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A Additional Data Statistics

We visualize video length distribution for each video data in Figure 1. Table 1 and 2 summarize the
top-20 most frequent nouns and verbs in subtitles and annotations.

Figure 1: Visualization of video length distribution.

B Additional Results

B.1 Impact of Visual Representations

Table 3 shows the results using different visual representations. Our key observations are summarized
as follows: (i) We confirm that image-text pre-trained CLIP-ViT features are generalizable to video-
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Table 1: Top-20 most frequent nouns and verbs in subtitles. Character names have been filtered out from
TV/VIOLIN/VLEP.

Dataset Nouns Verbs

TV time, something, guy, way, right, man, thing,
look, night, anything, god, someone, nothing,
life, day, thank, kind, wait, woman, everything

know, go, think, want, see, need, tell, say, take,
make, let, mean, come, find, give, look, talk,
believe, love, feel

How2 bit, way, kind, time, water, today, thing, lot, side,
video, music, right, let, something, oil, cup,
sugar, top, part, half

make, want, go, see, know, use, take, put, need,
add, let, show, think, start, give, look, keep, cut,
come, say

VIOLIN time, something, god, look, thing, way, right,
man, guy, day, night, mom, anything, thank, kind,
nothing, wait, life, baby, let

know, go, think, want, see, say, tell, take, need,
let, come, make, mean, look, give, love, feel, talk,
believe, call

VLEP time, look, kind, something, thing, right, way,
man, day, music, lot, everything, let, bit, guy,
thank, food, night, place, god

know, go, think, see, want, need, make, take, let,
say, come, love, look, mean, tell, give, try, feel,
find, eat

VATEX way, time, bit, side, look, god, job, alright, thing,
kind, hand, man, today, video, day, right, lot,
water, thank, something

go, know, see, want, make, take, think, let, put,
say, come, need, keep, look, use, give, start, show,
hold, love

YC2 bit, oil, water, salt, sauce, pepper, time, kind,
teaspoon, heat, pan, cup, chicken, onion, half,
way, butter, garlic, side, flavor

add, want, make, put, use, go, take, let, see, cook,
know, need, give, mix, start, cut, keep, turn,
think, look

and-language (VidL) tasks (L2 vs. L1/3/4). CLIP-ViT features lead to stronger performance than
other 2D or 3D features. (ii) VALUE tasks also benefit from video-text pre-trained S3D features (L3
vs. L4). However, the performance improvement mostly comes from YC2 tasks, the videos of which
are similar to the videos used to pre-train the S3D model. These results imply that the video domain
of pre-training data is critical to downstream performance. (iii) When taking advantage of both 2D
and 3D features, the model achieves the best performance (CLIP-ViT+SlowFast, L7), suggesting that
both appearance and motion information are required to solve VALUE tasks. (iv) However, 2D and
3D features do not always complement each other. For example, performance on ResNet+S3D (L6)
is worse than that on S3D alone (L4). (v) Retrieval and captioning tasks greatly depend on the quality
of visual representations, while QA performance stays relatively stable with different features. This
result agrees with our observations in Table 3 in the main text, where we show that QA tasks rely
more on information from subtitle channel.

In addition, we finetune the pre-trained HERO on different visual representations (L9-12). Comparing
their counterparts without pre-training, we observe a consistent performance improvement in almost
all tasks across all visual representations examined. Note that in L10-12, though the video features
used in pre-training is different from that used in finetuning, we still observe significant performance
gains compared to models without pre-training. This suggests that the video-language alignment
learned via HERO pre-training is transferrable to different visual representations.

B.2 Zero-Shot Evaluation on CLIP

Inspired by recent works [6, 13] leveraging image-text pre-training for video-and-language (VidL)
tasks and the strong performance of CLIP-ViT features in Section B.1, we further perform a zero-shot
evaluation using CLIP [18] on our retrieval and QA tasks. Captioning tasks cannot be directly
evaluated as there is no decoder trained in CLIP.

CLIP is composed of an image encoder and a text encoder. To evaluate CLIP on VidL tasks, we first
sample video frames from a video clip, then encode them via the image encoder from CLIP to obtain
a sequence of frame features. For subtitle and textual query, we directly apply the text encoder from
CLIP to generate a text representation.

First, we evaluate CLIP on the video-only input. For video retrieval tasks (i.e., YC2R and VATEX-EN-
R), we use mean pooling to aggregate the feature of all frames to obtain a global video representation.
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Table 2: Top-20 most frequent nouns and verbs in annotations (query/question/caption). Character names have
been filtered out from TVR/TVC/TVQA/VIOLIN/VLEP.

Dataset Nouns Verbs

TVR/TVC walk, hand, room, door, table, conversation,
patient, man, phone, woman, apartment, head,
talk, bed, front, chair, coffee, arm, tell, couch

talking, walk, take, look, put, sitting, stand,
turn, open, holding, sits, tell, hold, pick, asks,
say, standing, give, go, looking

TVQA room, patient, hand, door, color, apartment,
table, phone, man, office, doctor, woman, shirt,
something, couch, hospital, coffee, time,
friend, guy

say, talking, said, tell, sitting, holding, asked,
go, told, asks, going, walk, walked, want,
wearing, talk, looking, come, give, standing

How2R man, woman, video, lady, person, car, bowl,
paper, hand, ingredient, girl, food, piece, plant,
water, pan, glass, guy, kitchen, chef

make, explain, talking, show, using, showing,
making, explaining, put, add, explains, cut,
shown, cooking, describes, cutting, hold,
holding, use, take

How2QA video, color, man, woman, person, lady, hand,
name, kind, type, bowl, food, ingredient, shirt,
car, girl, item, table, boy, paper

used, shown, talking, using, put, wearing,
added, make, holding, use, seen, cut, hold,
want, mentioned, making, add, show, happen,
explain

VIOLIN man, woman, shirt, suit, hair, jacket, blonde,
girl, lady, brunette, dress, boy, sweater, grey,
friend, room, blue, men, pink, guy

wearing, tell, want, asks, sitting, say, explains,
talking, trying, haired, see, go, think, make,
walk, take, know, holding, going, look

VLEP man, food, door, tell, room, woman, hand,
patient, table, phone, shirt, walk, apartment,
something, friend, vlogger, baby, girl,
question, someone

say, tell, take, go, put, asks, look, give, start,
walk, make, talk, going, leave, want, open, see,
eat, turn, continue

VATEX-EN-R/-C man, woman, person, people, boy, girl, group,
hand, someone, music, child, ball, men, baby,
water, room, piece, front, kid, floor

playing, using, sitting, play, holding, talking,
standing, showing, make, wearing, shown,
dancing, riding, put, show, stand,
demonstrating, throw, demonstrates, hold

YC2R/YC2C pan, oil, onion, salt, water, sauce, pepper,
bowl, place, mix, pot, egg, potato, stir,
chicken, mixture, slice, powder, butter, heat

add, cut, mix, put, cook, chopped, remove, fry,
take, chop, cover, spread, serve, stir, pour, roll,
drain, flip, blend, baking

Table 3: Impact of visual representations. ResNet(-152) [4] and SlowFast [3] are pre-trained on ImageNet [1]
and Kinetics [5], respectively. S3D [21, 14] is pre-trained with video-text pairs in HowTo100M [15], OpenAI
CLIP ViT [2, 18] is pre-trained with image-text pairs [18]. All results are reported on Val/Test (public) split.
The best performance (of each block) are highlighted with bold (underline).

Visual Feature TVR How2R YC2R
VATEX-

EN-R
TVQA

How2-
QA

VIO-
LIN

VLEP TVC YC2C
VATEX-

EN-C
Meta-

Ave
AveR AveR AveR AveR Acc. Acc. Acc. Acc. C C C

2D Features, Finetune-only
1 ResNet [4] 4.82 0.75 33.96 43.93 70.73 68.41 66.28 57.47 45.54 100.89 38.41 48.29
2 CLIP-ViT [2, 18] 7.93 1.52 35.93 62.87 71.07 69.34 66.80 58.27 48.99 112.25 52.42 53.40

3D Features, Finetune-only
3 SlowFast [3] 4.71 3.19 34.82 56.19 71.13 68.31 66.00 58.11 47.77 105.85 51.20 51.57
4 S3D [21, 14] 6.14 2.52 41.66 49.28 71.34 69.47 66.41 58.22 47.32 125.58 42.65 52.78

2D+3D Features, Finetune-only
5 ResNet+SlowFast 7.72 1.91 33.91 58.99 71.08 69.44 66.83 58.79 48.48 108.46 52.15 52.52
6 ResNet+S3D 5.16 2.32 33.88 46.19 70.70 66.68 68.60 58.65 45.22 105.83 39.51 49.34
7 CLIP-ViT+SlowFast 8.84 2.39 34.63 65.62 71.64 70.21 67.21 57.56 51.47 113.23 56.97 54.52
8 CLIP-ViT+S3D 6.66 2.27 36.68 62.35 70.27 68.54 67.06 59.13 50.05 110.18 52.77 53.27

2D+3D Features, Pre-train on ResNet+SlowFast then Finetune
9 ResNet+SlowFast 11.66 5.97 48.86 61.66 74.80 74.32 68.98 67.40 50.46 121.89 52.58 58.05

10 ResNet+S3D 9.45 5.20 47.81 47.00 72.65 72.68 67.71 65.94 46.42 117.11 38.77 53.70
11 CLIP-ViT+SlowFast 12.92 5.02 47.81 66.49 74.25 72.87 68.33 65.60 51.56 115.83 56.19 57.90
12 CLIP-ViT+S3D 11.85 5.43 49.52 63.37 72.56 73.64 67.92 65.82 50.26 117.58 50.73 57.15
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Table 4: Zero-shot evaluation of CLIP [18] on retrieval and QA tasks. Results are reported on Val/Test (public)
split. The best performance is highlighted in bold.

Input
Channel

TVR How2R YC2R VATEX-EN-R TVQA How2QA VIOLIN VLEP
AveR AveR AveR AveR Acc. Acc. Acc. Acc.

Video-only 0.13 0.0 12.61 55.68 27.00 54.54 52.40 55.35
Video+Sub 0.13 0.0 22.61 46.78 23.17 44.94 50.00 56.35

Table 5: Additional results of multi-task learning baselines with CLIP-ViT+SlowFast features on Test
(leaderboard) set. We compare the following model training settings: single-task training (ST), multi-task
training (MT) by tasks or domains, all-task training (AT) and AT first then ST (AT → ST). The best performance
(of each block) are highlighted with bold (underline).

Training
Setting

TVR How2R YC2R
VATEX-

EN-R
TVQA

How2-
QA

VIO-
LIN

VLEP TVC YC2C
VATEX-

EN-C
Meta-

Ave
AveR AveR AveR AveR Acc. Acc. Acc. Acc. C C C

1 Human - - - - 89.41 90.32 91.39 90.50 62.89 - 62.66 -
Finetune-only

2 ST 8.81 2.13 42.37 47.02 71.35 69.59 64.30 56.77 50.30 109.89 55.98 52.59
3 MT by Task 11.24 3.27 49.09 45.83 72.58 71.23 66.33 67.84 49.95 110.44 57.01 54.98
4 MT by Domain 11.30 2.66 46.24 44.69 73.66 71.20 66.59 68.13 49.52 104.39 56.25 54.06
5 AT 11.98 3.24 48.40 46.75 74.42 71.85 67.00 69.06 49.13 101.76 56.67 54.57
6 AT ST 12.40 3.61 50.93 49.91 74.38 71.88 66.80 68.68 49.41 110.63 58.09 56.07

Pretrain on ResNet+Slowfast, then Finetune
7 ST 13.70 3.38 56.59 46.66 74.52 73.82 64.19 67.10 51.04 120.22 55.30 56.96
8 MT by Task 13.45 4.53 57.96 47.47 73.56 73.95 65.80 68.32 49.30 121.66 55.10 57.37
9 MT by Domain 12.90 4.22 51.33 44.45 74.65 74.01 66.80 69.35 48.81 102.41 49.22 54.38

10 AT 12.55 3.32 52.16 46.58 75.00 73.69 67.25 68.65 48.81 114.27 54.79 56.10
11 AT ST 13.56 3.95 54.28 49.09 74.83 74.60 67.18 69.37 48.13 121.89 56.54 57.58

Cosine similarity is applied on the global video representation and the query representation to rank the
relevance between video and query. For video corpus moment retrieval tasks (i.e., TVR and How2R),
an additional cosine similarity between each frame representation and query representation is used to
predict the relevant span. Specifically, the localized span is determined by a sliding-window strategy.
Similarly, we apply the same cosine similarity to QA tasks. For multiple-choice QA (i.e., TVQA and
How2QA), we concatenate the question with each answer choice as query, and calculate the similarity
between the global video representation and the query representation. The answer with the highest
similarity score among all answer choices is selected as the predicted answer. For VIOLIN and VLEP,
which are formalized as binary classification problems, we generate the predictions according to a
similarity score threshold. The best threshold is selected based on the validation set, and directly
applied to the test set.

To augment the input with subtitle channel, we simply generate the subtitle sentence representations
via text encoder and max pool them to aggregate the features of all subtitle sentences to obtain a
global subtitle representation. Cosine similarity is applied to global subtitle representation and query
representation to obtain a similarity score. The final similarity score is defined as the unweighted
average of similarities scores generated from video-only input and subtitle-only input.

Results are reported in Table 4. Directly applying CLIP to YC2R and VATEX-EN-R achieves decent
performance, which are consistent to observations in [13]. These results further support previous
conclusions that image-text pre-training can benefit video-and-language tasks. However, on video
moment retrieval tasks, where the model is required to localize the relevant moment based on the
textual query, CLIP fails to differentiate among semantically similar video segments, resulting in
poor performance. On QA tasks, where the queries or QA pairs are designed to be very similar to
each other, CLIP without further finetuning struggles to predict the correct answer. Comparing video-
only input to video+subtitle input, augmenting subtitle information does not guarantee performance
improvement. The low performance may be due to ineffective video-subtitle fusion at prediction
level or the limited capacity of CLIP to align subtitle information with textual query.
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Table 6: Evaluation of multi-task learning baselines on Val/Test (public) split. Results are reported on HERO
model with ResNet+SlowFast features unless specified otherwise. FT and PT denote finetuning and pre-training
of the HERO model. We compare the following model training settings: single-task training (ST), multi-task
training (MT) by tasks or domains, all-task training (AT) and AT first then ST (AT → ST). The best performance
(of each block) are highlighted with bold (underline).

Training
Setting

TVR How2R YC2R
VATEX-

EN-R
TVQA

How2-
QA

VIO-
LIN

VLEP TVC YC2C
VATEX-

EN-C
Meta-

Ave
AveR AveR AveR AveR Acc. Acc. Acc. Acc. C C C

Finetune-only
ST 7.72 1.91 33.91 58.99 71.08 69.44 66.83 58.79 48.48 108.46 52.15 52.52
MT by Task 7.23 2.70 39.03 57.64 71.23 71.65 66.82 66.64 47.24 111.35 51.07 53.87
MT by Domain 9.91 3.53 35.76 73.92 73.89 71.40 68.40 67.51 47.67 106.44 50.46 55.35
AT 9.93 3.29 38.58 72.84 74.36 71.85 67.62 66.99 46.73 100.00 51.07 54.96
AT → ST 10.53 4.42 41.18 74.06 73.89 71.56 68.97 66.37 47.59 108.30 51.87 56.26
Pre-train+Finetune
ST 11.66 5.97 48.86 61.66 74.80 74.32 68.59 67.40 50.46 121.89 52.58 58.05
MT by Task 11.37 5.84 49.27 59.37 74.56 74.86 68.78 67.65 49.18 130.38 50.54 58.35
MT by Domain 10.97 4.56 42.18 75.44 74.79 75.15 68.60 68.26 47.88 109.30 45.96 56.65
AT 11.05 3.32 42.80 77.96 74.90 74.35 68.56 69.24 46.49 112.88 49.76 57.39
AT → ST 11.76 4.63 45.67 78.09 75.15 74.09 68.99 68.85 46.92 119.15 50.61 58.54
AT → ST on CLIP-ViT+SlowFast
FT-only 12.34 5.12 42.46 78.72 75.33 73.19 69.05 67.99 50.51 114.60 58.13 58.86
PT+FT 13.02 5.66 45.33 79.95 75.43 74.57 69.40 69.19 49.67 115.65 56.35 59.47

B.3 Additional Results on Multi-Task Baselines

Table 5 presents results of proposed multi-task baselines with the optimal visual representations
(CLIP-ViT+SlowFast) found in Section B.1. The highest meta-average score of 57.58 is achieved
by AT→ ST with pre-training (L11). A more concise version of the table is included in VALUE
leaderbaord at https://value-benchmark.github.io/leaderboard.html.

Table 6 includes validation results of multi-task learning baselines. Table 7 presents more detailed
results of multi-task learning baselines for retrieval and captioning tasks across different evaluation
metrics on both validation split (Table 7a) and Test (leaderboard) split (Table 7b).

C Collection of Human Baselines

For multiple-choice QA tasks (i.e., TVQA and How2QA), we resort to crowd-sourcing to obtain
human baselines. Specifically, we present the human annotator with a multi-channel video, a question
about the video, and a set of answer candidates. The annotator is asked to select the correct answer.
Each question is presented to one annotator to evaluate human performance. For VIOLIN, a pair
of video and hypothesis is presented to 3 human annotators, who are asked to determine whether
the hypothesis is entailed or contradict to the video content. The human performance is evaluated
based on the majority vote across the 3 human responses. For VLEP, human annotators are required
to choose a more likely event from a pair of next event candidates based on the video content. We
also take the majority vote to evaluate human performance. An example of our human evaluation
interface is shown in Figure 2. The estimated hourly pay to our annotators is $8.6. The total amount
spent is $2173.4.

For captioning tasks, we randomly sample one caption from the ground-truth annotations and use
the rest as references to calculate the human performance across all captioning metrics. Note that
in YC2C, there is only one caption collected for each video clip, thereby human performance is not
reported.

D Additional Experimental Details

D.1 Downstream Adaptation

We describe in detail how HERO [10] architecture can be adapted to VALUE tasks.
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For retrieval tasks, we add a query encoder head, consisting of a self-attention layer, two linear layers
and an LN layer, on top of HERO’s cross-modal transformer to obtain the query embeddings. The
input multi-channal videos are encoded by cross-modal transformer and temporal transformer in
HERO to obtain the contextualized video embeddings. For video moment retrieval tasks (TVR [9]
and How2R [10]), we follow XML [9] to compute the matching scores between the query and visual
frames both locally (frame-level, for moment retrieval) and globally (clip-level, for video retrieval).
Specifically, we use cross-entropy loss to supervise the learning of the start and end index for local
alignment and a combined hinge loss [22] over positive and negative query-video pairs for global
alignment. For video retrieval tasks (YC2R [23] and VATEX-EN-R [20]), only the combined hinge
loss is adopted.

For multiple-choice QA tasks (TVQA [7] and How2QA [10]), we append the corresponding QA pair
(question and an answer candidate) to each of the subtitle sentences, which is fed into the cross-modal

Figure 2: UI for huamn evaluation on video QA task.
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transformer to perform early fusion with local textual context. In addition, these QA pairs are also
appended to the input of temporal transformer to be fused with global video context. We use a simple
attention layer to compute the weighted-sum-across-time of the QA-aware frame representations from
the temporal transformer output. These final QA-aware global representations are then fed through
an MLP and softmax layer to obtain the probability score of all the answers for the corresponding
question. cross-entropy loss is used to supervise the model training. When supervision is available,2
a span prediction loss (addition of two cross-entropy loss on start and end timestamps) is added as
additional supervision.

Similar to multiple-choice QA, we append each natural language hypothesis in VIOLIN [11] (or next
event candidate in VLEP [8]) to each of the subtitle sentences, as well as to the input of Temporal
Transformer. A simple attention pooling layer is added to HERO to obtain the final query-aware
global representations. We apply cross-entropy loss for the training.

For captioning tasks, a Transformer decoder [19] is employed to empower HERO with generative
capabilities. We feed the whole subtitle-aligned video clip into HERO and obtain the subtitle-fused
video representation for each frame. For TVC [9], frame representations are further grouped by the
“moment of interest" using the time interval provided in the caption annotation, and the decoder-
to-encoder attention is applied on the representations of the corresponding video moment. For
YC2C [23] and VATEX-EN-C [20], as the caption is to describe the whole clip, the decoder-to-
encoder attention is applied on the representations of the entire video. The decoder is trained with
conventional left-to-right language modeling cross-entropy loss together with the HERO encoder
end-to-end. We follow MMT [9] to use shallow Transformer decoder (2-layer) with 768-D hidden
size, and simply use the greedy decoding at inference for constructing the baselines.

D.2 Video-Subtitle Fusion Methods

We introduce three early fusion baselines in detail. Let’s denote the video segments embeddings as
FV = {fv, v ∈ V} and subtitle sentence embeddings as FS = {fs, s ∈ S}. The video segments
embeddings are the concatenations of pre-extracted 2D appearance features concatenated with 3D
motion features for each video segment. The subtitle sentence embeddings are obtained by max-
pooling the contextualized subtitle token embeddings from a multi-layer transformer for each subtitle
sentence. The first method (sequence concat) concatenates embeddings at sequence level without
temporal alignment, denoted as FV|FS. The second method (temporal align + sum) takes the
summation of the temporally aligned visual frame embeddings and subtitle sentence embeddings,
denoted as fv + fs. The third method (temporal align + concat) concatenates the temporally
aligned visual frame embeddings with subtitle sentence embeddings at feature level, denoted as fv|fs.
Compared to HERO, we simply replace cross-modal transformer with methods described above. The
fused embeddings from all the methods above are then fed into the temporal transformer to learn the
global video context and obtain the final video embeddings.

D.3 Multi-Task Baselines

All our multi-task models are trained with a shared HERO encoder. We add only one head for each
task type. For example, the same Transformer decoder is shared among different captioning tasks.

D.4 Implementation Details

Our models are implemented based on PyTorch [17].3 To speed up training, we use Nvidia Apex4 for
mixed precision training. Gradient accumulation [16] is applied to reduce multi-GPU communication
overheads. All experiments are run on 4 or 8 Nvidia V100 GPUs (32GB VRAM; NVLink connection)
on Microsoft Azure.5 We use AadmW [12] to optimize model parameters, with an initial learning
rate in {3e− 5, 5e− 5, 1e− 4}, β1=0.9, β2=0.98, and use learning rate warmup over the first 10%
training steps followed by linear decay to 0.

2For example, TVQA and How2QA provides start and end timestamps to localize ‘frames of interest’ for the
question.

3https://pytorch.org/
4https://github.com/NVIDIA/apex
5https://azure.microsoft.com/
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For single-task training, since the considered datasets vary in scale and domain, we use task-specific
learning rates and training steps based on validation performance for each dataset. For multi-task
training, we sample one task per mini-batch to train with a probability approximately proportional to
the number of training examples for each task. The best checkpoint is selected based on the highest
meta-average score achieved on validation split. To reproduce our results, please check the released
starter code at https://github.com/VALUE-Leaderboard/StarterCode.

For YC2 and VATEX datasets, we employ ASR tool from Azure Cognitive Service6 to generate the
subtitles.

E License and Usage

As per the original authors, the annotations for TVQA [7], TVR [9], TVC [9], VIOLIN [11],
YouCookII [23], VLEP [8], How2QA [10], How2R [10] are under CC BY-NC-SA 4.0 license7,
the annotations for VATEX [20] are under CC BY 4.0 8. The videos used in the datasets are from
TV shows and YouTube, on non-offensive topics such as sitcoms and instructional videos. The
annotations in the datasets do not contain personally identifiable information. Our released features
are under CC BY-NC-SA 4.0 license9, and our code is under MIT license10.

The datasets used in the benchmark contain biases, both in the videos and the annotations. Such
biases might be reflected in the predictions of the systems trained on these data. Users should not
completely rely on such systems for making real-world decisions.
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Table 7: Detailed results of multi-task training baselines on (a) Validation (Val/Test (public)) split and (b) Test
(leaderboard) split of retrieval and captioning tasks. FT and PT denote finetuning and pre-training of the HERO
model. We compare the following model training settings: single-task training (ST), multi-task training (MT) by
tasks or domains, all-task training (AT) and AT first then ST (AT → ST). The best performance (of each block)
are highlighted with bold (underline).
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