
CodeXGLUE: A Machine Learning Benchmark
Dataset for Code Understanding and Generation

Shuai Lu∗
Peking University

Daya Guo∗
Sun Yat-sen University

Shuo Ren∗
Beihang University

Junjie Huang∗
Beihang University

Alexey Svyatkovskiy
Microsoft

Ambrosio Blanco
Microsoft Research Asia

Colin Clement
Microsoft

Dawn Drain
Microsoft

Daxin Jiang
Microsoft

Duyu Tang
Microsoft Research Asia

Ge Li
Peking University

Lidong Zhou
Microsoft Research Asia

Linjun Shou
Microsoft

Long Zhou
Microsoft Research Asia

Michele Tufano
Microsoft

Ming Gong
Microsoft

Ming Zhou
Microsoft Research Asia

Nan Duan
Microsoft Research Asia

Neel Sundaresan
Microsoft

Shao Kun Deng
Microsoft

Shengyu Fu
Microsoft

Shujie Liu
Microsoft Research Asia

Abstract

Benchmark datasets have a significant impact on accelerating research in program-
ming language tasks. In this paper, we introduce CodeXGLUE, a benchmark
dataset to foster machine learning research for program understanding and gen-
eration. CodeXGLUE includes a collection of 10 tasks across 14 datasets and a
platform for model evaluation and comparison. CodeXGLUE also features three
baseline systems, including the BERT-style, GPT-style, and Encoder-Decoder mod-
els, to make it easy for researchers to use the platform. The availability of such
data and baselines can help the development and validation of new methods that
can be applied to various program understanding and generation problems. 2

1 Introduction

Evans Data Corporation3 estimated that there were 23.9 million professional developers in 2019
and that the number was expected to reach 28.7 million in 2024. With the population of developers
growing at such a rate, code intelligence that leverages artificial intelligence (AI) to help software
developers improve the productivity of the development process is becoming increasingly important.
It is commonly accepted that benchmarks have a significant impact on the growth of applied AI
research. In this paper, we focus on establishing a benchmark dataset for code intelligence.
∗indicates equal contribution and internship at Microsoft. Authors are listed in alphabetical order. Corre-

sponding author is Nan Duan.
2CodeXGLUE is publicly available at https://github.com/microsoft/CodeXGLUE. Participants can

submit their results by emailing to codexglue@microsoft.com.
3https://evansdata.com/press/viewRelease.php?pressID=278

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://github.com/microsoft/CodeXGLUE
codexglue@microsoft.com
https://evansdata.com/press/viewRelease.php?pressID=278


Table 1: A brief summary of CodeXGLUE, which includes tasks, datasets, languages, sizes in various
states, and baseline systems. † indicates newly introduced datasets and ‡ means we introduce a new
part for the existing dataset.

Category Task Dataset Name Language Train/Dev/Test Size Baselines

Code-Code

BigCloneBench [65] Java 900K/416K/416KClone Detection
POJ-104 [46] C/C++ 32K/8K/12K

Defect Detection Devign [91] C 21K/2.7K/2.7K

CT-all† Python,Java,PHP,
JavaScript,Ruby,Go -/-/176K

Cloze Test
CT-max/min† [15] Python,Java,PHP,

JavaScript,Ruby,Go -/-/2.6K

CodeBERT

PY150 [57]‡ Python 95K/5K/50K
CodeGPTCode Completion

Github Java Corpus[1]‡ Java 13K/7K/8K
Code Repair Bugs2Fix [69] Java 98K/12K/12K Encoder-

DecoderCode Translation CodeTrans† Java-C# 10K/0.5K/1K

Text-Code

CodeSearchNet [32],
AdvTest†

Python 251K/9.6K/19K
CodeBERTNL Code Search

CodeSearchNet [32],
WebQueryTest†

Python 251K/9.6K/1K

Text-to-Code
Generation CONCODE [34] Java 100K/2K/2K CodeGPT

Code-Text Code Summarization CodeSearchNet [32] Python,Java,PHP,
JavaScript,Ruby,Go 908K/45K/53K

Encoder-
DecoderText-Text Documentation

Translation Microsoft Docs† English-Latvian/Danish
/Norwegian/Chinese 156K/4K/4K

Automated program understanding and generation could increase the productivity of software devel-
opers. In fact, developers who want to find code written by others with the same intent can leverage
code search systems [32, 20, 81, 52] to automatically retrieve semantically relevant codes through
natural language queries. Similarly, developers who are confused about what to write next can use
code completion systems [57, 1, 56, 66, 67, 8, 27, 7] to automatically complete the following tokens
based on the edits made to the code.

In recent years, researchers have increasingly applied statistical models, including neural networks,
to code intelligence tasks. Very recently, the application of pretrained models that learn from big
programming language corpus has been inspired by the great success of pretrained models like
BERT [14] and GPT [63] in natural language processing (NLP). These models, including CodeBERT
[15] and IntelliCode Compose [67], have led to further improvements in code understanding and
generation problems. However, the area of code intelligence lacks a benchmark suite that covers
a wide range of tasks. The use of ImageNet [13] for computer vision and the use of GLUE [76]
for NLP have shown that a diversified benchmark dataset has a significant impact on the growth of
applied AI research.

To address this problem, we introduce CodeXGLUE, a machine learning benchmark dataset for
program understanding and generation research that includes 14 datasets, a collection of 10 diversified
programming language understanding and generation tasks,4 and a platform for model evaluation and
comparison. CodeXGLUE supports the following tasks:

• code-code (clone detection [65, 84, 46, 80, 9, 89, 86], defect detection [91, 55, 51, 42, 78,
79], cloze test [15], code completion [57, 1, 56, 66, 67, 8, 27, 7], code repair [69, 4, 23, 26,
71, 73], and code-to-code translation [48, 37, 10, 41])

• text-code (natural language code search [32, 20, 81], text-to-code generation [34, 11, 87,
83, 85, 88, 35, 22])

• code-text (code summarization [33, 11, 16, 75, 81, 83, 3, 30, 82])

• text-text (documentation translation [36])

CodeXGLUE includes eight previously proposed datasets — BigCloneBench [65], POJ-104 [46],
Devign [91], PY150 [57], Github Java Corpus [1], Bugs2Fix [69], CONCODE [34], and CodeSearch-
Net [32]— but also newly introduced datasets that are marked in Table 1. The datasets are chosen or
created based on the consideration that the task has clear definition, the popularity and reputation

4We plan to evolve the benchmark over time by extending to more tasks.

2



of the dataset in the community, and the volume of the dataset could support the development and
evaluation of data-driven machine learning methods. The datasets created by us include (1) two test
sets for cloze test that cover 6 programming languages, (2) two line-level code completion test sets in
Java and Python, respectively, (3) a code-to-code translation dataset between Java and C#, (4) two
natural language code search test sets with web queries and normalized function and variable names,
respectively, and (5) a documentation translation dataset that covers five natural languages.

To make it easy for participants, we provide three baseline models to help perform the tasks, in-
cluding a BERT-style pretrained model (in this case, CodeBERT) to supports code understanding
problems, a GPT-style pretrained model, which we call CodeGPT, to help solve completion and gen-
eration problems, and an Encoder-Decoder framework that tackles sequence-to-sequence generation
problems.

2 Tasks and Datasets

CodeXGLUE consists of 14 different datasets falling into 10 diversified tasks. In this section, we
provide a definition for each task and describe the dataset details. All the datasets are available under
a permissive license that allows computational use purposes, such as artificial intelligence, machine
learning, and text and data mining.

Tasks Choice CodeXGLUE aims to covering the most common scenarios for software development.
Assuming there is a developer who wants to build a software system. Since it is difficult to build
from scratch, he would like to start with an open-source project to get familiar with how to build a
software system. But the developer still finds it difficult to understand the intention of some methods
written by others because no documentation is provided. So he needs code summarization systems to
generate comments for source codes. In another case, if the documentation is written in a language he
can’t understand, he can use documentation translation systems to translate the comments. When the
developer starts writing codes, he might be confused about what to write next. Code recommendation
systems can give him suggestions on the next token, the unfinished line or even a whole method
and improve the efficiency of the development process, which is the code completion task and code
generation task’s purpose. From time to time, he would be stuck by implementing a specific function,
e.g., the quick sort algorithm. What he is most likely to do next is to search "how to implement
quick sort algorithm" in a search engine and expect to find a solution. This is what the natural
language code search task aims to doing. When the developer finds a code snippet which could be
helpful to him but he wants to implement the same function in another programming language, he
can leverage code translation systems to translate one function from one programming language to
another. When he finally finishes building a software system, there might be some bugs or defects
in his codes. The defect detection task and the code repair task are to find the bugs and defects and
auto-fix them. During the process described above, the developer reuses code fragments from other
projects, which leads the software system containing clone codes. Studies [6, 60] have shown that
a software system usually contain 7-23% clone codes. Detecting and refactoring cloned codes are
beneficial for maintaining the software quality. That’s why we add the clone detection task. And
the cloze test task is served as a probing task, which has been widely used in NLP [50, 68]. It can
intuitively evaluate models’ ability to understand code semantics.

2.1 Clone detection

Clone detection is to measure the semantic similarity between source codes. It includes two subtasks.
The first subtask is to predict whether two given codes have the same semantics. We use the
BigCloneBench [65] dataset for the subtask. The second subtask aims to retrieve semantically similar
codes given a code as the query and we use the dataset POJ-104 [46] to perform it.

BigCloneBench [65] is a widely used large code clone benchmark that contains over 6,000,000 true
clone pairs and 260,000 false clone pairs from 10 different functionalities in 25,000 projects. Each
code fragment is a Java method and all possible pairwise combinations of code fragments are clone
pairs. We follow Wang et al. [80], filtering the dataset by discarding code fragments that are not in
any tagged true or false clone pairs, leaving it with 9,134 Java code fragments. Finally, the dataset
includes 901,028/415,416/415,416 clone pairs for training, validation and testing, respectively. Since
the number of false clone pairs is much more than that of true clone pairs, we use F1 score as the
metric.

3



POJ-104 [46] comes from a pedagogical programming open judge (OJ) system that automatically
judges the validity of submitted source code for specific problems by running the code. POJ-104
consists of 104 problems and each problem includes 500 student-written C/C++ programs. Different
from that of the BigCloneBench dataset, the task of POJ-104 aims to retrieve other 499 programs that
solve the same problem given a program. We group the dataset in three subsets based on the number
of problems (64/16/24) for training, validation, and testing. Mean Average Precision (MAP) is used
as the metric.

2.2 Defect detection

The task is formulated as a binary classification to predict whether a code snippet contains defects.
We use Devign which is provided by Zhou et al. [91] and includes 27,318 manually-labeled functions
collected from two large C programming language open-source projects popular among developers
and diversified in functionality, i.e., QEMU and FFmpeg. The dataset is created by collecting security-
related commits and extracting vulnerable or non-vulnerable functions from the labeled commits.
Since Zhou et al. [91] do not provide official training/validation/testing split, we randomly shuffle the
dataset and split it by 8:1:1 for training/validation/testing. Accuracy is used as the metric.

2.3 Cloze test

The cloze test (CT) task in code domain aims to assess models’ ability to understand a code by asking
those models to predict the masked code from several candidates. We focus on two subtasks: CT-all
with candidates from a filtered vocabulary and CT-maxmin with the candidates “max” and “min”.
Accuracy is used as the metric for both datasets.

We use the validation and testing sets of CodeSearchNet [32] to create CT-all and CT-maxmin datasets
for six programming languages, i.e., Go, Java, JavaScript (JS), PHP, Python and Ruby. The data
statistics are listed in Table 2.

CT-all is created by masking the cloze words in source codes. To less introduce lengthy variable
names and avoid the issue caused by the use of different tokenizers, we select target cloze words
by retaining unique words after Byte Pair Encoding [61], and we remove meaningless tokens like
punctuations with handcrafted rules. At last, 930 tokens are selected among six languages in total.
We select codes containing the 930 tokens and manually set threshold values of token occurrence to
balance the frequency of the 930 tokens in CT-all.

To further evaluate models’ ability to understand code semantics, we introduce CT-maxmin to test
how well model can distinguish the difference between max and min. It comes from the dataset used
for the PL-Probing task in CodeBERT[15].

Table 2: Data statistics about the cloze test datasets.

Task Go Java JavaScript PHP Python Ruby All

CT-all 25,282 40,492 13,837 51,930 40,137 4,437 176,115
CT-maxmin 152 482 272 407 1,264 38 2,615

2.4 Code completion

Code completion task aims to predict the following tokens based on the code context. Its subtasks
are token-level completion and line-level completion. The former is to predict the next one token,
while the latter requires models to complete an unfinished line. We use two influential datasets,
PY150[57] in python and Github Java Corpus[1] in Java. Accuracy is used as the metric for
token-level completion. Exact match and Levenshtein edit similarity are served as metrics in the
line-level completion subtask.

PY150 [57] is a Python dataset containing 150,000 Python source files collected from Github. We use
the same 50,000 files for testing as the original split and 95,000/5,000 files for training and validation.
We preprocess the corpora by tokenizing source codes, normalizing uncommon literals as introduced
by Svyatkovskiy et al. [67], and adding a special token 〈EOL〉 (end-of-line) to mark the ending of
a line explicitly. For line-level code completion, we create 10,000 examples from different files in

4



the test set of PY150 for testing. Since we intend to test model’s ability to autocomplete an arbitrary
line, we select the line to be predicted at random. We generate a test case by ensuring that there is
sufficient context, i.e., at least 15% of the whole file.

Github Java Corpus is a Java dataset mined by Allamanis and Sutton [1], and it collects over 14 thou-
sand Java projects from Github. We follow the settings established by Hellendoorn and Devanbu [25] ,
using 1% of the subset in the corpus. We have 12,934/7,189/8,268 files for training/validation/testing.
We do the same preprocessing conducted on PY150, except adding the special token 〈EOL〉 since
in Java, semicolons and closing braces could indicate the ending of a code statement. For line-level
code completion, we create 3,000 examples from different files in the test set of the corpus.

2.5 Code repair

Code repair aims to fix bugs in the code automatically. We use the Bugs2Fix dataset released by
Tufano et al. [69]. The source is buggy Java functions, whereas the target is the corresponding fixed
functions. To build this dataset, they collect every public GitHub event between March 2011 and
October 2017 and identify all Java-file commits having a message containing the patterns [18]: (“fix”
or “solve”) and (“bug” or “issue” or “problem” or “error”). For each bug-fixing commit, they extract
the source code before and after the fixing process. Subsequently, they normalize all the names of
the variables and custom methods, which enables the model to focus on learning bug-fixing patterns.
They filter out the pairs that contain lexical or syntactic errors in either the buggy or fixed code, as
well as the pairs with more than 100 atomic AST modification actions between the buggy and the
fixed versions. Finally, they divide the whole dataset into two subsets based on the code length(small
with tokens ≤ 50 and medium with tokens > 50 and ≤ 100). For the small subset, the numbers of
training, validation, and testing samples are 46,680, 5,835, and 5,835, respectively. For the medium
subset, the numbers are 52,364, 6,545, and 6,545, respectively. Exact match accuracy, BLEU and
CodeBLEU are used as the metrics.

2.6 Code translation

This task involves translating a code snippet from one programming language to a different one. In
this paper, we provide CodeTrans which consists of parallel code snippets between Java and C#.
Following Nguyen et al. [48] and Chen et al. [10], we collect source codes from several open-source
projects, i.e., Lucene5, POI6, JGit7 and Antlr8. Those projects are originally developed in Java and
then ported to C#. They are well-established systems with long developing histories and with both
Java and C# versions in use.

Following Nguyen et al. [48], we conservatively search for the functions having the same signatures
in the classes with the same/similar names and included in the same/similar directory structures of
both Java and C# versions. We discard duplicate code pairs and the codes having multiple targets
searched with the above method. We also remove the pairs whose number of overlapping tokens
was less than 1/3 of the sentence length. To make our data more scalable for further syntactic and
semantic analysis, we remove the functions with null function body according to their abstract syntax
tree (AST). Finally, a function with no data-flow extracted from the AST of a specific function is also
discarded.

At last, the total number of paired functions or methods is 11,800. We randomly select 500/1,000
pairs for validation/testing, leaving 10,300 pairs for training. Exact match accuracy, BLEU and
CodeBLEU[59] are used as the metrics.

2.7 Code search

Code search measures the semantic relatedness between texts and codes. It includes two subtasks.
The first one is to find the most relevant code from a collection of candidates given a natural language
query. We create a challenging testing set, called CodeSearchNet AdvTest, from CodeSearchNet

5http://lucene.apache.org/
6http://poi.apache.org/
7https://github.com/eclipse/jgit/
8https://github.com/antlr/

5



corpus [32] for performing this task. The second subtask is a binary classification to predict whether
a code answers a given query. We provide WebQueryTest of real user queries.

CodeSearchNet AdvTest is the abbreviation of CodeSearchNet Adversarial Test Dataset. It is a
Python dataset from the CodeSearchNet [32] corpus. Each example includes a function paired with
a document. Following Husain et al. [32] to take the first paragraph of the documentation as the
query for the corresponding function, we obtain a dataset with 251,820/9,604/19,210 examples for
training/validation/testing after filtering some low-quality examples (See Appendix A). Different from
CodeSearchNet[32], to better test models’ understanding and generalization abilities, we normalize
function and variable names in validation and testing sets like func for the function name and argi
for the i-th variable name, which makes CodeSearchNet AdvTest dataset more difficult. In contrast
to the testing phase of previous works [32, 15] that only involved 1,000 candidates, we use the entire
testing set as candidates for each query. Mean Reciprocal Rank (MRR) is used as the metric for this
dataset.

WebQueryTest. Most code search datasets use code documentations or questions from online
communities for software developers as queries, but these are different from real user search queries.
To fix this discrepancy, we provide WebQueryTest, a testing set of real code search for Python. The
problem is formulated as a binary classification task and as a complementary setting to the retrieval
scenario. Given a pair of query and code function, a model needs to classify whether the code function
can answer the query or not. We invite 13 developers proficient in Python to annotate the examples
and finally collect 1,046 labels of query and code pairs. The details of data collection and annotation
are available in Appendix B. Since there lacks a direct training and validation set, we use the CoSQA
[31] as the training resources with 20,604 pairs of query and code. F1 score is used as the metric.

2.8 Text-to-code generation

Text-to-code generation aims to generate source code via a natural language description. To carry
out this task, we use CONCODE [34], a widely used code generation dataset, which is collected
from about 33,000 Java projects on GitHub. It contains 100,000 examples for training and 2,000
examples each for validation and testing. Each example is a tuple consisting of NL descriptions,
code environments and code snippets. The dataset is tasked with generating class member functions
from natural language descriptions (Javadoc-style method comments) and class environments. Class
environment is the programmatic context provided by the rest of the class, including other member
variables and member functions in the class. Exact match accuracy, BLEU and CodeBLEU are used
as the metrics.

2.9 Code summarization

The objective is to generate the natural language comment for a code. We use the CodeSearchNet
dataset [32] for this task. We take the first paragraph as the documentation and filter low-quality
examples as we do in Section 2.7. The statistics about the filtered CodeSearchNet dataset are listed in
Table 3. Exact match accuracy, BLEU and CodeBLEU are used as the metrics.

Table 3: Data statistics about the filtered CodeSearchNet dataset for the code summarization task.

Data Split Go Java JavaScript PHP Python Ruby

Training 167,288 164,923 58,025 241,241 251,820 24,927
Validation 7,325 5,183 3,885 12,982 13,914 1,400
Testing 8,122 10,955 3,291 14,014 14,918 1,261

2.10 Documentation translation

Documentation translation aims to translate code documentations automatically from one natural lan-
guage (e.g., English) to another natural language (e.g., Chinese). The dataset we use in CodeXGLUE
is crawled from Microsoft Documentation9, including software and code description documentations
in different languages. We introduce multilingual machine translation tasks, e.g., English⇔ Latvian,
Danish, Norwegian, and Chinese. We filter the corpus (See Appendix A) to improve the data quality.

9https://docs.microsoft.com, whose document is located at https://github.com/MicrosoftDocs/.

6



The final training data includes 43K, 19K, 44K, and 50K sentence pairs for English ⇔ Latvian,
English⇔ Danish, English⇔ Norwegian, and English⇔ Chinese, respectively. In addition, each
language pair has 1K sentence pairs for validation and testing, respectively. BLEU is used as the
metric.

3 Baseline Systems

We provide three types of baseline models to perform the previously mentioned tasks, including a
BERT-style pretrained model (in this case, CodeBERT[15]), which supports program understanding
problems, a GPT-style pretrained model called CodeGPT that helps us solve completion and genera-
tion problems, and an Encoder-Decoder framework that tackles sequence-to-sequence generation
problems.

3.1 CodeBERT

To carry out code understanding tasks like clone detection, defect detection, cloze test, and code
search, we use CodeBERT [15] as our encoder. This is a bimodal pretrained model based on
Transformer with 12 layers for programming language (PL) and natural language (NL). Feng et al.
[15] introduce CodeBERT, which is initialized with RoBERTa and further trained by masked language
modeling and replaced token detection objectives on the CodeSearchNet dataset [32], which includes
2.4M functions with document pairs for six programming languages. The model is publicly available
at https://huggingface.co/microsoft/codebert-base.

3.2 CodeGPT

We provide CodeGPT, which is a Transformer-based language model pretrained on programming
language (PL), to support the code completion and the text-to-code generation tasks. CodeGPT has
the same model architecture and training objectives of GPT-2 [53], which consists of 12 layers of
Transformer decoders.

We train CodeGPT and CodeGPT-adapted. CodeGPT is pretrained from scratch on Python and Java
corpora from the CodeSearchNet dataset [32], which includes 1.1M Python functions and 1.6M Java
methods. CodeGPT-adapted is further trained on CodeSearchNet from GPT-2 checkpoint. Both
models are publicly available at https://huggingface.co/microsoft/CodeGPT-small-java
and https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2. 10

3.3 Encoder-Decoder

For sequence-to-sequence generation problems like code repair, code translation, code summarization,
and documentation translation, we provide an Encoder-Decoder framework. We initialize the encoder
using CodeBERT [15] and use a randomly initialized Transformer with 6 layers, 768 dimensional
hidden states and 12 attention heads as the decoder in all settings. We refer to this model as
CodeBERT-EncDec.

4 Experiment

In this section, we report accuracy numbers of the baseline systems on 10 tasks.

Clone Detection Results achieved by different models are shown in Table 4. ASTNN [89] uses
RNNs to encode AST subtrees for statements. FA-AST-GMN [80] uses GNNs over a flow-augmented
AST to leverage explicit control and data flow information. Aroma [45] is a code recommendation
engine that takes a partial code snippet and recommends a small set of succinct code snippets
that contain the query snippet. MISIM-GNN [86] learns a structural representation of code from
context-aware semantic structure designed specifically to lift semantic meaning from the code syntax.
RoBERTa [44] and CodeBERT [15] are pretrained models which encode source code and take the
representation to calculate semantic relevance of two code snippets through a feed forward network
or inner product. These experimental results demonstrate that pretrained models are comparable

10Replace "java" with "py" for models pretrained on python dataset.

7

https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/CodeGPT-small-java
https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2


with previous state-of-the-art models. And there is room for further improvement if code structure is
further leveraged like in other AST-based models.

Table 4: Results on the clone detection task.

BigCloneBench POJ-104

Model F1 MAP Overall

ASTNN 93.0 - -
FA-AST-GMN 95.0 - -

Aroma - 55.12 -
MISIM-GNN - 82.45 -

RoBERTa 91.3 76.67 84.0
CodeBERT 94.1 82.67 88.4

Defect Detection Table 5 shows the results of the models we implemented. We use Bidirectional
LTSM (BiLTSM) [28], TextCNN [38], RoBERTa [44], and CodeBERT [15] to encode the rep-
resentation of a source code, respectively. Then, a two-layer feed forward network followed by a
softmax layer is used to calculate the probability of encountering vulnerabilities.

Table 5: Results on the defect detection task.

Model Accuracy

BiLSTM 59.37
TextCNN 60.69
RoBERTa 61.05
CodeBERT 62.08

Cloze test Table 6 shows the results on the CT-all and CT-maxmin datasets. We report the
performance of RoBERTa [44] and CodeBERT (MLM) [15], which is pretrained with the masked
language modeling objective only.

Table 6: Results on the cloze test task.

Model CT-all CT-maxmin Overall
Ruby / JS / Go / Python / Java / PHP

RoBERTa 47.44 / 59.96 / 40.77 / 54.35 / 50.73 / 60.16 73.68 / 64.71 / 71.71 / 59.18 / 59.75 / 69.78 59.35
CodeBERT(MLM) 80.17 / 81.77 / 83.31 / 87.21 / 80.63 / 85.05 86.84 / 86.40 / 90.79 / 82.20 / 90.46 / 88.21 85.25

Code completion Table 7 shows the results of all models on both datasets. We train LSTM [28],
Transformer [72] and fine-tune GPT-2 [53], CodeGPT and CodeGPT-adapted to generate the
following tokens. The overall score on each dataset is the average value of the accuracy on token-level
completion and the edit similarity on line-level completion.

Code repair Results are shown in Table 8. The Naïve method directly copies the buggy code
as the repair result. With regard to the CodeBERT-EncDec method, we use the training data to
fine-tune the whole model. The CodeBLEU score is used as the overall score.

Code translation Table 9 shows the results of models on both translation directions. The Naïve
method directly copies the source code as the translation result. PBSMT is short for phrase-based
statistical machine translation [39]. RoBERTa (code) is initialized by RoBERTa and pretrained on
source code from CodeSearchNet[32]. The overall score is the average value of CodeBLEU on both
directions.

Table 9: Results on the code translation task.

Model Java→C# C#→Java Overall
BLEU Acc CodeBLEU BLEU Acc CodeBLEU

Naïve 18.54 0.0 - 18.69 0.0 - -
PBSMT 43.53 12.5 42.71 40.06 16.1 43.48 43.10
RoBERTa (code) 77.46 0.561 83.07 71.99 0.579 80.18 81.63
CodeBERT-EncDec 79.92 59.0 85.10 72.14 58.0 79.41 82.26

8



Table 7: Results on the code completion task.

Model
PY150 Github Java Corpus

Overall
token-level line-level token-level line-level

Accuracy EM Edit Sim Accuracy EM Edit Sim

LSTM 61.94 23.77 56.26 58.92 12.97 42.10 54.81
Transformer 74.48 38.51 69.01 65.18 17.00 50.23 64.73
GPT-2 75.90 41.73 70.60 75.40 27.50 60.36 70.57
CodeGPT 76.58 42.18 71.23 76.79 28.23 61.81 71.60
CodeGPT-adapted 76.60 42.37 71.59 77.73 30.60 63.45 72.34

Table 8: Results on the code repair task.

Model small medium

BLEU Acc CodeBLEU BLEU Acc CodeBLEU

Naïve 78.06 0.0 - 90.91 0.0 -
LSTM 76.76 10.0 - 72.08 2.5 -
Transformer 77.21 14.7 73.31 89.25 3.7 81.72
CodeBERT-EncDec 77.42 16.4 75.58 91.07 5.2 87.52

Code search Table 10 presents the results on the CodeSearchNet AdvTest and WebQueryTest
datasets. We report the performance of RoBERTa [44] and CodeBERT [15].

Table 10: Results on the code search task.

Model AdvTest WebQueryTest Overall
MRR F1

RoBERTa 18.33 57.49 37.91
CodeBERT 27.19 58.95 43.07

Text-to-code generation Table 11 presents the results on the CONCODE test set. Seq2Seq [64] is
an RNN-based sequence to sequence model. Seq2Action + MAML [22] combines a context-aware
retrieval model with model-agnostic meta-learning (MAML). Iyer-Simp + 200 idoms [35] extracts
code idioms and applies idioms-based decoding. We also report the performance of pretrained models,
including GPT-2 [53], CodeGPT, and CodeGPT-adapted. The CodeBLEU score is used as the
overall score.

Table 11: Results on the text-to-code generation task.

Model EM BLEU CodeBLEU

Seq2Seq 3.05 21.31 26.39
Seq2Action+MAML 10.05 24.40 29.46
Iyer-Simp+200 idoms 12.20 26.60 -
GPT-2 17.35 25.37 29.69
CodeGPT 18.25 28.69 32.71
CodeGPT-adapted 20.10 32.79 35.98

Code Summarization Table 12 shows the results achieved by different models in code summariza-
tion. Transformer and RoBERTa use the same setting as CodeBERT, but the encoder is initialized
randomly and by RoBERTa [44], respectively.

Table 12: Results on the code summarization task.

Model Ruby Javascript Go Python Java PHP Overall

Seq2Seq 9.64 10.21 13.98 15.93 15.09 21.08 14.32
Transformer 11.18 11.59 16.38 15.81 16.26 22.12 15.56
RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT-EncDec 12.16 14.90 18.07 19.06 17.65 25.16 17.83

9



Documentation translation Table 13 shows the results achieved by the models on eight translation
directions. Transformer is the multilingual translation model [36]. XLM-R initializes the encoder
of Transformer with XLM-R[12].

Table 13: Results on the documentation translation task.

Model EN→ DA EN→ LA EN→ NO EN→ ZH DA→ EN LA→ EN NO→ EN ZH→ EN Overall

Transformer 53.31 37.85 53.84 59.90 58.73 50.37 57.73 50.00 52.67
XLM-R 67.09 51.92 68.00 70.60 67.02 68.30 71.84 64.47 66.16

Overall Results We find pretrained models outperform other models in all tasks. And models
pretrained on code corpus (i.e. CodeBERT, CodeGPT, and CodeBERT-EncDec) achieve better results
than RoBERTa that only learns from natural language. These experimental results demonstrate
that pretraining is useful for code intelligence tasks. However, the improvement is quite limited in
some tasks like clone detection, defect detection, code repair, etc. A potential direction for further
improvement is to incorporate information from code structures such as Abstract Syntax Tree, data
flow, control flow, etc.

5 Related Work

Benchmark datasets have been playing a central role in the growth of applied AI research. For
example, the LibriSpeech [49] and the SQuAD [54] datasets drive the development of data-driven
models for automatic speech recognition and reading comprehension of text, respectively. With the
growing demand for testing models’ generalization ability on a wide range of applications, researchers
have created or assembled datasets that cover many tasks. Representative samples of these datasets
include ImageNet [13] for computer vision, GLUE [76] and SuperGLUE[77] for natural language
understanding, XTREME [29] and XGLUE [43] for cross-lingual natural language processing. To
the best of our knowledge, CodeXGLUE is the first diversified benchmark dataset that can be applied
to various code intelligence problems.

Many tasks related to machine learning for software engineering [5] have sufficient amount of data
to support the development of data-driven methods, but are not covered by CodeXGLUE. We plan
to extend to these tasks in the future. For example, the idiom mining task [2, 35] is to extract code
idioms, which are syntactic fragments that recur across software projects and serve a single semantic
purpose [2]. Bug localization [55, 24, 71] is to point the error location when a program fails tests. The
test case generation task [19, 70] is to generate unit test cases automatically. The program synthesis
[47, 58, 62, 74, 17, 40, 90] extends the text-to-code generation task aims to generate programs from
a specification [21], such as pseudocode, natural language description, and input/output examples.

6 Conclusion

With CodeXGLUE, we seek to support the development of models that can be applied to various
program understanding and generation problems, with the goal of increasing the productivity of
software developers. We encourage researchers to participate in the open challenge to make progress
in code intelligence. Moving forward, we are planning to extend CodeXGLUE to more programming
languages and downstream tasks while continuing to develop advanced pretrained models by exploring
new model structures, introducing new pretraining tasks, using different types of data, and more.

References
[1] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using

language modeling. In 2013 10th Working Conference on Mining Software Repositories (MSR),
pages 207–216. IEEE, 2013.

[2] Miltiadis Allamanis and Charles Sutton. Mining idioms from source code. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 472–483, 2014.

10



[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for
extreme summarization of source code. In International conference on machine learning, pages
2091–2100, 2016.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

[5] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey of
machine learning for big code and naturalness. ACM Comput. Surv., 51(4), July 2018. ISSN
0360-0300. doi: 10.1145/3212695. URL https://doi.org/10.1145/3212695.

[6] Brenda S. Baker. Finding clones with dup: Analysis of an experiment. IEEE Trans. Software
Eng., 33(9):608–621, 2007. doi: 10.1109/TSE.2007.70720. URL https://doi.org/10.
1109/TSE.2007.70720.

[7] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: Probabilistic model for code. In
Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 2933–2942. JMLR.org, 2016.

[8] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve
code completion systems. In Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, page 213–222, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605580012. doi: 10.1145/1595696.1595728. URL https:
//doi.org/10.1145/1595696.1595728.

[9] L. Büch and A. Andrzejak. Learning-based recursive aggregation of abstract syntax trees
for code clone detection. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 95–104, Feb 2019. doi: 10.1109/SANER.2019.
8668039.

[10] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
In Advances in neural information processing systems, pages 2547–2557, 2018.

[11] Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan.
Pymt5: multi-mode translation of natural language and python code with transformers. arXiv
preprint arXiv:2010.03150, 2020.

[12] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov.
Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116,
2019.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. arXiv preprint arXiv:2002.08155, 2020.

[16] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summariza-
tion. arXiv preprint arXiv:1811.01824, 2018.

[17] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, page 229–239, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334686. doi: 10.1145/
2737924.2737977. URL https://doi.org/10.1145/2737924.2737977.

11

https://doi.org/10.1145/3212695
https://doi.org/10.1109/TSE.2007.70720
https://doi.org/10.1109/TSE.2007.70720
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/2737924.2737977


[18] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history database from
version control and bug tracking systems. In International Conference on Software Maintenance,
2003. ICSM 2003. Proceedings., pages 23–32. IEEE, 2003.

[19] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 416–419, 2011.

[20] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In Proceedings of
the 40th International Conference on Software Engineering, ICSE ’18, page 933–944, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356381. doi:
10.1145/3180155.3180167. URL https://doi.org/10.1145/3180155.3180167.

[21] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

[22] Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian Yin. Coupling retrieval and meta-
learning for context-dependent semantic parsing. arXiv preprint arXiv:1906.07108, 2019.

[23] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common
c language errors by deep learning. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 1345–1351. AAAI Press, 2017.

[24] Rahul Gupta, Aditya Kanade, and Shirish Shevade. Neural attribution for semantic bug-
localization in student programs. In Advances in Neural Information Processing Systems, pages
11884–11894, 2019.

[25] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the best choice
for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 763–773, 2017.

[26] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber.
Global relational models of source code. In International Conference on Learning Representa-
tions, 2019.

[27] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the
naturalness of software. In 2012 34th International Conference on Software Engineering (ICSE),
pages 837–847. IEEE, 2012.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[29] Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin John-
son. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual
generalization. arXiv preprint arXiv:2003.11080, 2020.

[30] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing source code with
transferred api knowledge. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI’18, page 2269–2275. AAAI Press, 2018. ISBN 9780999241127.

[31] Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou, and Nan
Duan. Cosqa: 20,000+ web queries for code search and question answering. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics, 2021.

[32] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

[33] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source
code using a neural attention model. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 2073–2083, 2016.

[34] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to
code in programmatic context. arXiv preprint arXiv:1808.09588, 2018.

12

https://doi.org/10.1145/3180155.3180167


[35] Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer. Learning programmatic idioms for
scalable semantic parsing. arXiv preprint arXiv:1904.09086, 2019.

[36] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil
Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s multilingual neural
machine translation system: Enabling zero-shot translation. Transactions of the Association for
Computational Linguistics, 5:339–351, 2017.

[37] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical trans-
lation of programming languages. In Proceedings of the 2014 ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming Software, Onward!
2014, page 173–184, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450332101. doi: 10.1145/2661136.2661148. URL https://doi.org/10.1145/
2661136.2661148.

[38] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[39] Philipp Koehn, Franz J Och, and Daniel Marcu. Statistical phrase-based translation. Technical
report, UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION
SCIENCES INST, 2003.

[40] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and
Percy S Liang. Spoc: Search-based pseudocode to code. In Advances in Neural Information
Processing Systems, pages 11906–11917, 2019.

[41] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample. Unsuper-
vised translation of programming languages. arXiv preprint arXiv:2006.03511, 2020.

[42] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. Improving bug detection via
context-based code representation learning and attention-based neural networks. Proceedings
of the ACM on Programming Languages, 3(OOPSLA):1–30, 2019.

[43] Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun
Shou, Daxin Jiang, Guihong Cao, et al. Xglue: A new benchmark dataset for cross-lingual
pre-training, understanding and generation. arXiv preprint arXiv:2004.01401, 2020.

[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[45] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. Aroma: Code recom-
mendation via structural code search. Proceedings of the ACM on Programming Languages, 3
(OOPSLA):1–28, 2019.

[46] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over
tree structures for programming language processing. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages 1287–1293, 2016.

[47] Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent
programs with gradient descent. arXiv preprint arXiv:1511.04834, 2015.

[48] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Divide-and-conquer approach
for multi-phase statistical migration for source code (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 585–596. IEEE, 2015.

[49] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE, 2015.

[50] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang
Wu, and Alexander H. Miller. Language models as knowledge bases? In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical

13

https://doi.org/10.1145/2661136.2661148
https://doi.org/10.1145/2661136.2661148


Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages
2463–2473. Association for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1250.
URL https://doi.org/10.18653/v1/D19-1250.

[51] Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug detection.
Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi: 10.1145/3276517. URL https:
//doi.org/10.1145/3276517.

[52] Varot Premtoon, James Koppel, and Armando Solar-Lezama. Semantic code search via equa-
tional reasoning. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2020, page 1066–1082, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450376136. doi: 10.1145/3385412.3386001.
URL https://doi.org/10.1145/3385412.3386001.

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[54] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[55] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and
Premkumar Devanbu. On the" naturalness" of buggy code. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), pages 428–439. IEEE, 2016.

[56] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language
models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, page 419–428, New York, NY, USA, 2014. Association
for Computing Machinery. ISBN 9781450327848. doi: 10.1145/2594291.2594321. URL
https://doi.org/10.1145/2594291.2594321.

[57] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision
trees. ACM SIGPLAN Notices, pages 731–747, 2016.

[58] Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

[59] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297, 2020.

[60] Chanchal Kumar Roy and James R. Cordy. An empirical study of function clones in open
source software. In Ahmed E. Hassan, Andy Zaidman, and Massimiliano Di Penta, editors,
WCRE 2008, Proceedings of the 15th Working Conference on Reverse Engineering, Antwerp,
Belgium, October 15-18, 2008, pages 81–90. IEEE Computer Society, 2008. doi: 10.1109/
WCRE.2008.54. URL https://doi.org/10.1109/WCRE.2008.54.

[61] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, 2016.

[62] Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by example.
In International Conference on Computer Aided Verification, pages 398–414. Springer, 2015.

[63] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu,
Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and
the social impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[65] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Mohammad Mamun
Mia. Towards a big data curated benchmark of inter-project code clones. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages 476–480. IEEE, 2014.

14

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3385412.3386001
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1109/WCRE.2008.54


[66] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia: ai-assisted code
completion system. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2727–2735, 2019.

[67] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. arXiv preprint arXiv:2005.08025, 2020.

[68] Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olmpics - on what language
model pre-training captures. CoRR, abs/1912.13283, 2019. URL http://arxiv.org/abs/
1912.13283.

[69] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and
Denys Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural
machine translation. ACM Transactions on Software Engineering and Methodology (TOSEM),
28(4):1–29, 2019.

[70] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan.
Unit test case generation with transformers. arXiv preprint arXiv:2009.05617, 2020.

[71] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. Neural
program repair by jointly learning to localize and repair. arXiv preprint arXiv:1904.01720,
2019.

[72] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[73] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for typescript.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, page 310–325, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342612. doi: 10.1145/2908080.2908110. URL https:
//doi.org/10.1145/2908080.2908110.

[74] Murali Vijayaraghavan, Chaudhuri Swarat, and Jermaine Chris. Bayesian sketch learning for
program synthesis. CoRR.—-2017.—-Vol. abs/1703.05698.—-1703.05698, 2017.

[75] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu. Im-
proving automatic source code summarization via deep reinforcement learning. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pages
397–407, 2018.

[76] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[77] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-
purpose language understanding systems. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261–3275, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
4496bf24afe7fab6f046bf4923da8de6-Abstract.html.

[78] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. Bugram: bug detection with
n-gram language models. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 708–719, 2016.

[79] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for defect
prediction. In Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16, page 297–308, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450339001. doi: 10.1145/2884781.2884804. URL https://doi.org/10.1145/
2884781.2884804.

15

http://arxiv.org/abs/1912.13283
http://arxiv.org/abs/1912.13283
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/2908080.2908110
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804


[80] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. Detecting code clones with graph neural
network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 261–271. IEEE, 2020.

[81] Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. Transˆ 3: A transformer-based
framework for unifying code summarization and code search. arXiv preprint arXiv:2003.03238,
2020.

[82] Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang. Cocogum:
Contextual code summarization with multi-relational gnn on umls. 2020.

[83] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation as a dual task of code
summarization. In Advances in Neural Information Processing Systems, pages 6563–6573,
2019.

[84] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learning
code fragments for code clone detection. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 87–98. IEEE, 2016.

[85] Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig. Incorpo-
rating external knowledge through pre-training for natural language to code generation. arXiv
preprint arXiv:2004.09015, 2020.

[86] Fangke Ye, Shengtian Zhou, Anand Venkat, Ryan Marucs, Nesime Tatbul, Jesmin Jahan Tithi,
Paul Petersen, Timothy Mattson, Tim Kraska, Pradeep Dubey, et al. Misim: An end-to-end
neural code similarity system. arXiv preprint arXiv:2006.05265, 2020.

[87] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. arXiv preprint arXiv:1704.01696, 2017.

[88] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from stack overflow. In International Conference
on Mining Software Repositories, MSR, pages 476–486. ACM, 2018. doi: https://doi.org/10.
1145/3196398.3196408.

[89] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A
novel neural source code representation based on abstract syntax tree. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 783–794. IEEE, 2019.

[90] Ruiqi Zhong, Mitchell Stern, and Dan Klein. Semantic scaffolds for pseudocode-to-code
generation. arXiv preprint arXiv:2005.05927, 2020.

[91] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective
vulnerability identification by learning comprehensive program semantics via graph neural
networks. In Advances in Neural Information Processing Systems, pages 10197–10207, 2019.

16


	Introduction
	Tasks and Datasets
	Clone detection
	Defect detection
	Cloze test
	Code completion
	Code repair
	Code translation
	Code search
	Text-to-code generation
	Code summarization
	Documentation translation

	Baseline Systems
	CodeBERT
	CodeGPT
	Encoder-Decoder

	Experiment
	Related Work
	Conclusion

