagery [99].
These field boundaries have been productized and facilitate the adoption of digital agriculture, which
can improve yields while minimizing environmental pollution [24].

Although ML approaches have demonstrated value on a variety of tasks related to SDGs [109, 20,
64, 53, 52, 101, 103], the “big data approach” has its limits. ML models may not completely replace
ground surveys. Imperfect predictions from ML models may introduce biases that propagate through
downstream policy decisions, leading to negative societal impacts. The use of survey data, high
resolution remote sensing images, and street-level images may also raise privacy concerns, despite
efforts to protect individual privacy. We refer the reader to Appendix F for a detailed treatment of
ethical concerns in SUSTAINBENCH, including mitigation strategies we implemented. Despite these
limitations, ML applications have the greatest potential for positive impact in low-income countries,
where gaps in monitoring SDGs are widest due to the constant lack of survey data.

While SUSTAINBENCH is the largest SDG-focused ML dataset and benchmark to date, it is by no
means complete. Field surveys are extremely costly, and labeling images for model training requires
significant manual effort by experts, limiting the amount of data released in SUSTAINBENCH to
quantities smaller than those of many canonical ML datasets (e.g., ImageNet). In addition, many
SDGs and indicators are not included in the current version. Such SDG indicators can be placed into
3 categories. First, several tasks can be included in future versions of SUSTAINBENCH by drawing
on existing data. For example, measures of gender equality (SDG 5) and access to affordable and
clean energy (SDG 7) already exist in the surveys used to create labels for SUSTAINBENCH tasks
but will require additional processing before releasing. Recent works have also pioneered deep
learning methods for identifying illegal fishing from satellite images [74] (SDG 14) and monitoring
biodiversity from camera traps [13] (SDG 15). Table 1 includes a few relevant datasets from this first
category. Second, some SDG indicators require additional research to discover non-traditional data
modalities that can be used to monitor them. Finally, not all SDGs are measurable using ML or need
improved measurement capabilities from ML models. For example, international cooperation (SDG
17) is perhaps best measured by domestic and international policies and agreements.

For the ML community, SUSTAINBENCH also provides opportunities to test state-of-the-art ML
models on real-world data and develop novel algorithms. For example, the tasks based on DHS
household survey data share the same inputs and thus facilitate multi-task training. In particular,
we encourage researchers to take advantage of the known strong associations between asset wealth,
child mortality, women’s education, and sanitation labels [33, 40]. The combination of satellite
and street-level imagery for these tasks also enables multi-modal representation learning. On the
other hand, the land cover classification and cropland mapping tasks provide new real-world datasets
for evaluating and developing self-supervised, weakly supervised, unsupervised, and meta-learning
algorithms. We welcome exploration of methods beyond our provided baseline models.

Ultimately, we hope SUSTAINBENCH will lower the barrier to entry for the ML community to
contribute toward monitoring SDGs and highlight challenges for ML researchers to address. In
the long run, we plan to continue expanding datasets and benchmarks as new data sources become
available. We believe that standardized datasets and benchmarks like those in SUSTAINBENCH are
imperative to both novel method development and real-world impact.

10



Acknowledgments

The authors would like to thank everyone from the Stanford Sustainability and AI Lab for constructive
feedback and discussion; the Mapillary team for technical support on the dataset; Rose Rustowicz
for helping compile the crop type mapping dataset in Ghana and South Sudan; Anna X. Wang and
Jiaxuan You for their help in making the crop yield dataset; and Han Lin Aung and Burak Uzkent for
permission to release the field delineation dataset.

This work was supported by NSF awards (#1651565, #1522054), the Stanford Institute for Human-
Centered AI (HAI), the Stanford King Center, the United States Agency for International Development
(USAID), a Sloan Research Fellowship, and the Global Innovation Fund.

References
[1] Crop yield forecasting, Nov 2012. URL https://ec.europa.eu/jrc/en/research-topic/crop-

yield-forecasting.

[2] Transforming our World: The 2030 Agenda for Sustainable Development, Sep 2015. URL https:
//sustainabledevelopment.un.org/post2015/transformingourworld/publication.

[3] Blurring images. https://help.mapillary.com/hc/en-us/articles/115001663705-
Blurring-images, 2021.

[4] xView3: Dark Vessels, 2021. URL https://iuu.xview.us/.

[5] Food and Agriculture Statistics, 2021. URL http://www.fao.org/food-agriculture-
statistics/en/.

[6] E. Aiken, S. Bellue, D. Karlan, C. R. Udry, and J. Blumenstock. Machine Learning and Mobile Phone
Data Can Improve the Targeting of Humanitarian Assistance. Working Paper 29070, National Bureau of
Economic Research, Jul 2021. URL https://www.nber.org/papers/w29070.

[7] S. Alkire, J. M. Roche, P. Ballon, J. Foster, M. E. Santos, and S. Seth. Multidimensional Poverty
Measurement and Analysis. Oxford University Press, New York, NY, USA, 1 edition, 2015. ISBN
978-0-19-968949-1.

[8] Argentina Subsecretaría de Agricultura. Estimaciones agrícolas. URL http://datosestimaciones.
magyp.gob.ar/reportes.php?reporte=Estimaciones.

[9] H. L. Aung, B. Uzkent, M. Burke, D. Lobell, and S. Ermon. Farm parcel delineation using spatio-temporal
convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 76–77, 2020.

[10] G. Azzari and D. B. Lobell. Landsat-based classification in the cloud: An opportunity for a paradigm
shift in land cover monitoring. Remote Sensing of Environment, pages 1–11, May 2017.

[11] G. Azzari, M. Jain, and D. B. Lobell. Towards fine resolution global maps of crop yields: Testing multiple
methods and satellites in three countries. Remote Sensing of Environment, 202:129–141, 2017.

[12] B. Babenko, J. Hersh, D. Newhouse, A. Ramakrishnan, T. Swartz, and W. Bank. Poverty Mapping Using
Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an
Application in Mexico. In NIPS 2017 Workshop on Machine Learning for the Developing World, 2017.
URL https://arxiv.org/abs/1711.06323.

[13] S. Beery, E. Cole, and A. Gjoka. The iWildCam 2020 Competition Dataset. arXiv preprint
arXiv:2004.10340, 2020.

[14] J. Blumenstock. Machine learning can help get COVID-19 aid to those who need it most. Nature, May
2020. doi: 10.1038/d41586-020-01393-7. URL https://www.nature.com/articles/d41586-020-
01393-7.

[15] J. Blumenstock, G. Cadamuro, and R. On. Predicting poverty and wealth from mobile phone metadata.
Science, 350(6264):1073–1076, 2015.

[16] D. K. Bolton and M. A. Friedl. Forecasting crop yield using remotely sensed vegetation indices and crop
phenology metrics. Agricultural and Forest Meteorology, 173:74–84, 2013. ISSN 0168-1923. doi: 10.
1016/j.agrformet.2013.01.007. URL https://www.sciencedirect.com/science/article/pii/
S0168192313000129.

11

https://ec.europa.eu/jrc/en/research-topic/crop-yield-forecasting
https://ec.europa.eu/jrc/en/research-topic/crop-yield-forecasting
https://sustainabledevelopment.un.org/post2015/transformingourworld/publication
https://sustainabledevelopment.un.org/post2015/transformingourworld/publication
https://help.mapillary.com/hc/en-us/articles/115001663705-Blurring-images
https://help.mapillary.com/hc/en-us/articles/115001663705-Blurring-images
https://iuu.xview.us/
http://www.fao.org/food-agriculture-statistics/en/
http://www.fao.org/food-agriculture-statistics/en/
https://www.nber.org/papers/w29070
http://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones
http://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones
https://arxiv.org/abs/1711.06323
https://www.nature.com/articles/d41586-020-01393-7
https://www.nature.com/articles/d41586-020-01393-7
https://www.sciencedirect.com/science/article/pii/S0168192313000129
https://www.sciencedirect.com/science/article/pii/S0168192313000129


[17] Brasil Sistema IBGE de Recuperacao Automatica, Instituto Brasileiro de Geografia e Estatistica. Producao
agricola municipal: producao das lavouras temporárias. URL https://sidra.ibge.gov.br/tabela/
1612.

[18] M. Buchhorn, M. Lesiv, N.-E. Tsendbazar, M. Herold, L. Bertels, and B. Smets. Copernicus Global Land
Cover Layers—Collection 2. Remote Sensing, 12(6), 2020. ISSN 2072-4292. doi: 10.3390/rs12061044.
URL https://www.mdpi.com/2072-4292/12/6/1044.

[19] C. R. Burgert, J. Colston, T. Roy, and B. Zachary. Geographic displacement procedure and georeferenced
data release policy for the Demographic and Health Surveys. 2013. URL http://dhsprogram.com/
pubs/pdf/SAR7/SAR7.pdf.

[20] M. Burke, A. Driscoll, D. B. Lobell, and S. Ermon. Using satellite imagery to understand and promote
sustainable development. Science, 371(6535):eabe8628, 2021. doi: 10.1126/science.abe8628. URL
https://www.science.org/doi/abs/10.1126/science.abe8628.

[21] M. R. Carter. Identification of the inverse relationship between farm size and productivity: An empirical
analysis of peasant agricultural production. Oxford Economic Papers, 36(1):131–145, 1984. ISSN
00307653, 14643812. URL http://www.jstor.org/stable/2662637.

[22] R. Chew, J. Rineer, R. Beach, M. O’Neil, N. Ujeneza, D. Lapidus, T. Miano, M. Hegarty-Craver, J. Polly,
and D. S. Temple. Deep Neural Networks and Transfer Learning for Food Crop Identification in UAV
Images. Drones, 4(1), 2020.

[23] G. Christie, N. Fendley, J. Wilson, and R. Mukherjee. Functional map of the world. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6172–6180, 2018.

[24] CSIRO. ePaddocks Australian Paddock Boundaries. URL https://acds.csiro.au/epaddock-
australian-paddock-boundaries.

[25] J. A. de Bruijn, H. de Moel, B. Jongman, M. C. de Ruiter, J. Wagemaker, and J. C. J. H. Aerts. A global
database of historic and real-time flood events based on social media. Scientific Data, 6(1):311, 2019.

[26] I. Demir, K. Koperski, D. Lindenbaum, G. Pang, J. Huang, S. Basu, F. Hughes, D. Tuia, and R. Raska.
DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. In CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 172–17209, Jun 2018. doi:
10.1109/CVPRW.2018.00031.

[27] S. Desiere and D. Jolliffe. Land productivity and plot size: Is measurement error driving the inverse
relationship? Journal of Development Economics, 130:84–98, 2018.

[28] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. In International Confer-
ence on Learning Representations, 2017. URL https://openreview.net/forum?id=HkpbnH9lx.

[29] C. D. Elvidge, K. Baugh, M. Zhizhin, F. C. Hsu, and T. Ghosh. VIIRS night-time lights. International
Journal of Remote Sensing, 38(21):5860–5879, June 2017. ISSN 0143-1161. doi: 10.1080/01431161.
2017.1342050. URL https://www.tandfonline.com/doi/10.1080/01431161.2017.1342050.

[30] R. Engstrom, J. S. Hersh, and D. L. Newhouse. Poverty from space: using high-resolution satellite
imagery for estimating economic well-being. Technical report, World Bank Group, Washington, D.C.,
2017. URL http://documents.worldbank.org/curated/en/610771513691888412/Poverty-
from-space-using-high-resolution-satellite-imagery-for-estimating-economic-
well-being.

[31] D. Filmer and L. H. Pritchett. Estimating Wealth Effects Without Expenditure Data—Or Tears: An
Application To Educational Enrollments In States Of India. Demography, 38(1):115–132, Feb 2001.
ISSN 1533-7790. doi: 10.1353/dem.2001.0003. URL https://doi.org/10.1353/dem.2001.0003.

[32] D. Filmer and K. Scott. Assessing Asset Indices. Demography, 49(1):359–392, Feb 2012. ISSN 1533-
7790. doi: 10.1007/s13524-011-0077-5. URL https://doi.org/10.1007/s13524-011-0077-5.

[33] G. Fink, I. Günther, and K. Hill. The effect of water and sanitation on child health: evidence from the
demographic and health surveys 1986–2007. International Journal of Epidemiology, 40(5):1196–1204,
Oct 2011. ISSN 0300-5771. doi: 10.1093/ije/dyr102. URL https://doi.org/10.1093/ije/dyr102.

[34] M. Friedl and D. Sulla-Menashe. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global
500m SIN Grid V006. 2019. doi: 10.5067/MODIS/MCD12Q1.006. URL https://lpdaac.usgs.
gov/products/mcd12q1v006/.

12

https://sidra.ibge.gov.br/tabela/1612
https://sidra.ibge.gov.br/tabela/1612
https://www.mdpi.com/2072-4292/12/6/1044
http://dhsprogram.com/pubs/pdf/SAR7/SAR7.pdf
http://dhsprogram.com/pubs/pdf/SAR7/SAR7.pdf
https://www.science.org/doi/abs/10.1126/science.abe8628
http://www.jstor.org/stable/2662637
https://acds.csiro.au/epaddock-australian-paddock-boundaries
https://acds.csiro.au/epaddock-australian-paddock-boundaries
https://openreview.net/forum?id=HkpbnH9lx
https://www.tandfonline.com/doi/10.1080/01431161.2017.1342050
http://documents.worldbank.org/curated/en/610771513691888412/Poverty-from-space-using-high-resolution-satellite-imagery-for-estimating-economic-well-being
http://documents.worldbank.org/curated/en/610771513691888412/Poverty-from-space-using-high-resolution-satellite-imagery-for-estimating-economic-well-being
http://documents.worldbank.org/curated/en/610771513691888412/Poverty-from-space-using-high-resolution-satellite-imagery-for-estimating-economic-well-being
https://doi.org/10.1353/dem.2001.0003
https://doi.org/10.1007/s13524-011-0077-5
https://doi.org/10.1093/ije/dyr102
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/


[35] M. Friedl, D. McIver, J. Hodges, X. Zhang, D. Muchoney, A. Strahler, C. Woodcock, S. Gopal, A. Schnei-
der, A. Cooper, A. Baccini, F. Gao, and C. Schaaf. Global land cover mapping from MODIS: algorithms
and early results. Remote Sensing of Environment, 83(1):287–302, 2002.

[36] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden, and L. Fei-Fei. Using deep learning and
Google Street View to estimate the demographic makeup of neighborhoods across the United States.
Proceedings of the National Academy of Sciences, 114(50):13108–13113, Dec 2017. ISSN 0027-8424,
1091-6490. doi: 10.1073/pnas.1700035114. URL https://www.pnas.org/content/114/50/13108.

[37] F. Geiger, J. Bengtsson, F. Berendse, W. W. Weisser, M. Emmerson, M. B. Morales, P. Ceryngier, J. Liira,
T. Tscharntke, C. Winqvist, S. Eggers, R. Bommarco, T. Pärt, V. Bretagnolle, M. Plantegenest, L. W.
Clement, C. Dennis, C. Palmer, J. J. Oñate, I. Guerrero, V. Hawro, T. Aavik, C. Thies, A. Flohre, S. Hänke,
C. Fischer, P. W. Goedhart, and P. Inchausti. Persistent negative effects of pesticides on biodiversity and
biological control potential on European farmland. Basic and Applied Ecology, 11(2):97–105, 2010.

[38] U. Gentilini, S. Khosla, and M. Almenfi. Cash in the City: Emerging Lessons from Implementing Cash
Transfers in Urban Africa. Technical report, World Bank, Washington, D.C., USA, Jan 2021. URL
https://openknowledge.worldbank.org/handle/10986/35003.

[39] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 2017. doi: 10.1016/j.
rse.2017.06.031. URL https://doi.org/10.1016/j.rse.2017.06.031.

[40] N. Graetz, J. Friedman, A. Osgood-Zimmerman, R. Burstein, M. H. Biehl, C. Shields, J. F. Mosser,
D. C. Casey, A. Deshpande, L. Earl, R. C. Reiner, S. E. Ray, N. Fullman, A. J. Levine, R. W. Stubbs,
B. K. Mayala, J. Longbottom, A. J. Browne, S. Bhatt, D. J. Weiss, P. W. Gething, A. H. Mokdad, S. S.
Lim, C. J. L. Murray, E. Gakidou, and S. I. Hay. Mapping local variation in educational attainment
across Africa. Nature, 555(7694), Mar 2018. ISSN 1476-4687. doi: 10.1038/nature25761. URL
http://www.nature.com/articles/nature25761.

[41] R. Gupta, R. Hosfelt, S. Sajeev, N. Patel, B. Goodman, J. Doshi, E. Heim, H. Choset, and M. Gaston. xbd:
A dataset for assessing building damage from satellite imagery. arXiv preprint arXiv:1911.09296, 2019.

[42] M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V.
Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G.
Townshend. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160):
850–853, 2013.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016. doi:
10.1109/CVPR.2016.90. URL https://ieeexplore.ieee.org/document/7780459.

[44] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9729–9738, 2020.

[45] A. Head, M. Manguin, N. Tran, and J. E. Blumenstock. Can Human Development be Measured
with Satellite Imagery? In Proceedings of the Ninth International Conference on Information and
Communication Technologies and Development, pages 1–11, Lahore, Pakistan, Nov 2017. ACM. ISBN
978-1-4503-5277-2. doi: 10.1145/3136560.3136576. URL http://dl.acm.org/citation.cfm?
doid=3136560.3136576.

[46] F.-C. Hsu, K. Baugh, T. Ghosh, M. Zhizhin, and C. Elvidge. DMSP-OLS Radiance Calibrated Nighttime
Lights Time Series with Intercalibration. Remote Sensing, 7(2):1855–1876, Feb 2015. doi: 10.3390/
rs70201855. URL http://www.mdpi.com/2072-4292/7/2/1855.

[47] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4700–4708,
2017.

[48] ICF. Demographic and Health Surveys (various), 1996-2019. Funded by USAID.

[49] J. Inglada, M. Arias, B. Tardy, O. Hagolle, S. Valero, D. Morin, G. Dedieu, G. Sepulcre, S. Bontemps,
P. Defourny, and B. Koetz. Assessment of an Operational System for Crop Type Map Production Using
High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sensing, 7(9):12356–12379,
2015.

13

https://www.pnas.org/content/114/50/13108
https://openknowledge.worldbank.org/handle/10986/35003
https://doi.org/10.1016/j.rse.2017.06.031
http://www.nature.com/articles/nature25761
https://ieeexplore.ieee.org/document/7780459
http://dl.acm.org/citation.cfm?doid=3136560.3136576
http://dl.acm.org/citation.cfm?doid=3136560.3136576
http://www.mdpi.com/2072-4292/7/2/1855


[50] J. Irvin, H. Sheng, N. Ramachandran, S. Johnson-Yu, S. Zhou, K. Story, R. Rustowicz, C. Elsworth,
K. Austin, and A. Y. Ng. ForestNet: Classifying Drivers of Deforestation in Indonesia using Deep
Learning on Satellite Imagery. In NeurIPS 2020 Workshop on Tackling Climate Change with Machine
Learning, Dec 2020. URL https://www.climatechange.ai/papers/neurips2020/22.

[51] M. M. Jankowska, M. Benza, and J. R. Weeks. Estimating spatial inequalities of urban child mortality.
Demographic research, 28:33–62, Jan 2013. ISSN 1435-9871. doi: 10.4054/DemRes.2013.28.2. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903295/.

[52] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon. Combining satellite imagery and
machine learning to predict poverty. Science, 353(6301):790–4, Aug 2016. doi: 10.1126/science.aaf7894.
URL https://science.sciencemag.org/content/353/6301/790.

[53] N. Jean, S. Wang, A. Samar, G. Azzari, D. Lobell, and S. Ermon. Tile2Vec: Unsupervised Representation
Learning for Spatially Distributed Data. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):3967–3974, Jul 2019.

[54] Z. Jin, G. Azzari, C. You, S. Di Tommaso, S. Aston, M. Burke, and D. B. Lobell. Smallholder maize area
and yield mapping at national scales with Google Earth Engine. Remote Sensing of Environment, 228:
115–128, 2019.

[55] H. Kerner, C. Nakalembe, and I. Becker-Reshef. Field-Level Crop Type Classification with k Nearest
Neighbors: A Baseline for a New Kenya Smallholder Dataset, 2020.

[56] H. Kerner, G. Tseng, I. Becker-Reshef, C. Nakalembe, B. Barker, B. Munshell, M. Paliyam, and
M. Hosseini. Rapid Response Crop Maps in Data Sparse Regions. In KDD ’20: ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD) Humanitarian Mapping Workshop. ACM,
8 2020. URL https://arxiv.org/abs/2006.16866.

[57] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114, 2013.

[58] D. M. Kluger, S. Wang, and D. B. Lobell. Two shifts for crop mapping: Leveraging aggregate crop
statistics to improve satellite-based maps in new regions. Remote Sensing of Environment, 262:112488,
2021.

[59] P. W. Koh, S. Sagawa, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao,
T. Lee, et al. WILDS: A Benchmark of in-the-Wild Distribution Shifts. In International Conference on
Machine Learning, pages 5637–5664. PMLR, 2021.

[60] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, Apr. 2009.

[61] T. Kuemmerle, K. Erb, P. Meyfroidt, D. Müller, P. H. Verburg, S. Estel, H. Haberl, P. Hostert, M. R.
Jepsen, T. Kastner, C. Levers, M. Lindner, C. Plutzar, P. J. Verkerk, E. H. van der Zanden, and A. Reenberg.
Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental
Sustainability, 5(5):484–493, 2013.

[62] D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric, Y. Bulatov, and B. McCord. xView:
Objects in Context in Overhead Imagery. arXiv:1802.07856 [cs], Feb 2018. URL http://arxiv.org/
abs/1802.07856.

[63] J. Lee, N. R. Brooks, F. Tajwar, M. Burke, S. Ermon, D. B. Lobell, D. Biswas, and S. P. Luby. Scalable
deep learning to identify brick kilns and aid regulatory capacity. Proceedings of the National Academy of
Sciences, 118(17), 2021. ISSN 0027-8424. doi: 10.1073/pnas.2018863118. URL https://www.pnas.
org/content/118/17/e2018863118.

[64] J. Lee, D. Grosz, B. Uzkent, S. Zeng, M. Burke, D. Lobell, and S. Ermon. Predicting Livelihood Indicators
from Community-Generated Street-Level Imagery. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(1):268–276, May 2021. ISSN 2374-3468. URL https://ojs.aaai.org/index.php/
AAAI/article/view/16101.

[65] Local Burden of Disease WaSH Collaborators. Mapping geographical inequalities in access to drinking
water and sanitation facilities in low-income and middle-income countries, 2000–17. The Lancet
Global Health, 8(9):e1162–e1185, Sep 2020. ISSN 2214-109X. doi: 10.1016/S2214-109X(20)30278-
3. URL https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30278-
3/fulltext.

14

https://www.climatechange.ai/papers/neurips2020/22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903295/
https://science.sciencemag.org/content/353/6301/790
https://arxiv.org/abs/2006.16866
http://arxiv.org/abs/1802.07856
http://arxiv.org/abs/1802.07856
https://www.pnas.org/content/118/17/e2018863118
https://www.pnas.org/content/118/17/e2018863118
https://ojs.aaai.org/index.php/AAAI/article/view/16101
https://ojs.aaai.org/index.php/AAAI/article/view/16101
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30278-3/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30278-3/fulltext


[66] C. Lowe, A. McCord, and R. Beazley. National cash transfer responses to Covid-19: operational lessons
learned for social protection system-strengthening and future shocks. Technical Report Working Paper 610,
Overseas Development Institute, June 2021. URL https://odi.org/en/publications/national-
cash-transfer-responses-to-covid-19-operational-lessons-learned-for-social-
protection-system-strengthening-and-future-shocks/.

[67] A. Maharana and E. O. Nsoesie. Use of Deep Learning to Examine the Association of the Built
Environment With Prevalence of Neighborhood Adult Obesity. JAMA Network Open, 1(4):e181535,
Aug 2018. ISSN 2574-3805. doi: 10.1001/jamanetworkopen.2018.1535. URL https://doi.org/10.
1001/jamanetworkopen.2018.1535.

[68] Martin. Climate Change, Aug 2021. URL https://www.un.org/sustainabledevelopment/
climate-change/.

[69] National Agricultural Statistics Service. USDA National Agricultural Statistics Service Cropland Data
Layer. Published crop-specific data layer [Online], 2018. URL https://nassgeodata.gmu.edu/
CropScape/.

[70] U. Nations. Prototype Global Sustainable Development Report. Technical report, United Nations
Department of Economic and Social Affairs, Division for Sustainable Development, 2014.

[71] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder. The Mapillary Vistas Dataset for Semantic
Understanding of Street Scenes. In International Conference on Computer Vision (ICCV), 2017. URL
https://www.mapillary.com/dataset/vistas.

[72] Neuhold, Gerhard. Accurate Privacy Blurring at Scale, 2018. URL https://blog.mapillary.com/
update/2018/04/19/accurate-privacy-blurring-at-scale.html.

[73] A. M. Noor, V. A. Alegana, P. W. Gething, A. J. Tatem, and R. W. Snow. Using remotely sensed night-time
light as a proxy for poverty in Africa. Population health metrics, 6:5, Oct. 2008. ISSN 1478-7954. doi:
10.1186/1478-7954-6-5. URL http://www.ncbi.nlm.nih.gov/pubmed/18939972.

[74] J. Park, J. Lee, K. Seto, T. Hochberg, B. A. Wong, N. A. Miller, K. Takasaki, H. Kubota, Y. Oozeki,
S. Doshi, M. Midzik, Q. Hanich, B. Sullivan, P. Woods, and D. A. Kroodsma. Illuminating dark
fishing fleets in North Korea. Science Advances, 6(30), 2020. doi: 10.1126/sciadv.abb1197. URL
https://advances.sciencemag.org/content/6/30/eabb1197.

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in
Neural Information Processing Systems, 32:8026–8037, 2019.

[76] N. A. Quarmby, M. Milnes, T. L. Hindle, and N. Silleos. The use of multi-temporal NDVI measure-
ments from AVHRR data for crop yield estimation and prediction. International Journal of Remote
Sensing, 14(2):199–210, 1993. doi: 10.1080/01431169308904332. URL https://doi.org/10.1080/
01431169308904332.

[77] Radiant Earth Foundation. Machine Learning for Earth Observation, 2021. URL https://www.radiant.
earth/mlhub/.

[78] N. Ratledge, G. Cadamuro, B. De la Cuesta, M. Stigler, and M. Burke. Using satellite imagery and
machine learning to estimate the livelihood impact of electricity access. Technical report, National Bureau
of Economic Research, 2021.

[79] R. Remelgado, S. Zaitov, S. Kenjabaev, G. Stulina, M. Sultanov, M. Ibrakhimov, M. Akhmedov,
V. Dukhovny, and C. Conrad. A crop type dataset for consistent land cover classification in Central Asia.
Scientific Data, 7(1):250, 2020.

[80] E. Rolf, J. Proctor, T. Carleton, I. Bolliger, V. Shankar, M. Ishihara, B. Recht, and S. Hsiang. A generaliz-
able and accessible approach to machine learning with global satellite imagery. Nature Communications,
12(1):4392, 2021.

[81] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[82] M. Russwurm, S. Wang, M. Korner, and D. Lobell. Meta-Learning for Few-Shot Land Cover Classification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020.

15

https://odi.org/en/publications/national-cash-transfer-responses-to-covid-19-operational-lessons-learned-for-social-protection-system-strengthening-and-future-shocks/
https://odi.org/en/publications/national-cash-transfer-responses-to-covid-19-operational-lessons-learned-for-social-protection-system-strengthening-and-future-shocks/
https://odi.org/en/publications/national-cash-transfer-responses-to-covid-19-operational-lessons-learned-for-social-protection-system-strengthening-and-future-shocks/
https://doi.org/10.1001/jamanetworkopen.2018.1535
https://doi.org/10.1001/jamanetworkopen.2018.1535
https://www.un.org/sustainabledevelopment/climate-change/
https://www.un.org/sustainabledevelopment/climate-change/
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
https://www.mapillary.com/dataset/vistas
https://blog.mapillary.com/update/2018/04/19/accurate-privacy-blurring-at-scale.html
https://blog.mapillary.com/update/2018/04/19/accurate-privacy-blurring-at-scale.html
http://www.ncbi.nlm.nih.gov/pubmed/18939972
https://advances.sciencemag.org/content/6/30/eabb1197
https://doi.org/10.1080/01431169308904332
https://doi.org/10.1080/01431169308904332
https://www.radiant.earth/mlhub/
https://www.radiant.earth/mlhub/


[83] R. Rustowicz, R. Cheong, L. Wang, S. Ermon, M. Burke, and D. Lobell. Semantic Segmentation of
Crop Type in Africa: A Novel Dataset and Analysis of Deep Learning Methods. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.

[84] J. Sachs, C. Kroll, G. Lafortune, G. Fuller, and F. Woelm. Sustainable Development Report 2021.
Cambridge University Press, 2021.

[85] D. E. Sahn and D. Stifel. Exploring Alternative Measures of Welfare in the Absence of Expenditure
Data. Review of Income and Wealth, 49(4):463–489, 2003. ISSN 1475-4991. doi: 10.1111/j.0034-
6586.2003.00100.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0034-6586.
2003.00100.x.

[86] M. Schmitt, L. H. Hughes, C. Qiu, and X. X. Zhu. SEN12MS–A Curated Dataset of Georeferenced Multi-
Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion. arXiv preprint arXiv:1906.07789,
June 2019.

[87] E. Sheehan, C. Meng, M. Tan, B. Uzkent, N. Jean, M. Burke, D. Lobell, and S. Ermon. Predicting
Economic Development using Geolocated Wikipedia Articles. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages 2698–2706, New
York, NY, USA, July 2019. Association for Computing Machinery. ISBN 978-1-4503-6201-6. doi:
10.1145/3292500.3330784. URL https://doi.org/10.1145/3292500.3330784.

[88] Stanford Woods Institute for the Environment. A Better Brick: Solving an Airborne
Health Threat, 2021. URL https://woods.stanford.edu/research/funding-opportunities/
environmental-venture-projects/brick-kiln-solutions.

[89] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl. Bigearthnet: A large-scale benchmark archive for
remote sensing image understanding. In IGARSS 2019-2019 IEEE International Geoscience and Remote
Sensing Symposium, pages 5901–5904. IEEE, 2019.

[90] J. Sun, L. Di, Z. Sun, Y. Shen, and Z. Lai. County-Level Soybean Yield Prediction Using Deep CNN-
LSTM Model. Sensors, 19(20), 2019. ISSN 1424-8220. doi: 10.3390/s19204363. URL https:
//www.mdpi.com/1424-8220/19/20/4363.

[91] D. Tedesco-Oliveira, R. Pereira da Silva, W. Maldonado, and C. Zerbato. Convolutional neural networks
in predicting cotton yield from images of commercial fields. Computers and Electronics in Agriculture,
171:105307, 2020. ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.2020.105307. URL https:
//www.sciencedirect.com/science/article/pii/S0168169919319878.

[92] B. Tellman, J. A. Sullivan, C. Kuhn, A. J. Kettner, C. S. Doyle, G. R. Brakenridge, T. A. Erickson, and
D. A. Slayback. Satellite imaging reveals increased proportion of population exposed to floods. Nature,
596(7870):80–86, 2021.

[93] United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report
2021. The Sustainable Development Goals Report. United Nations, 2021 edition, 2021. ISBN 978-92-1-
005608-3. doi: 10.18356/9789210056083. URL https://www.un-ilibrary.org/content/books/
9789210056083.

[94] United Nations Statistics Division. Tier Classification for Global SDG Indicators, 2021. URL https:
//unstats.un.org/sdgs/iaeg-sdgs/tier-classification/.

[95] USDA. USDA National Agricultural Statistics Service. URL https://www.nass.usda.gov/.

[96] A. Van Etten, D. Lindenbaum, and T. M. Bacastow. SpaceNet: A Remote Sensing Dataset and Challenge
Series. arXiv:1807.01232 [cs], July 2019. URL http://arxiv.org/abs/1807.01232.

[97] E. Vermote. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. 2015.
doi: 10.5067/MODIS/MOD09A1.006. URL https://lpdaac.usgs.gov/products/mod09a1v006/.

[98] F. Waldner and F. I. Diakogiannis. Deep learning on edge: Extracting field boundaries from satellite
images with a convolutional neural network. Remote Sensing of Environment, 245:111741, 2020.

[99] F. Waldner, F. I. Diakogiannis, K. Batchelor, M. Ciccotosto-Camp, E. Cooper-Williams, C. Herrmann,
G. Mata, and A. Toovey. Detect, consolidate, delineate: Scalable mapping of field boundaries using
satellite images. Remote Sensing, 13(11), 2021.

[100] Z. Wan, S. Hook, and G. Hulley. MYD11A2 MODIS/Aqua Land Surface Temperature/Emissivity
8-Day L3 Global 1km SIN Grid V006. 2015. doi: 10.5067/MODIS/MYD11A2.006. URL https:
//lpdaac.usgs.gov/products/myd11a2v006/. Type: dataset.

16

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0034-6586.2003.00100.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0034-6586.2003.00100.x
https://doi.org/10.1145/3292500.3330784
https://woods.stanford.edu/research/funding-opportunities/environmental-venture-projects/brick-kiln-solutions
https://woods.stanford.edu/research/funding-opportunities/environmental-venture-projects/brick-kiln-solutions
https://www.mdpi.com/1424-8220/19/20/4363
https://www.mdpi.com/1424-8220/19/20/4363
https://www.sciencedirect.com/science/article/pii/S0168169919319878
https://www.sciencedirect.com/science/article/pii/S0168169919319878
https://www.un-ilibrary.org/content/books/9789210056083
https://www.un-ilibrary.org/content/books/9789210056083
https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/
https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/
https://www.nass.usda.gov/
http://arxiv.org/abs/1807.01232
https://lpdaac.usgs.gov/products/mod09a1v006/
https://lpdaac.usgs.gov/products/myd11a2v006/
https://lpdaac.usgs.gov/products/myd11a2v006/


[101] A. X. Wang, C. Tran, N. Desai, D. Lobell, and S. Ermon. Deep Transfer Learning for Crop Yield
Prediction with Remote Sensing Data. In Proceedings of the 1st ACM SIGCAS Conference on Computing
and Sustainable Societies, COMPASS ’18, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450358163. doi: 10.1145/3209811.3212707. URL https://doi.org/10.
1145/3209811.3212707.

[102] S. Wang, W. Chen, S. M. Xie, G. Azzari, and D. B. Lobell. Weakly supervised deep learning for
segmentation of remote sensing imagery. Remote Sensing, 12(2), 2020. doi: 10.3390/rs12020207.

[103] S. Wang, S. Di Tommaso, J. Faulkner, T. Friedel, A. Kennepohl, R. Strey, and D. B. Lobell. Mapping
Crop Types in Southeast India with Smartphone Crowdsourcing and Deep Learning. Remote Sensing, 12
(18), 2020.

[104] S. Wang, M. Rußwurm, M. Körner, and D. B. Lobell. Meta-learning for few-shot time series classification.
In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, pages 7041–
7044, 2020. doi: 10.1109/IGARSS39084.2020.9441016.

[105] G. R. Watmough, C. L. J. Marcinko, C. Sullivan, K. Tschirhart, P. K. Mutuo, C. A. Palm, and J.-C.
Svenning. Socioecologically informed use of remote sensing data to predict rural household poverty.
Proceedings of the National Academy of Sciences, 116(4):1213–1218, Jan 2019. ISSN 0027-8424. doi:
10.1073/pnas.1812969116. URL https://www.pnas.org/content/116/4/1213.

[106] J. Xiong, P. S. Thenkabail, M. K. Gumma, P. Teluguntla, J. Poehnelt, R. G. Congalton, K. Yadav, and
D. Thau. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing.
ISPRS Journal of Photogrammetry and Remote Sensing, 126:225–244, 2017.

[107] L. Yan and D. Roy. Conterminous United States crop field size quantification from multi-temporal
Landsat data. Remote Sensing of Environment, 172:67–86, 2016.

[108] Y. Yang and S. Newsam. Bag-of-visual-words and spatial extensions for land-use classification. In
Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, pages 270–279, New York, NY, USA, 2010. Association for Computing Machinery.
ISBN 9781450304283. doi: 10.1145/1869790.1869829. URL https://doi.org/10.1145/1869790.
1869829.

[109] C. Yeh, A. Perez, A. Driscoll, G. Azzari, Z. Tang, D. Lobell, S. Ermon, and M. Burke. Using publicly
available satellite imagery and deep learning to understand economic well-being in Africa. Nature
Communications, 11(1), May 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-16185-w. URL
https://www.nature.com/articles/s41467-020-16185-w.

[110] J. You, X. Li, M. Low, D. Lobell, and S. Ermon. Deep Gaussian Process for Crop Yield Prediction Based
on Remote Sensing Data. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
AAAI’17, page 4559–4565. AAAI Press, 2017. URL https://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14435.

[111] H. Zhao, S. Duan, J. Liu, L. Sun, and L. Reymondin. Evaluation of Five Deep Learning Models for Crop
Type Mapping Using Sentinel-2 Time Series Images with Missing Information. Remote Sensing, 13(14),
2021.

[112] S. Zhao, C. Yeh, and S. Ermon. A Framework for Sample Efficient Interval Estimation with Control
Variates. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics,
pages 4583–4592. PMLR, June 2020. URL https://proceedings.mlr.press/v108/zhao20e.
html.

17

https://doi.org/10.1145/3209811.3212707
https://doi.org/10.1145/3209811.3212707
https://www.pnas.org/content/116/4/1213
https://doi.org/10.1145/1869790.1869829
https://doi.org/10.1145/1869790.1869829
https://www.nature.com/articles/s41467-020-16185-w
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14435
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14435
https://proceedings.mlr.press/v108/zhao20e.html
https://proceedings.mlr.press/v108/zhao20e.html

