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Figure 4: Number of classes in different hierarchies.

B Training Details

B.1 Single-label ImageNet-21K-P Training Details

To better handle the ground-truth inconsistencies of ImageNet-21K-P, we increase the label-smooth
factor from the common value of 0.1 to 0.2. As explained in section 2.1, we also use squish-resizing
instead of crop-resizing. We trained the models with input resolution 224, using an Adam optimizer
with learning rate of 3e-4 and one-cycle policy [48]. When initializing our models from standard
ImageNet-1K pretraining (pretraining weights taken from [57]), we found that 80 epochs are enough
for achieving strong pretrain results on ImageNet-21K-P. For regularization, we used RandAugment
[10], Cutout [12], Label-smoothing [50] and True-weight-decay [37]. We observed that the common
ImageNet statistics normalization [33, 51] does not improve the training accuracy, and instead
normalized all the RGB channels to be between 0 and 1. Unless stated otherwise, all runs and
tests were done on TResNet-M architecture. On an 8xV100 NVIDIA GPU machine, training with
mixed-precision takes 40 minutes per epoch on ResNet50 and TResNet-M architectures (∼ 5000 img

sec ).

B.2 Multi-label ImageNet-21K-P Training Details

For multi-label training, we convert each image single label input to semantic multi labels, as
described in section 2.2. Multi-label training details are similar to single-label training (number
of epochs, optimizer, augmentations, learning rate, models initialization and so on), and training
times are also similar. The main difference between single-label and multi-label training relies in
the loss function: for multi-label training we tested 3 loss functions, following [3]: cross-entropy
(γ− = γ+ = 0), focal loss (γ− = γ+ = 2) and ASL (γ− = 4, γ+ = 0). For ASL, we tried different
values of γ− to obtain the best mAP scores.

C Upstream Results

As we have a standardized dataset with a fixed train-validation split, the training metrics for each
pretraining method can be used for future benchmark and comparisons.

C.1 Singe-label Upstream Results

For single-label training, regular top-1 accuracy metric becomes somewhat irrelevant - if pictures with
similar content have different ground-truth labels, the network has no clear "correct" answer. Top-5
accuracy metric is more representative, but still limited. Upstream results of single-label training are
given in Table 5. We can see that the top-1 accuracies obtained on ImageNet-21K-P, 37%− 46%,
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are significantly lower than the ones obtained on ImageNet-1K, 75% − 85%. This accuracy drop
is mainly due to the semantic structure and inconsistent tagging methodology of ImageNet-21K-P.
However, as we take bigger and better architectures, we see from Table 5 that the accuracies continue
to improve, so we are not completely hindered by the inconsistent tagging.

Model Name Top-1 Acc. [%] Top-5 Acc. [%]
MobileNetV3 37.8 66.3

ResNet50 42.2 72.0
TResNet-M 45.3 75.2
TResNet-L 45.5 75.6

Table 5: Accuracy of different models in single-label training.

C.2 Multi-label Upstream Results

For multi-label training, we will use the common micro and macro mAP accuracy [3] as training
metrics. However, due to the missing labels in the validation (and train) set, this metric also is not
fully accurate. In Table 7 we compare the results for three possible loss functions for multi-label
classification - cross-entropy, focal loss and ASL. We see that ASL loss [3], that was designed to

Loss Type Micro-mAP [%] Macro-mAP [%]
Cross-Entropy 47.3 73.9

Focal loss 47.4 74.1
ASL 48.5 74.7

Table 6: Comparing different loss functions for multi-label classification on ImageNet-21K-P.

cope with large positive-negative imbalancing, outperform cross-entropy and focal loss. This is in
agreement with our analysis in section 3.2, where we identify extreme imbalancing as one of the
optimization challenges that stems from multi-label training.

C.3 Semantic Softmax Upstream Results

With semantic softmax training, we can calculate for each hierarchy its top-1 accuracy metric. We
can also calculate the total accuracy by weighting the different accuracies by the number of classes
in each hierarchy (see Figure 4). Notice that we are not using classes above the maximal hierarchy
for our metrics calculation. Hence, and unlike single-label and multi-label training, with semantic
softmax our training metrics are fully accurate.

In Figure 5 we present the top-1 accuracies achieved by different models on different hierarchy levels,
when trained with semantic softmax (with KD).

Figure 5: Top-1 accuracies on different hierarchies.
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D Downstream Datasets Training Details

For single-label classification, our downstream datasets were ImageNet-1K [30], iNaturalist 2019
[55], CIFAR-100 [29] and Food-251 [25]. For multi-label classification, our downstream datasets
were MS-COCO [34] and Pascal-VOC [16]. For video action recognition, our downstream dataset
was Kinetics-200 [26].

General details:

• To minimize statistical uncertainty, for datasets with less than 150, 000 images (CIFAR-100,
Food-251, MS-COCO, Pascal-VOC), we report result of averaging 3 runs with different seeds.

• All results are reported for input resolution 224.
• For all downstream datasets we used cutout of 0.5, rand-Augment and true-weight-decay of 1e-4.
• All single-label datasets are trained with label-smooth of 0.1
• Unless stated otherwise, dataset was trained for 40 epochs with Adam optimizer, learning rate of

3e-4, one-cycle policy and and squish-resizing.

Specific dataset details:

• ImageNet-1K - Since the dataset is bigger than the others, we finetuned our networks for 100
epochs using SGD optimizer, and learning rate of 4e-4. We used crop-resizing with the common
minimal crop factor of 0.08.

• MS-COCO - We used ASL loss with γ− = 4.
• Pascal-VOC - We used ASL loss with γ− = 4, and learning rate of 5e-5.
• Kinetics-200 - we trained for 30 epochs with learning rate of 8e-5. We used the training method

described in [47], with simple averaging of the embedding from each sample along the video.

E Downstream Results for Different Multi-label Losses

In Table 7 we compare downstream results when using multi-label pretraining with vanilla cross-
entropy (CE) loss and ASL loss. We see that on all downstream datasets, pretraining with ASL leads
to significantly better results

Dataset

Multi
Label

Pretrain
(CE)

Multi
Label

Pretrain
(ASL)

ImageNet1K(1) 79.6 81.0
iNaturalist(1) 69.4 71.0
Food 251(1) 74.3 75.2

CIFAR 100(1) 89.9 90.6
MS-COCO(2) 79.1 80.6
Pascal-VOC(2) 87.6 87.9
Kinetics 200(3) 81.1 81.9

Table 7: Comparing downstream results for different losses of multi-label pretraining. Dataset types and
metrics: (1) - single-label, top-1 Acc.[%] ; (2) - multi-label, mAP [%]; (3) - action recognition, top-1 Acc. [%].

F Calculating Teacher Confidence

Using the teacher prediction for hierarchy i and the semantic ground-truth, we want to evaluate the
teacher confidence level, Pi, so we can weight properly the contribution of different hierarchies in
the KD loss. Our proposed logic for calculating the teacher’s (semantic) confidence is simple:
- If the ground-truth highest hierarchy is higher than i, set Pi to 1.
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- Else, calculate the sum probabilities of the top 5% classes in the teacher prediction (we deliberately
don’t take only the probability of the highest class, to account for class similarities).

In Figure 6 we present the teacher confidence level for different hierarchies, averaged over an epoch.

Figure 6: Teacher average confidence levels for different hierarchies.

We can see that lower hierarchies have, in average, higher confidence levels. This stems from the fact
that not all hierarchies are relevant for each image. For the picture in Figure 3, for example, only
hierarchies 0-5 are relevant, so we expect the teacher will have low confidence for hierarchies higher
than 5.

G Semantic KD Vs Regular KD

Dataset

Single
Label
+ KD

Pretrain

Sematic
Softmax

+ Semanic KD
Pretrain

ImageNet1K(1) 81.5 82.2
iNaturalist(1) 72.4 72.7
Food 251(1) 76.0 76.1

CIFAR 100(1) 91.0 91.7
MS-COCO(2) 81.6 82.2
Pascal-VOC(2) 89.0 89.8
Kinetics 200(3) 83.6 84.4

Table 9: Comparing KD with different schemes. Dataset types and metrics: (1) - single-label, top-1 Acc.[%] ;
(2) - multi-label, mAP [%]; (3) - action recognition, top-1 Acc. [%].

H ImageNet-1K Transfer Learning Results

Model Name ImageNet-1K + KD
Top-1 Acc. [%]

MobileNetV3 78.0
OFA-595 81.0
ResNet50 82.0

Mixer-B-16 82.2
TResNet-M 83.1
TResNet-L 83.9
ViT-B-16 84.4

Table 10: Transfer learning results On ImageNet-1K, when using ImageNet-21K-P pretraining.
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I ImageNet-21K-P - Winter21 Split

For a fair comparison to previous works, the results in the article are based on the original ImageNet-
21K images, i.e. we are using Fall11 release of ImageNet-21K (fall11-whole.tar file), which contains
all the original images and classes of ImageNet-21K. After we processed this release to create
ImageNet-21K-P, we are left with a dataset that contains 11221 classes, where the train set has
11797632 samples and the test set has 561052 samples. We shall name this variant Fall11 ImageNet-
21K-P.

Recently, the official ImageNet site1 used our pre-processing methodology to offer direct downloading
of ImageNet-21K-P, based on a new release of ImageNet-21K - Winter21 (winter21-whole.tar file).
Compared to the original dataset, the Winter21 release removed some classes and samples. The
Winter21 variant of ImageNet-21K-P is a dataset that contains 10450 classes, where the train set
has 11060223 samples and the test set has 522500 samples. We shall name this variant Winter21
ImageNet-21K-P.

For enabling future comparison and benchmarking, we report the upstream accuracies also on this
new variant of ImageNet-21K-P:

Single-Label
Training Acc. [%]

Multi-Label Training
Macro-mAP [%]

Semantic Softmax
Training Acc. [%]

Fall11
ImageNet-21K-P 45.3 74.7 75.6

Winter21
ImageNet-21K-P 47.3 78.7 77.7

Table 11: Upstream results, with different pretraining methods, for different variants of ImageNet-21K-P.
Tested model - TResNet-M.

Note that the Winter21 variant of ImageNet-21K-P contains 10% fewer classes and 6% fewer
images. In Table 12 we compare downstream results when using Winter21 and Fall11 variants of
ImageNet-21K-P

Dataset Fall11 ImageNet-21K-P Winter21 ImageNet-21K-P
ImageNet1K(1) 81.4 81.2
iNaturalist(1) 72.0 71.8
Food 251(1) 75.8 75.5

CIFAR 100(1) 90.4 90.5
MS-COCO(2) 81.3 81.1
Pascal-VOC(2) 89.7 90.1
Kinetics 200(3) 83.0 82.8

Table 12: Comparing downstream results when using different variant of ImageNet-21K-P. All results are
for MTResNet model, with semantic softmax pretraining. Dataset types and metrics: (1) - single-label, top-1
Acc.[%] ; (2) - multi-label, mAP [%]; (3) - action recognition, top-1 Acc. [%].

We can see that compared to Fall11 variant, using Winter21 variant leads to a minor reduction in
performances on downstream tasks.

J Additional Ablation Tests

In this section we will bring additional ablation tests and comparisons.

1www.image-net.org
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J.1 Comparison to Pretraining on Open Images Dataset

Open Images (v6) [31] is a large scale multi-label dataset, which consists of 9 million training images
and 9600 labels. In Table 13 we compare downstream results when using two different datasets for
pretraining: ImageNet-21K (semantic softmax training) and Open Images (multi-label training).

Dataset ImageNet-21K
Pretrain

Open Images
Pretrain

ImageNet1K(1) 81.4 81.0
iNaturalist(1) 72.0 70.7
Food 251(1) 75.8 74.8

CIFAR 100(1) 90.4 89.4
MS-COCO(2) 81.3 80.5
Pascal-VOC(2) 89.7 89.6
Kinetics 200(3) 83.0 81.6

Table 13: Comparing ImageNet-21K pretraining to Open Images pretraining. Downstream dataset types
and metrics: (1) - single-label, top-1 Acc.[%] ; (2) - multi-label, mAP [%]; (3) - action recognition, top-1 Acc.
[%].

As we can see, ImageNet-21K pretraining consistently provides better downstream results than Open
Images. A possible reason is that Open Images, as a multi-label dataset with large number of classes,
suffers from the same multi-label optimization pitfalls we described in section 3.2.

J.2 Comparison on Additional Non-Classification Computer-Vision Tasks

In Table 14 and Table 15 we compare 1K and 21K pretraining on two additional computer-vision
tasks: object detection (MS-COCO dataset) and image retrieval (INRIA holidays dataset).

1K Pretraining 21K Pretraining
mAP [%] 42.9 44.3

Table 14: Comparing downstream results on MS-COCO object detection dataset.

1K Pretraining 21K Pretraining
mAP [%] 81.1 82.1

Table 15: Comparing downstream results on on INRIA Holidays image retrieval dataset.

We can see that also on non-classification tasks such as object detection and image retrieval, pretrain-
ing on ImageNet-21K translates to better downstream results than ImageNet-1K pretraining.

J.3 Impact of Different Number of Training Samples

In Figure 7 we test the impact of the number of training samples on on the upstream accuracies. As
we can see, there is no saturation - more training images lead to better semantic accuracies.

K Pseudo-code

In the following sections we will bring pseudo-code (PyTorch-style) to some components in
our semantic softmax training scheme: logits sampling, KD calculation and estimating teacher
confidence.
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Figure 7: Upstream results for different number of training images.

K.1 Logits Sampling

def split_logits_to_semantic_logits(logits, hierarchy_indices_list):
semantic_logit_list = []

for i, ind in enumerate(hierarchy_indices_list):
logits_i = logits[:, ind]

semantic_logit_list.append(logits_i)

return semantic_logit_list

K.2 KD Logic

def calculate_KD_loss(input_student , input_teacher , hierarchy_indices_list):
semantic_input_student = split_logits_to_semantic_logits(

input_student , hierarchy_indices_list)

semantic_input_teacher = split_logits_to_semantic_logits(
input_teacher , hierarchy_indices_list)

number_of_hierarchies = len(semantic_input_student)

losses_list = []

# scanning hirarchy_level_list
for i in range(number_of_hierarchies):

# converting to semantic logits
inputs_student_i = semantic_input_student[i]

inputs_teacher_i = semantic_input_teacher[i]

# generating probs
preds_student_i = stable_softmax(inputs_student_i)

preds_teacher_i = stable_softmax(inputs_teacher_i)

# weight MSE−KD distances according to teacher confidence
loss_non_reduced = torch.nn.MSELoss(reduction=’none’)(preds_student_i ,

preds_teacher_i)

weights_batch = estimate_teacher_confidence(preds_teacher_i)
loss_weighted = loss_non_reduced * weights_batch.unsqueeze(1)
losses_list.append(torch.sum(loss_weighted))

return sum(losses_list)
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K.3 Teacher Confidence

def estimate_teacher_confidence(preds_teacher)
with torch.no_grad():

num_elements = preds_teacher.shape[1]

num_elements_topk = int(np.ceil(num_elements / 20)) # top 5%
weights_batch = torch.sum(torch.topk(preds_teacher ,
num_elements_topk).values, dim=1)

return weights_batch

L Limitations

In this section we will discuss some of the limitations of our proposed pipeline for pretraining on
ImageNet-21K:

1) While our work did put a large emphasis on the efficiency of the proposed pretraining pipeline, for
reasonable training times we still need an 8-GPUs machine (1 GPU training will be quite long, 2-3
weeks).

2) For creating an efficient pretraining scheme, and also to stay within our inner computing budget,
we did not incorporate training tricks that significantly increase training times, although some of
these tricks might give additional benefits and improve pretraining quality.

An example - techniques for dealing with extreme multi-tasking, such as GradNorm [7] and PCGrad
[60], that would probably improve the pretrain quality of multi-label training, but would significantly
increase training times.

Another example of methods from the literature we have not tested - general "semantic" techniques
that can be used for training neural networks ([4, 54] for example). We found that most of these
techniques are not feasible for large-scale efficient training. In addition, we believe that since our
novel method, semantic softmax, is designed and tailored to the specific needs and characterizations
of ImageNet-21K, it will significantly outperform general semantic methods.

3) When using private datasets which are larger than ImageNet-21K, such as JFT-300M [49], the
pretrain quality that can be achieved is probably still higher than the one we offer.
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