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Abstract

Knowledge graphs (KGs) encode facts about the world in a graph data structure
where entities, represented as nodes, connect via relationships, acting as edges. KGs
are widely used in Machine Learning, e.g., to solve Natural Language Processing
based tasks. Despite all the advancements in KGs, they plummet when it comes
to completeness. Link Prediction based on KG embeddings targets the sparsity
and incompleteness of KGs. Available datasets for Link Prediction do not consider
different graph patterns, making it difficult to measure the performance of link
prediction models on different KG settings. This paper presents a diverse set of
pragmatic datasets to facilitate flexible and problem-tailored Link Prediction and
Knowledge Graph Embeddings research. We define graph relational patterns, from
being entirely inductive in one set to being transductive in the other. For each
dataset, we provide uniform evaluation metrics. We analyze the models over our
datasets to compare the model’s capabilities on a specific dataset type. Our analysis
of datasets over state-of-the-art models provides a better insight into the suitable
parameters for each situation, optimizing the KG-embedding-based systems.

Keywords: Machine Learning, Knowledge Graphs Embedding, Link Prediction,
Benchmarking, Dataset, Relational Pattern, Inductive, Transductive

1 Introduction

Knowledge graphs constitute a significant part of NLP since the 70s. However, after the announcement
of big hubs such as Google, Facebook, and Microsoft in the 90s, the growth of research in this
particular field became evident as states Hogan et al. (2021). The different elements of a knowledge
graph are represented in the form of triplets (h, r, t) where (h, t) represents entities a.k.a. ‘nodes’,
whereas r tells the relationship between them, which is also known as ‘edge’. According to Yang and
Mitchell (2017), NLP has gotten a new scope after the advancements in the field of knowledge graphs,
easing the communication with machines. Various applications such as information retrieval Xiong
et al. (2017), question answering Hao et al. (2017) and recommender systems Zhang et al. (2016) use
knowledge graphs to improve their performance. Some of the most used knowledge graphs include
DBpedia Lehmann et al. (2014), Yago Suchanek et al. (2007), Freebase Bollacker et al. (2008) and
WordNet Miller (1995).

Despite being in demand, KGs still face many issues, such as data incompleteness. To tackle the
issue, link prediction models observe the patterns in knowledge graphs based on how facts are
connected together. According to Wang et al. (2019), the goal of the link prediction task is to map the
entities/relations to low dimensional vectors capturing the structure of the knowledge graph, which
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helps predict the likelihood score of the triple. Despite advancements in benchmarks, a significant
chunk is still unexplored. In this paper, we enhanced the work of Sarkar et al. (2020) by building
various datasets on the principles of known and valuable facts using the Freebase and Wordnet
datasets, categorizing them into different patterns for benchmarking. The relation of each triplet is
observed and then grouped into categories. The categories include different patterns, e.g., symmetry
has the ‘same’ relation between two entities such as ‘friends’, whereas inverse has two ’different and
directed’ relations between the entities such as ‘father and son’. We make categories of datasets and
observe the link prediction (LP) models over them.

With the goal to set up a benchmark that separates the task of testing KG embedding models from the
models, we extend the MLwin-Hobbit platform for benchmarking various trained methods, which
are implemented in different environments (e.g. PyTorch and Java). This extension is crucial for a
reproducible evaluation and fair comparison of methods.

We train state-of-the-art KG embedding models from scratch with our RAW datasets, providing
experimental results that give exciting research directions. We consider the most popular and unified
evaluation metrics along with the AUC-PR test in all combinations. Our experiments suggest that the
link predicting models are scalable to large-scale datasets and graphs. These results indicate fruitful
guidance for future research in KG Link Prediction and KG Embeddings.

1.1 Our Contribution

We propose several datasets1 by classifying triplets into their respective classes according to their
patterns, keeping in mind the properties from both inductive and transductive types. Therefore, we
extract four categories from each class: Fully Inductive, Fully Transductive, CountBased Inductive,
and either Head or Tail Inductive. Each category is further divided into patterns of Symmetry,
Anti-symmetry, Inverse and Inductive, making a total of 32 datasets. We developed methods for
extracting explicitly separated patterns and also made automatic emending methods to avoid data
leakage between detests.

The datasets are also designed on the basis of unification to benchmark them onto different link
predicting models. A significant setback in the benchmarking of knowledge graph models was
observed. Therefore the work done by Hu et al. (2021) has been extended keeping in mind our set of
data. A fair comparison is generated to help choose the best model and dataset combination for NLP
Research. The previous research on benchmarking datasets was too general, we provide the specific
approach to the type of datasets. We explore the characteristics of the datasets that can be potential
performance boosters. To sum up our contribution, we created a reproducible evaluation environment
that is user-friendly for all. We designed our benchmark datasets keeping the ease of use in mind.

Figure 1: Example of triplet categorization.

2 Related Work

Dataset Building We build our datasets keeping in mind the dataset building strategies from OGB
(Hu et al. (2021)) as well as the CODEX (Safavi and Koutra (2020)) and TU-Dataset (Morris et al.
(2020)). CODEX is gathered from thirteen domains ranging from medicine to music. This dataset
is build on the principles of snowball sampling to extract data, while in our study, we searched for

1All datasets, scripts and extended results are available: https://github.com/mlwin-de/relational_
pattern_benchmarking
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specific relational patterns to enable on pattern-specific evaluations. TU-Dataset, a unified set of over
120 datasets from several domains, targets graph classification and regression tasks, while in our
study, we focus on the link prediction task. We use the characteristics visualization technique for the
datasets and the required properties for the characteristics analysis, of the aforementioned studies, as
a baseline to define our dataset.

Benchmarking Benchmarking datasets help to compare and evaluate the LP models, parameters,
and procedures as well as the statistics of the different datasets that are evaluated. The benchmarked
dataset as described by Rossi et al. (2021) is useful for two basic analyses, efficiency and effectiveness
analysis. The dataset of Hu et al. (2021) is kept as our ultimate guidance and standard to support
the benchmarking task. CODEX dataset was benchmarked by Safavi and Koutra (2020) with
unified evaluation strategies and empirical analysis. Relational Patterns of Inversion, Symmetry,
and Composition were studied and subsets were prepared accordingly. We use the same strategy of
making sub-datasets and then benchmarking on a number of models. Evaluation technique of using
MRR and Hit Ratios was considered but along with the introduction of AUC-PR. Using GNN and
Graph Kernel methods as used by Morris et al. (2020) gave us a new direction to use Teru et al. (2020)
GraIL for our dataset benchmarking. In the study of relation patterns, we include the most frequent
patterns. In the related works, they are studies that consider experiments on more complex logical
rules, such as Meilicke et al. (2018) that evaluate on Inverse Equivalence and Subsumption rules,
and in this direction, Yang et al. (2017) evaluates the performance of the knowledge base inference
methods on a dataset of grid paths of different lengths.

In order to perform a link prediction benchmarking based on FAIR principles, we integrated the
models in BenchEmbedd (Sadeghi et al. (2021b)), a platform that aims at benchmarking big linked
data. Such benchmark experiments are frozen into docker containers, which can be accessed,
reproduced, and reused easily with little prior knowledge of the test platform. The system allows
researchers to make and test systems without having to worry about standardized hardware. Our
trained models and datasets will be publicly available as a BenchEmbedd platform2 for anyone to use
and benchmark systems.

3 Dataset Building

Relation Extraction, the sub-field of information extraction, is one of the core techniques that support
ML research. It organizes the structural information into groups according to the need (Wang et al.
(2021)). We based our study on the two following datasets and extracted subsequent sub-datasets in
the form of the stated patterns.

• FB15K A freebase dataset with a total of 592,213 triplets with 14,951 entities and 1,345
relationships. This factual dataset contains 483,142 Train triplets, 59,071 Test triplets and
50,000 Valid triplets. It dataset contains many entities from the wiki-link data.

• WN18 A dataset extracted from Wordnet version 3 with a total of 141,442 triplets with
40,943 entities and 18 relationships. The dataset contains 141,442 Train triplet, 5,000
Test triplets and 5,000 Valid triplets. The dataset supports text analysis and provides with
dictionary/thesaurus. Lexical relationship between synsets are stated by this dataset.

3.1 Relational Datasets

Pattern extraction is the core task in building datasets for machine learning research. Pattern type
suggests the type of link prediction model that works best for the given dataset. Patterns, that are also
expressed as rules, each have different suitability to the embedding models. Link Predictors learn the
specific pattern of the datasets and then match rule-based patterns to provide reasoning. The patterns
we considered to build our datasets are stated below:

3.1.1 Symmetry

This relational pattern is a sub-category of Equivalence pattern. Therefore, it is a binary relation that
works in both directions. The relation can also be stated by the Equal to property, for instance, if

2https://github.com/mlwin-de/BenchEmbedd
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(a) A symmetric relation (b) An anti-symmetric relation

(c) An inverse relation (d) A composition relation (e) An inference relation

Figure 2: We define five different relational patterns to create our datasets and benchmark.

a=b then b=a A relation is symmetric if:

∀a, b ∈ X(aRb⇔ bRa)

r(a, b) ⇒ r(b, a)

If RT represents the converse of R, then R is symmetric if and only if R = RT . Marriage, Friendship,
and Partners are a few examples of symmetric relations.

3.1.2 Anti-Symmetry

The rule of Anti-Symmetry is opposite to Symmetry. It is a directed rule that states if a relation R
binds A to B, the same can not work in the opposite direction, binding B to A. The rule is written as

r(a, b) ⇒ ¬r(b, a)

Relations such as Owner (to Tenant), Parent (to Child), and Singer (to Song) are Anti-Symmetric.
Figure 2b shows a few examples of this rule.

3.1.3 Inverse

It is a binary relation stating two opposite relations for a set of entities. It is possible to assume a
unique inverse relation for every relation. Inverse pattern between two set of two triples occurs when
they have the opposite relation directions and have the same entities.

r2(x, y) ⇒ r1(y, x)

Parent-Child and Teacher-Student are examples of the inverse relations. Figure 2c shows how inverse
relation is represented.

3.1.4 Composition

This binary relation which is also termed as relation multiplication is basically a compound relation
which states the relation that can not exist without the existence of another relation. For Example, for
the relation Aunt, the relation of Sister and Son/Daughter must exist in order to prove someone as an
Aunt of somebody. In mathematical terms, relation r1 is composed of relation r2 and relation r3 if:

∀x, y, z : r2(x, y) ∧ r3(y, z) ⇒ r1(x, z)

Figure 2d states that Paris is the Capital of France, According to the composition property, Paris must
be in France to be its capital.
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Table 1: Inductive Setting Datasets
Inductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 4254 542 542 3447 51 0.901
Anti-Symmetry 12930 3494 3884 8304 433 3.429
Inverse 4753 2568 2568 7745 641 1.670FB15K

Inference 3489 2824 2745 6083 611 1.530
Symmetry 2322 272 272 4344 5 1.893
AntiSymmetry 16650 4698 4697 20552 18 17.203
Inverse 8728 903 904 13842 17 6.958WN18

Inference 844 99 99 1639 15 0.688

3.1.5 Inference

Inference relation pattern is one of the logical rules we formed datasets of. The rule states that we
can deduce a relationship between two entities from the knowledge of another relationship between
the two of them:

∀h, t : (h, r1, t) ⇒ (h, r2, t)

where h and t are entities and r1 and r2 are relations between them. Figure 2e gives an example of
inference relation which states Paris is the capital of France and thus, according to r1, Paris much be
in France as well. Therefore, (Paris, isCapitalof, France) ⇒(Paris, isLocatedin, France)

3.2 Evaluation Dataset Setting

There exist two different methods for the dataset division into train and test/validation subsets, where
the composition of entities of each setting defines the evaluation setting:

Inductive Setting In an inductive setting, the entities during training are not found in the test
dataset. The part of entities are kept missing and their relations are made to be found by the LP
models. The number of disjoint entities varies in an inductively set dataset, fully disjoint sets are fully
inductive and thus difficult for the models to predict.

Transductive Setting A dataset is divided to train and test/validation in a transductive setting when
the occurrence of entities is ensured to be in the training procedure if it appears either in a test or valid
sets. Transductive set datasets are best for Entity Specific Embedding. All entities in the training set
are present in the test set and thus a model has trained embeddings for them specifically.

4 A New Set of Pattern Specific Datasets

4.1 The Standard Patterns

We extracted a subset of data from the standard FB15K and WN18 with Symmetry, Inverse, Anti-
symmetry, and Inference patterns. Then, from each subset, we extracted an entirely inductive and a
transductive dataset and two more customized datasets. In the first set, the percentage of inductive
and transductive triples is fixed, and in the second set, each triplet has one Inductive entity with the
other entity being transductive. The description of these settings is in the following.

Inductive We built3 four datasets with the inductive setting where the entities of test and train
datasets are entirely disjoint. We took these fully disjoint sets from both FB15K and WN18 and
then subcategorized them into relational datasets, making a set of eight datasets. Table 1 states the
statistics of our datasets.

Transductive Transductive Setting has common entities in train and test datasets. Therefore, the
entities are already seen by the model, making prediction much easier for them. Table 2 states the
statistics of the set of eight datasets from the transductive type.

3The script to extract data based on each individual relational pattern is available in the code section of
https://github.com/mlwin-de/relational_pattern_benchmarking/
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Table 2: Transductive Setting Datasets
Transductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 5781 1399 1416 2823 52 1.452
Anti-Symmetry 20711 128 109 2471 143 3.537
Inverse 31332 750 750 10988 696 5.544FB15K

Inference 70226 104 111 10500 377 11.895
Symmetry 1449 362 363 2030 5 1.436
AntiSymmetry 6366 190 168 3393 15 4.441
Inverse 4364 750 750 5765 17 3.873WN18

Inference 2027 12 10 3009 18 1.353

Table 3: Head-Tail Inductive Setting Datasets
Head-Tail Inductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 5621 989 990 3632 52 1.283
Anti-Symmetry 15404 10795 10795 9241 470 6.247
Inverse 24176 4701 4701 12065 794 5.670FB15K

Inference 13845 5898 5636 9671 665 4.286
Symmetry 1630 185 186 2447 5 1.322
AntiSymmetry 30000 5603 5603 23786 18 27.217
Inverse 5421 621 621 7843 17 4.401WN18

Inference 462 84 85 815 15 0.417

Head-Tail Ratio Inductive We built a set of datasets by keeping either the head or the tail of each
triplet in the train hidden from the test dataset. By doing so, we gain a semi-inductive dataset with
each triplet unseen. Table 3 reports the statistics of these datasets.

Percentage-wise building In our study, we generated half of the test triples with inductive settings
and half with the transductive setting. We apply this percentage base data generation on each category.
Table 4 describes the statistics of the 50% datasets.

For our benchmark, we take standard evaluation metrics of Hit Ratios (at 1, 3, 10), Mean Reciprocal
Rank, Area Under the Curve, and AUC-PR. Yousef et al. (2008) suggests, for a perfect AUC-PR
score, an equal number of negative triplets are needed along with positive triplets. Therefore, as
described by Teru et al. (2020), in the test set, the same number of negative samples are created by
corrupting the copy of each triplet by either replacing the head or the tail with any random entity. We
used the same procedure to incorporate each model with the AUC-PR score in a unified way.
We considered DistMult Yang et al. (2015), RotatE Sun et al. (2019), TransE Bordes et al. (2013),
GraIL Teru et al. (2020), MDE Sadeghi et al. (2020) and CompGCN Vashishth et al. (2020) for our
analysis.

Experiment Setup Our system is implemented in Python, with Adadelta Zeiler (2012) as the
optimizer. All Transductive bias models are set with learning rate 0.0001 with GraIL and CompGCN
at 0.01 in-order to practise uniformity. Alpha (α) is kept between [0.5,1]. The models are set with
the Dimensions = [GraIL = 1000, CompGCN = 100 and all other models = 500]. The epochs are
set uniform for TransE, Distmult and RotatE = 6000 whereas MDE is given a higher number of
150,000 and GraIL and CompGCN are run are 100 and 500 epochs respectively. For TransE, Distmult
and RotatE, and MDE, we used a fixed number of negative samples, 50 in all the experiments. To
regulate loss function, we estimated the score for 5 runs and took the average. All the experiments
are performed on a local server with Intel Corporation Xeon E7 v4/Xeo CPU with 24 cores, 256 GB
RAM, and GeForce GTX 1180 with 4 GPU cores.

Table 4: 50% Inductive Setting Datasets
Percentage Based Inductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 4677 445 444 3219 51 0.940
Anti-Symmetry 14904 11603 11608 9911 472 6.436
Inverse 6124 779 779 4958 600 1.297FB15K

Inference 5840 5249 5263 7031 446 2.761
Symmetry 2009 253 253 3285 5 1.661
AntiSymmetry 22208 5330 5329 21666 18 21.709
Inverse 7613 678 678 10785 17 5.924WN18

Inference 685 58 64 1235 15 0.533
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Table 5: Hit@10 and MRR results of Link Predictors on datasets extracted from FB15K.
FB15K

DistMult TransE RotatE MDE GraIL CompGCN QuatEType of
dataset Dataset

Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR
Symm 0.0000 0.0003 0.0000 0.0002 0.0000 0.0002 0.0000 0.0002 0.0000 0.0228 0.0074 0.0060 0.0000 0.0040
Anti-Sym 0.0000 0.0004 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0236 0.0023 0.0022 0.2435 0.0912
Inverse 0.0021 0.0024 0.0028 0.0030 0.0019 0.0021 0.0019 0.0021 0.0000 0.0210 0.0012 0.0013 0.2530 0.0914Inductive

Inference 0.0008 0.0008 0.0018 0.0020 0.0004 0.0005 0.0004 0.0005 0.0000 0.0235 0.0011 0.0013 0.2640 0.0982
Symm 0.8755 0.8692 0.1405 0.0449 0.8594 0.8498 0.2184 0.1232 1.0000 0.9801 0.9836 0.8924 0.8604 0.7914
Anti-Sym 0.0041 0.0031 0.0432 0.0155 0.0083 0.0041 0.5078 0.3129 0.9922 0.9836 0.9648 0.8540 0.2214 0.1780
Inverse 0.0137 0.0087 0.0439 0.0160 0.0083 0.0069 0.1547 0.0881 0.9953 0.9307 0.8020 0.6305 0.2704 0.1240Transductive

Inference 0.0000 0.0036 0.0800 0.0276 0.0100 0.0066 0.1827 0.1413 0.9932 0.9616 0.7308 0.5264 0.1309 0.0999
Symm 0.0232 0.0097 0.0157 0.0061 0.0071 0.0043 0.0071 0.0047 0.4317 0.4065 0.0137 0.0068 0.0000 0.0166
Anti-Sym 0.0019 0.0011 0.0009 0.0008 0.0008 0.0010 0.0084 0.0038 0.1226 0.1143 0.0066 0.0026 0.3997 0.1957
Inverse 0.0031 0.0022 0.0341 0.0135 0.0059 0.0039 0.0849 0.0492 0.1380 0.1008 0.1272 0.0734 0.3393 0.1651

Head/Tail
Ratio

Inference 0.0047 0.0032 0.0141 0.0054 0.0085 0.0046 0.0281 0.0132 0.0882 0.0709 0.0936 0.0583 0.3464 0.1785
Symm 0.2596 0.2590 0.0079 0.0033 0.0461 0.0215 0.0674 0.0415 0.2584 0.2843 0.2629 0.2624 0.7500 0.5461
Anti-Sym 0.0002 0.0005 0.0001 0.0003 0.0000 0.0002 0.0006 0.0006 0.0466 0.0422 0.0015 0.0013 0.3738 0.2146
Inverse 0.0635 0.0534 0.0161 0.0076 0.0045 0.0028 0.0507 0.0367 0.1343 0.1554 0.1496 0.1310 0.2963 0.2121

Percentage
Based(50%)

Inference 0.0098 0.0067 0.0142 0.0055 0.0217 0.0110 0.1369 0.1014 0.0782 0.0894 0.1484 0.1291 0.1966 0.1110

Table 6: Hit@10 and MRR results of Link Predictors on datasets extracted from WN18.
WN18

DistMult TransE RotatE MDE GraIL CompGCN QuatEType of
dataset Dataset

Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR
Symm 0.0000 0.0001 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0201 0.0018 0.0011 0.0000 0.0000
Anti-Sym 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0001 0.0304 0.0006 0.0007 0.0000 0.0016
Inverse 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0215 0.0000 0.0003 0.0000 0.0009Inductive

Inference 0.0000 0.0002 0.0000 0.0002 0.0000 0.0003 0.0000 0.0004 0.0000 0.0251 0.0051 0.0042 0.0000 0.0002
Symm 0.9277 0.9064 0.0073 0.0031 0.7509 0.9792 0.4378 0.4195 1.0000 0.9979 0.9848 0.9738 0.9143 0.9466
Anti-Sym 0.0000 0.0005 0.0000 0.0016 0.0000 0.0006 0.1079 0.0624 0.9684 0.9581 0.9816 0.9720 0.0374 0.0153
Inverse 0.0000 0.0003 0.0000 0.0020 0.0047 0.0030 0.2220 0.1787 1.0000 0.9977 0.9940 0.9441 0.0377 0.0156Transductive

Inference 0.2917 0.2394 0.0000 0.0013 0.0833 0.0523 0.2500 0.2520 1.0000 1.0000 0.2083 0.1566 0.0486 0.0323
Symm 0.0027 0.0008 0.0000 0.0002 0.0055 0.0013 0.0162 0.0111 0.0054 0.0253 0.0081 0.0063 0.0272 0.0089
Anti-Sym 0.0007 0.0005 0.0000 0.0005 0.0014 0.0014 0.0003 0.0003 0.0011 0.0291 0.0012 0.0006 0.0844 0.0453
Inverse 0.0009 0.0007 0.0000 0.0004 0.0016 0.0015 0.0523 0.0318 0.0000 0.0340 0.0395 0.0196 0.0688 0.0577

Head/Tail
Ratio

Inference 0.0000 0.0020 0.0000 0.0002 0.0000 0.0002 0.0833 0.0277 0.0000 0.0200 0.0714 0.0321 0.0198 0.0245
Symm 0.5013 0.5029 0.0000 0.0003 0.0731 0.0437 0.0514 0.0353 0.5020 0.5119 0.0040 0.0030 0.8593 0.7899
Anti-Sym 0.0000 0.0002 0.0002 0.0002 0.0000 0.0001 0.0005 0.0006 0.0111 0.0439 0.0010 0.0010 0.0198 0.0245
Inverse 0.1924 0.1199 0.0118 0.0047 0.0701 0.0368 0.0155 0.0082 0.4808 0.4906 0.0000 0.0010 0.0193 0.0102

Percentage
Based(50%)

Inference 0.0000 0.0002 0.0000 0.0005 0.0000 0.0007 0.0172 0.0174 0.0345 0.0552 0.0086 0.0121 0.1086 0.0196

5 Results

In this Section, we report the experiment results and discuss them. Tables 5 and 6 show the MRR
and Hit@10 performance of the LP methods and the Tables 7, 8 and 9 report the AUC-PR results.
Extended result sheets are available in https://github.com/mlwin-de/relational_pattern_
benchmarking.

Inductive As far as Inductive datasets are concerned, in both FB15K and WN18, GraIL and
CompGCN outperform all other models due to their property of inductive bias-ness. Segregating far,
all models performed well over the Inference dataset. CompGCN gave better performance on Inverse
dataset with a 56.46 AUC-PR score on the FB15K extracted dataset and 67.40 AUC-PR score on
the WN18 extracted dataset, whereas MDE did not perform well in all datasets from the inductive
category. To sum up, the difference between Inductive and Transductive models could easily be
noticed by this set of experiments.

Table 8 summarizes FB15K results and the green column of Table 7 summarizes the average AUC-PR
on the Inductive setting.

All models show a low performance on the MRR and Hit metric for the Inductive datasets as in the
Tables 5 and 6. However, the AUC-PR results show that some models can better distinguish positive
and negative samples in an equal number of samples, where CompGCN shows a better performance
in separating negative samples in the Inductive setting.

Transductive For evaluation with transductive setting of datasets, all models showed great im-
provement in link prediction task than their performance over other datasets. TransE and MDE
was almost 15% - 20% less accurate as compared to other state of the art models in the AUC-PR.
Symmetry dataset gives promising results with link prediction of more than 95% in almost all mod-
els. Furthermore, for WN18 dataset, GraIL and even CompGCN predicts 99% true triplets for the
symmetry dataset. Overall GraIL and CompGCN and QuatE are proved to be the superior models for
transductive datasets.
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Table 7: Mean AUC-PR performance of the LP methods.
WN18 FB15K

Metric (AUC-PR)Type of
dataset Inductive Transductive Head/Tail

Ratio
Percentage

Based(50%) Inductive Transductive Head/Tail
Ratio

Percentage
Based(50%)

DistMult 0.5015 0.7203 0.5456 0.6634 0.4995 0.6255 0.5468 0.5755
TransE 0.4688 0.6239 0.5169 0.5643 0.4489 0.6685 0.5969 0.5266
RotatE 0.4542 0.7497 0.5840 0.6231 0.4282 0.6697 0.5829 0.5336
MDE 0.4865 0.9624 0.6426 0.5952 0.4474 0.8709 0.5937 0.5310
GraIL 0.5000 0.9960 0.5013 0.6433 0.5004 0.9975 0.6105 0.5926

CompGCN 0.5531 0.9269 0.5713 0.5596 0.6368 0.9976 0.6473 0.6768
QuatE 0.4426 0.6518 0.6518 0.7382 0.5867 0.9618 0.6563 0.8208

Table 8: AUC-PR Results of Link Predictors on datasets extracted from FB15K.
FB15K

Metric (AUC-PR)Type of dataset DataSets
DistMult TransE RotatE MDE GraIL CompGCN QuatE

Symm 0.4933 0.4585 0.4554 0.4650 0.5000 0.7682 0.3115
Anti-Symmetry 0.4993 0.4161 0.3889 0.4221 0.5009 0.6577 0.4841
Inverse 0.4992 0.4632 0.4282 0.4496 0.4986 0.5646 0.4824Inductive

Inference 0.5063 0.4578 0.4403 0.4527 0.5022 0.5566 0.4924
Symm 0.9618 0.6901 0.9608 0.9434 0.9966 0.9995 1.0000
Anti-Symmetry 0.5151 0.6038 0.5853 0.9986 0.9998 1.0000 0.8998
Inverse 0.5345 0.6318 0.5967 0.7948 0.9963 0.9927 0.9137Transductive

Inference 0.4907 0.7484 0.5359 0.7468 0.9971 0.9982 0.8933
Symm 0.6409 0.7480 0.7259 0.7764 0.7846 0.6109 0.6526
Anti-Symmetry 0.5054 0.5486 0.5406 0.5331 0.5881 0.5559 0.6539
Inverse 0.5093 0.5507 0.5359 0.5499 0.5432 0.7815 0.6906Head/Tail Ratio

Inference 0.5314 0.5401 0.5292 0.5156 0.5261 0.6410 0.6102
Symm 0.7257 0.5955 0.6256 0.6201 0.6831 0.7591 0.7721
Anti-Symmetry 0.4959 0.4474 0.4347 0.4208 0.5045 0.5774 0.7268
Inverse 0.5870 0.5351 0.5602 0.5597 0.6206 0.7253 0.7368Percentage Based(50%)

Inference 0.4935 0.5284 0.5140 0.5235 0.5620 0.6455 0.7169

An exception of performance for Symmetry dataset in Distmult between inductive and transductive
case was observed, where for both WN18 and FB15K the AUC-PR result increased in the transductive
setting by an amount about 40%.

Promising AUC-PR results for symmetry dataset by the model are displayed in Table 8 and Table 9.

Semi-Inductive - Head Tail Ratio Since this set of datasets is also inductive in its properties as all
triplets are fully inductive with either one of the entities unseen. The models behave exactly the same
way as they work with the inductive datasets. All state-of-the-art models fail to perform under such
settings except GraIL and CompGCN due to their inductive nature. Despite the fact that GraIL and
CompGCN perform better than transductive bias model, they could not rank the triplets correctly
with more than 0.52 AUC-PR. However, CompGCN shows some improvements for the Inference
type datasets under the category with around 0.60 AUC-PR.

Semi-Inductive - Percentage-Wise The datasets are gathered on the principle of half datasets
from the inductive category with 50% triplets of the transductive nature. Due to the reason, they
perform well on the link prediction models. Distmult and CompGCN gives promising results of
more than 85% on the symmetry datasets. TransE, due to its inability to infer symmetric patterns
could not give better score but predicts inference patterns better than any other. As an average, we
conclude that all models outperform over the transductive setting of datasets in link prediction task.
The KGE models also give promising results over datasets with half inductive and half transductive
type (Count-Based Dataset), evidently due to the fact of containing exactly 50% transductive triplets.
Inductive datasets and head-tail inductive datasets still faces issues in link prediction task with better
results on CompGCN and GraIL.

5.1 Discussion

Inductive Evaluations Since none of the three types of inductive experiments included known
triples in the test phase, the models did not use any other information indicative of the identity of tested
entities (e.g., their distance to other entities), except for GraIL that applies sub-graph calculations for
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Table 9: AUC-PR Results of Link Predictors on datasets extracted from WN18.
WN18

Metric (AUC-PR)Type of Dataset DataSets
DistMult TransE RotatE MDE GraIL CompGCN QuatE

Symm 0.4912 0.4864 0.5164 0.4889 0.5000 0.4736 0.9892
Anti-Symmetry 0.4972 0.4400 0.4119 0.4774 0.4999 0.6740 0.4616
Inverse 0.5023 0.4312 0.3931 0.4667 0.5000 0.5248 0.4716Inductive

Inference 0.5154 0.5175 0.4953 0.5131 0.5000 0.5398 0.4242
Symm 0.9855 0.6506 0.9849 0.9395 1.0000 0.9993 1.0000
Anti-Symmetry 0.5705 0.6048 0.5183 0.9856 0.9842 0.9953 0.9875
Inverse 0.4507 0.5274 0.6299 0.9244 1.0000 0.9952 0.9683Transductive

Inference 0.8745 0.7127 0.8655 1.0000 1.0000 0.7179 0.8913
Symm 0.5390 0.5609 0.6477 0.6652 0.5053 0.6172 0.6449
Anti-Symmetry 0.5328 0.5139 0.5135 0.4969 0.4999 0.5722 0.6258
Inverse 0.5202 0.5746 0.5442 0.6060 0.5000 0.5812 0.7249Head/Tail Ratio

Inference 0.5905 0.4181 0.6306 0.8024 0.5000 0.5145 0.6294
Symm 0.8185 0.5920 0.7657 0.7487 0.7626 0.5888 0.7873
Anti-Symmetry 0.4942 0.4773 0.4836 0.4769 0.5103 0.5973 0.8900
Inverse 0.7936 0.6586 0.7142 0.6418 0.7974 0.5374 0.8134Percentage Based(50%)

Inference 0.5472 0.5291 0.5290 0.5134 0.5031 0.5150 0.7924

the test-set as well. Thus, the vector weights of the unknown entities are set randomly. Consequently,
we conclude that the experimented models that benefit from no knowledge of entities, estimate the
rank of the samples only by generating an embedding space such that the scores of negative triples
are separable from the random values to some extent using the common relations between test and
the train dataset. In the following, we generally compare the performance of models over by datasets
extracted from the two original knowledge graphs.

FB15K For FB15K, GraIL and CompGCN perform well on the inductive datasets with the highest
performance on the Symmetry dataset in CompGCN whereas GraIL shows a near performance on
all datasets with the inductive setting. CompGCN also performs well on transductive datasets with
almost 100% accuracy on Anti-Symmetry along with outstanding performance on all datasets with the
Count-based setting. QuatE and GraIL show exactly the same trend as CompGCN with near accuracy.
MDE performs well on transductive setting datasets with 99% accuracy on the Anti-Symmetry
followed by Head-Tail Ratio based setting datasets. RotatE, TransE and DistMult showed the same
performance pattern as MDE with the highest performance in the transductive setting and least in
inductively set datasets. Table 8 describes the result of these evaluations.

WN18 In datasets extracted from WN18 is concerned, a similar pattern as the FB15K dataset is
observable. GraIL and CompGCN show better results on inductive settings as compared to other
models. Link prediction in the inductive and the transductive setting is better on WN18 datasets
in most of the models as compared to FB15K that evidently is due to the fact of fewer relations to
be computed. Link prediction on Symmetry datasets from the transductive setting has around 0.99
AUC-PR for almost all the models considered. Table 9 quotes results on WN18 Datasets.

5.2 Evaluation of GFA-NN model

Finally, we benchmark our datasets over a newer multi-objective optimization KGE similar to MDE,
i.e., GFA-NN Sadeghi et al. (2021a), which considers the datasets’ graphical features to create
embeddings. The node features and graph properties are calculated and stored in separate files for
training purposes. The graphical feature information is not available to the model in the evaluation
phase to make a fair comparison.

Comparison between the previous MDE and GFA-NN reported in Table 10 shows outstanding
behavior of the newly introduced method in the Transductive and Semi-inductive settings. The
most significant improvement is observable in the Inference datasets, where the results show an
improvement of between 0.6% to 22% in the tested cases. For Instance, the FB15K Inference dataset
with the transductive setting improved from 74% in the AUC-PR score to 96%. Lastly, the results in
the purely inductive setting only shows an improvement in the Inference dataset, that is because we
handicapped GFA-NN, not to know the graphical features of any nodes in the test dataset.
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Table 10: Evaluation results of GFA-NN model compared to MDE.
WN18 FB15K

Metric (AUC-PR)LP Methods Type of DataSet
Symm Anti-Symmetry Inverse Inference Symm Anti-Symmetry Inverse Inference

Inductive 0.4889 0.4774 0.4667 0.5131 0.4650 0.4221 0.4496 0.4527

Transductive 0.9395 0.9856 0.9244 1.0000 0.9434 0.9986 0.7948 0.7468

Head/Tail Ratio 0.6652 0.4969 0.6060 0.8024 0.7764 0.5331 0.5499 0.5156
MDE

Percentage Based(50%) 0.7487 0.4769 0.6418 0.5134 0.6201 0.4208 0.5597 0.5235

Inductive 0.4572 0.4218 0.3861 0.4877 0.4593 0.3939 0.4477 0.4584

Transductive 1.0000 0.9995 1.0000 1.0000 1.0000 0.9999 0.9848 0.9695

Head/Tail Ratio 0.6653 0.4977 0.6409 0.5846 0.6289 0.5470 0.6425 0.5764
GFA-NN

Percentage Based(50%) 0.7600 0.4662 0.7301 0.5382 0.6842 0.4264 0.6024 0.5437

Table 11: Ranking results of the LP models on the aggregate datasets.
WN18RR FB15k-237

Model MR MRR Hit@10 MR MRR Hit@10
QuatE – 0.482 0.572 – 0.366 0.556
TransE 357 0.294 0.501 357 0.294 0.465

DistMult 5261 0.44 0.49 254 0.241 0.419
CompGCN 3533 0.479 0.546 197 0.355 0.535

RotatE 3340 0.476 0.571 177 0.338 0.533
MDE 3219 0.458 0.536 203 0.344 0.531

GFA-NN 3390 0.486 0.575 186 0.338 0.522

5.3 Comparison to Aggregate datasets

Table 11 shows the results of the LP methods on the aggregate datasets reported in Sadeghi et al.
(2021a) and Sun et al. (2019).

This comparison of this table results to our pattern-specific experiments shows that while the difficulty
of each individual relation pattern for each model influences the overall results, the ratio of each
relation pattern also impacts their performance because the results are averaged in the MRR and Hit
evaluations. For example, while CompGCN is not the best method in learning inverse relations in the
transductive setting, it is one of the most efficient methods in the FB15k-237 because FB15k-237 and
WN18RR are missing the inverse relations from FB15K and WN18.

6 Conclusion

To sum up, we created several standard datasets with distinct relational patterns ranging from
symmetry to inverse and different degrees of inductiveness. We evaluated several state-of-the-art Link
Prediction models over them. We extended our research in working on link prediction models by
this benchmarking approach and highlighting their working on different types of datasets. A unified
evaluation strategy of AUC-PR measurement is incorporated into all link prediction models beside
the Hit@K and MRR measures. We highlighted the datasets with improved performance on particular
LP models. In order to support further research in the domain, we incorporated our benchmarking
datasets to the BenchEmbedd for evaluation of a linked data life-cycle. The meaningful experiments
outcome indicate that these datasets will foster the research on Link Prediction and KG embeddings.
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