
Appendix

A NeurIPS Questionaire
1. Submission introducing new datasets must include the following in the supplementary

materials:
(a) Dataset documentation and intended uses. Recommended documentation frameworks

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and
accountability frameworks.
[Yes] We provide the complete ‘datasheet for datasets’ in Appendix B.

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded
by the reviewers.
[Yes] https://segmentmeifyoucan.com/

(c) Author statement that they bear all responsibility in case of violation of rights, etc., and
confirmation of the data license.
[Yes] All authors bear responsibility in case of violation of rights, etc. Confirma-
tion of the data license is given the repository items of https://zenodo.org/
communities/segmentmeifyoucan.

(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as
long as you ensure access to the data (possibly through a curated interface) and will
provide the necessary maintenance.
[Yes] To ensure good availability, we chose professionally maintained platforms. Data
is hosted at the public data repository zenodo.com and the benchmark website is
hosted through github.com. Necessary maintenance such as updating the benchmark
record etc. is shared between 3 different research groups such that there is always at
least one person reachable.

2. To ensure accessibility, the supplementary materials for datasets must include the following:
(a) Links to access the dataset and its metadata. This can be hidden upon submission if the

dataset is not yet publicly available but must be added in the camera-ready version. In
select cases, e.g when the data can only be released at a later date, this can be added
afterward. Simulation environments should link to (open source) code repositories.
[Yes] In general, all data is listed on https://segmentmeifyoucan.com/, and meta-
data more specifically in the zenodo mirrors: https://zenodo.org/communities/
segmentmeifyoucan

(b) The dataset itself should ideally use an open and widely used data format. Provide a
detailed explanation on how the dataset can be read. For simulation environments, use
existing frameworks or explain how they can be used.
[Yes] The data is stored in standard formats: png, webp, json. We provide ready-
to-use code that reads the data at https://github.com/SegmentMeIfYouCan/
road-anomaly-benchmark.

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,
either by uploading to a data repository or by explaining how the authors themselves
will ensure this.
[Yes] The data is uploaded to multiple mirrors, one of them is the public data repository
zenodo.org.

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an
open source license for code (e.g. RL environments).
[Yes] All images in the obstacle track were recorded by the authors of this work and
are published under CC-BY 4.0 license. The images of the anomaly track are all
publicly available and licensed as one of {public domain, CC-BY, CC-BY-SA}. A
complete list of images, licenses and creators is published as part of the data record:
https://zenodo.org/record/5185336.

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like
schema.org and DCAT): This allows it to be discovered and organized by anyone. If
you use an existing data repository, this is often done automatically.
[Yes] Metadata is part of the records on zenodo and accessible via dif-
ferent APIs, e.g. https://zenodo.org/oai2d?verb=ListRecords&set=
user-segmentmeifyoucan&metadataPrefix=oai_dc.
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(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by a
data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.
GitHub, GitLab,...) for code. If this is not possible or useful, please explain why.

• anomaly track data https://doi.org/10.5281/zenodo.5185335
• obstacle track data https://doi.org/10.5281/zenodo.5186546
• code repository is on GitHub https://github.com/SegmentMeIfYouCan/
road-anomaly-benchmark

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-
ducible. Where possible, use a reproducibility framework such as the ML reproducibility
checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary
datasets, code, and evaluation procedures must be accessible and documented.
[Yes] While, as a public benchmark, we do not give access to the test labels and therefore
nobody else should be able to produce the same measurements, we document all code that
is used to create the benchmark results (directly yielding the results.json that is used for
updating the public leaderboard on the website). Further, we created a small validation
datasets that allows researchers to check that their method runs as intended. For these
validation datasets, we report results in table 10 and table 11 which can be reproduced with
the set of methods included in our benchmark suite.

4. For papers introducing best practices in creating or curating datasets and benchmarks, the
above supplementary materials are not required. [N/A]

B Datasheet for Datasets

The following section is a complete answer to the datasheet questions from [48].

B.1 Motivation

• For what purpose was the dataset created? To evaluate and compare anomaly segmenta-
tion methods in driving scenes. Such evaluation enables conclusions on how good methods,
usually tested on simpler datasets, are, but also facilitates specific method development for
autonomous driving.

• Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? The authors of this work created this
dataset to find answers to their research questions. In particular, there was no external party
ordering or suggesting the creation of such a benchmark.

• Who funded the creation of the dataset? See section Acknowledgements.

• Any other comments? No.

B.2 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? The dataset comprise high resolution images of street scenes with
unusual objects, which are all annotated on pixel-level. The objects appearing in the
anomaly track data were not placed artificially and therefore represent naturally occurring
anomalies in a global context. For the obstacle track, the objects were selected and placed
by the authors, choosing from available objects that can reasonably appear on a street.

• How many instances are there in total (of each type, if appropriate)? 100 images for
the anomaly track containing 262 ground truth components (+ 10 images for validation),
327 for the obstacle track containing 388 ground truth components (+ 85 images with hard
weather or lightning conditions, + 30 images for validation).

• Does the dataset contain all possible instances or is it a sample (not necessarily ran-
dom) of instances from a larger set? The set of possibly occurring anomalies in driving
scenes is boundless. The instances in this dataset are therefore a subset. For the anomaly
track, they are a random sample of openly licensed, available images on the web. Therefore,
they have a good geographic coverage. For the obstacle track, all images were taken in
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Switzerland and Germany. They have a good coverage over weather and seasons, but are
highly biased to European context for both the street background and the selected objects.

• What data does each instance consist of? Each data point is an RGB image and a
corresponding segmentation map.

• Is there a label or target associated with each instance? Yes, our labelling policy is
described in Section 3.1.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie rat-
ings, social network links)? No.

• Are there recommended data splits (e.g., training, development/validation, testing)?
Yes, our data is supposed to be used for testing only and should not be used for training. We
supply a small validation split that enables local testing before submission to the benchmark.

• Are there any errors, sources of noise, or redundancies in the dataset? The annotations
were created by humans and can therefore contain errors.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctorpatient confidentiality, data that includes the
content of individuals’ non-public communications)? No. All used images are licensed
to be shared publicly.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

• Does the dataset relate to people? People appear in some images of the Anomaly track.

• Does the dataset identify any subpopulations (e.g., by age, gender)? No.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? It it possible to
match faces in the dataset to any other database. However, this applies only to the images of
the Anomaly track where all images used were already public, so our dataset did not change
that. Regarding the images of Obstacle track identifying individuals is not possible.

• Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins, sexual orientations, religious beliefs, politi-
cal opinions or union memberships, or locations; financial or health data; biometric
or genetic data; forms of government identification, such as social security numbers;
criminal history)? No.

• Any other comments? No.

B.3 Collection Process

• How was the data associated with each instance acquired? In the obstacle track, the
images were taken by the authors. For the anomaly track, openly licensed images from the
web were collected. All images were annotated by humans.

• What mechanisms or procedures were used to collect the data (e.g., hardware appa-
ratus or sensor, manual human curation, software program, software API)? Manual
human curation.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., de-
terministic, probabilistic with specific sampling probabilities)? Images in the anomaly
track are a random sample of openly licensed, available images from the web, that show
street scenes including at least one anomaly and are of sufficiently high quality. In the
obstacle track, some images were extracted from sequences and only images at certain
distances (at a rough guess) were included.

• Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
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The authors and student/research assistants. Everyone involved in the data generation pro-
cess was employed at a university at the time of collecting and therefore drew a regular
salary.

• Over what timeframe was the data collected? The images of the Anomaly Track were
collected between August 2019 and August 2021. The images of the Obstacle track were
collected between August 2020 and August 2021.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
No.

• Does the dataset relate to people? People appear in some images of the Anomaly track.
• Did you collect the data from the individuals in question directly, or obtain it via third

parties or other sources (e.g., websites)? We obtained this data via third parties or other
sources.

• Were the individuals in question notified about the data collection? The collected
images were already licensed as public domain or creative commons, i.e., licensed to be
shared and used.

• Did the individuals in question consent to the collection and use of their data? As we
used images from the public domain or licensed a creative commons, we did not ask for
consent ourselves.

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis)been conducted? Not beyond the Broader Impact
section.

• Any other comments? No.

B.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of in-
stances, processing of missing values)? The images for the anomaly track were resized
and cropped to two different resolutions (1280×720 and 2048×1024).

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? No.

• Is the software used to preprocess/clean/label the instances available? The open-source
software ImageMagick was used for resizing the images. As labeling tool, LabelMe was
used, which is publicly available (https://github.com/wkentaro/labelme).

• Any other comments? No.

B.5 Uses

• Has the dataset been used for any tasks already? Yes, for this paper.
• Is there a repository that links to any or all papers or systems that use the dataset?

Yes, the public leaderboard on https://segmentmeifyoucan.com/leaderboard.
• What (other) tasks could the dataset be used for? No other task, since the labels are

hidden.
• Is there anything about the composition of the dataset or the way it was collected and

preprocessed/cleaned/labeled that might impact future uses? No.
• Are there tasks for which the dataset should not be used? Certification of fittness for

deployment would require at least a larger dataset.
• Any other comments? No.

B.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the images
including the labels for the validation set are public. The labels of the test set however will
not be distributed.
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• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Via
multiple mirrors as zip archives, all listed on the website https://segmentmeifyoucan.
com/datasets.

• When will the dataset be distributed? Now.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? All parts that are distributed are
under public domain or creative commons licenses.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to indi-
vidual instances? No.

• Any other comments? No.

B.7 Maintenance

• Who is supporting/hosting/maintaining the dataset? The authors of this paper.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
blumh@ethz.ch,

• Is there an erratum? No.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? In case that corrections are necessary, all versions are tracked in the zenodo.
com data items.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? No. All images are
licensed to be shared.

• Will older versions of the dataset continue to be supported/hosted/maintained? In case
that there would be multiple versions, only the newest will be maintained.

• If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? Yes, we already have plans to incorporate another body of data
into the benchmark. Similarly to the two existing datasets, each set of data is treated as
a separate instance, but made comparable by using the same metrics. This can also be
observed in this paper and the further comparisons that are listed in the Appendix.

• Any other comments? No.

C More Details on Evaluation Metrics

C.1 Pixel level

Let Z denote the set of image pixel locations. A model with a binary classifier providing scores
s(x) ∈ R|Z| for an image x ∈ X (from a dataset X ⊆ [0, 1]N×|Z|×3 of N images) discriminates
between the two classes anomaly and non-anomaly. We evaluate the separability of the pixel-wise
anomaly scores via the area under the precision-recall curve (AuPRC).

Let Y ⊆ {“anomaly”, “not anomaly”}N×|Z| be the set of ground truth labels per pixel for X .
Analogously, we denote the predicted labels with Ŷ(δ), obtained by pixel-wise thresholding on
s(x) ∀ x ∈ X w.r.t. some threshold value δ ∈ R. Then, for the anomaly class (c1 = “anomaly”) we
compute

precision(δ) =
|Yc1∩ Ŷc1(δ)|
|Ŷc1(δ)|

, recall(δ) =
|Yc1∩ Ŷc1(δ)|
|Yc1 |

(5)

with Yc1 and Ŷc1 representing the ground truth labels and predicted labels, respectively. For
the AuPRC, precision and recall are considered as functions of δ. The AuPRC approximates

18



∫
precision(δ) drecall(δ) and is threshold independent [49]. It also puts emphasis on detecting the mi-

nority class, making it particularly well suited as our main evaluation metric since the pixel-wise class
distributions of RoadAnomaly21 and RoadObstacle21 are considerably unbalanced, c.f . section 3.1.

To consider the safety point of view, we also include the false positive rate at 95% true positive rate
(FPR95) in our evaluation, where the true positive rate (TPR) is equal to the recall of the anomaly
class. The false positive rate (FPR) is the number of pixels falsely predicted as anomaly over the
number of all non-anomaly pixels. Hence, for the anomaly class we compute

FPR95 =
|Ŷc1(δ′) ∩ Yc2 |

|Yc2 |
s.t. TPR(δ′) = 0.95 , (6)

where c2 = “not anomaly”. The metric FPR95 indicates how many false positive predictions are
necessary to guarantee a desired true positive rate. Note that, any prediction which is contained in a
ground truth labeled region of class void is not counted as false positive, c.f . section 3.1. In particular
for the RoadObstacle21 dataset the evaluation is therefore restricted to the road area.

C.2 Component level - Qualitative examples revealing the difference of IoU and sIoU

If we consider component-level metrics over ground-truth components, it may happen that several
components are close together and therefore covered by one predicted component. Although the real
error can be small, the IoU punishes both ground-truth components. The same holds the other way
around when considering metrics over predicted components, i.e. when one ground-truth component is
covered by several predicted components. A qualitative example is given in figure 5. A small number
of incorrectly predicted pixels may cause a strong decrease in the IoU. The adjusted IoU (sIoU) is less
sensitive in such cases. sIoU focuses on correctly covering the regions of obstacles/anomalies in the
image rather than finding such regions separately for each instance, as done by IoU. In self-driving it
is more important to know the regions of anomaly rather than how many of them exist.

Figure 5: Two examples underlining the difference between IoU and adjusted IoU (sIoU). The
ground-truth components are indicated by green/red contours, predicted components are highlighted
by other colors. Left: Two ground-truth components (green & red) intersect with one predicted
component (orange). Green: IoU 68.18% vs. sIoU 87.01%; red: IoU 21.68% vs. sIoU 68.44%.
Right: Two predicted components (orange & pink) intersect with one ground-truth component (green).
Orange: IoU 78.97% vs. sIoU 81.69%; pink: IoU 03.44% vs. sIoU 18.91%.

D Evaluated Methods

In this section, we first briefly introduce the methods which are evaluated on our benchmark and
constitute our initial leader board. Afterwards we additionally provide technical details to those
introduced methods.

D.1 Brief Description of Methods

All methods subject to evaluation are stated in boldface in the following. We evaluate at least one
method per type discussed in section 2.2. All methods have an underlying semantic segmentation
DNN trained on Cityscapes and they all provide pixel-wise anomaly scores.
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Given an input image, the maximum softmax probability (MSP) of a DNN’s corresponding output
is a commonly-used baseline for OoD detection at image level [23]. Adding small perturbations to
every pixel of the input image and applying temperature scaling enhances the anomaly detection
ability of MSP. The latter approach is known as ODIN [22]. Another well-known method detects
anomalies based on the Mahalanobis distance. It is computed by estimating Gaussian distributions
of latent features of a DNN’s penultimate layer, therefore yielding an estimate of the likelihood of
a test sample w.r.t. the distribution in the training data. All these methods are originally designed
for image classification but can be adapted straightforwardly to segmentation and represent good
baselines in our benchmark.

As Bayesian approach to uncertainty estimation we employ Monte Carlo (MC) dropout in our
evaluation. MC dropout has already been investigated for semantic segmentation. We follow [35] and
use the mutual information as pixel-wise anomaly scores, which captures the epistemic uncertainty
of a DNN. Furthermore, we additionally evaluate an ensemble of semantic segmentation networks.

In [7] several approaches to learning the confidence with respect to the presence of anomalies have
been proposed. The learned embedding density aims to approximate the distribution of feature
embeddings within a DNN via normalizing flows. At test time, the negative log-likelihood for each
embedded representation of an image measures the discrepancy of a test embedding with respect to
training embeddings, where high discrepancies indicate anomalies. These scores are then upsampled
via bilinear interpolation to obtain the pixel-wise anomaly scores. Alternatively, the segmentation
DNN can be modified to learn the confidence for the presence of anomalies, requiring an OoD dataset.
As in [7], a Cityscapes DNN is trained with an additional model output for the Cityscapes void class.
The anomaly scores are then the softmax scores for the that class, therefore this method is called void
classifier. Additionally, one can also retrain a DNN with a different OoD proxy, such as the COCO
dataset [4], and enforce maximized softmax entropy [11] on samples of the OoD proxy. All theses
methods tune previously-trained DNNs to the task of anomaly segmentation and are included in our
evaluation.

As autoencoders in our evaluation, we employ image resynthesis together with a discrepancy network
that extracts meaningful differences based on the information provided by the DNN’s segmentation
mask, the resynthesized input image and the original image itself [14]. This approach can be
extended by including uncertainty estimates in the discrepancy module, aiming to boost the anomaly
segmentation performance, known as SynBoost [39]. One method specifically designed for obstacle
segmentation is called road inpainting [42]. This method inpaints road patches in a sliding window
manner. The resulting synthesized image is then again presented to a discrepancy network, similarly
as in [14], for pixel-wise obstacle scores.

D.2 Method Description in Detail

All methods provide pixel-wise anomaly scores s(x) ∈ R|Z|, x ∈ X where anomalies correspond
to higher values. As a reminder, Z denotes the set of image coordinates and X ⊆ [0, 1]N×|Z|×3 a
dataset with N images. Below, we describe how s is obtained for each approach.

Maximum softmax probability. Let f : X → R|Z|×|C| denote the output of a semantic segmenta-
tion DNN. The maximum softmax probability (MSP) is a commonly-used baseline for OoD detection
at image level [23]. It computes an anomaly score for each pixel z ∈ Z as

sz(x) = 1−max
c∈C

σ(f cz (x)), x ∈ X , (7)

where σ(·) : R|C| → (0, 1)|C| denotes the softmax function over the non-anomalous class set C.

ODIN. Let t ∈ R \ {0} be a temperature scaling parameter and ε ∈ R a perturbation magnitude.
Following [22] small perturbations are added to every pixel z ∈ Z of image x by

x̃z = xz − εsign
(
− ∂

∂xz
log max

c∈C
σ(f cz (x)/t)

)
. (8)

Then, an anomaly score is obtained analogously to equation (7) via the MSP as

sz(x) = 1−max
c∈C

σ(f cz (x̃)/t) . (9)
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Mahalanobis distance. Let hL−1(·) denote the output of the penultimate layer of a DNN with
L ∈ N layers, i.e. f(x) = hL(x), x ∈ X . Under the assumption that

P (hL−1z (x) | yz(x) = c) = N (hL−1z (x) | µc,Σc) , (10)

an anomaly score for each pixel z can be computed as the Mahalanobis distance [21]

sz(x) = min
c∈C

(hL−1z (x)− µ̂c)T Σ̂c
−1

(hL−1z (x)− µ̂c) , (11)

where µ̂c and Σ̂c are estimates of the class mean µc and class covariance Σc, respectively, of the
latent features in the penultimate layer. This Mahalanobis distance yields an estimate of the likelihood
of a test sample with respect to the closest class distribution in the training data, which are assumed
to be class-conditional Gaussians.

Monte Carlo dropout. Let M ∈ N denote the number of Monte Carlo sampling rounds and
q̂cm := σ(f cz (x)) the softmax probability of class c ∈ C for sample m ∈ {1, . . . ,M}. The predictive
entropy is computed as

Ê(f(x)) = −
∑
c∈C

(
1

M

M∑
m=1

q̂cm

)
log

(
1

M

M∑
m=1

q̂cm

)
. (12)

As suggested in [35], the mutual information can then be used to define an anomaly score

sz(x) = Ê(f(x))− 1

M

∑
c∈C

M∑
m=1

q̂cm log (q̂cm) . (13)

Ensemble. Similar to Monte Carlo dropout, multiple samples of softmax probabilities q̂cm :=
σ(f cz (x)), c ∈ C,m ∈ {1, . . . ,M} are drawn from multiple semantic segmentation models. Those
models have the same network architecture but are trained with different weights initialization [32].
Again, the mutual information is used as anomaly score

sz(x) = Ê(f(x))− 1

M

∑
c∈C

M∑
m=1

q̂cm log (q̂cm) . (14)

Void classifier. In [36], an approach to learning the confidence with respect to the presence of
anomalies was proposed. Here, we adapt this by using the Cityscapes void class to approximate the
anomaly distribution. We then trained a Cityscapes DNN f : X 7→ R|Z|×(|C|+1) with an additional
class, i.e., a dustbin [5], and compute the anomaly score for each pixel z ∈ Z as the softmax score
for the void class, which yields

sz(x) = σ(fvoidz (x)), x ∈ X . (15)

Learned embedding density. Let hl(x) ∈ R|Z′|×nl , nl ∈ N, Z ′ ⊂ Z , be the embedding vector of
a segmentation DNN at layer l ∈ {1, . . . , L} for image x ∈ X . The true distribution p∗(hl(x)), x ∈
Xtrain ⊂ X can be approximated with a normalizing flow p̂(hl(x)) ≈ p∗(hl(x)). At test time,
the negative log-likelihood − log p̂z′(h

l(x)) ∈ (0,∞) for each embedding location z′ ∈ Z ′ then
measures the discrepancy of a test embedding with respect to training embeddings, where higher
discrepancies indicate anomalies [7]. The resulting anomaly score map are of size |Z ′| = 1

n |Z|, with
n ∈ N the rescaling factor for Z ′ to match the size of Z , and hence bring back latent features to the
full image resolution |Z| via bilinear interpolation u : R|Z′| → R|Z|. This yields an anomaly score
for each z ∈ Z as

sz(x) = uz
(

(− log p̂(hlz′(x)))z′∈Z′
)
, x ∈ X . (16)

Image resynthesis. The semantic segmentation map ŷ(x) := (arg maxc∈C f
c
z (x))z∈Z predicted

by a DNN for image x ∈ X is passed to a generative network g : C|Z| → X ′ whose goal is to
resynthesize x, i.e. x ≈ g(ŷ(x)) ∈ X ′, with X ′ the resynthesized input space. Assuming that
mislabeled pixels in the segmentation map, i.e. anomaly pixels, will be poorly reconstructed, a
discrepancy network [14] d : C|Z| ×X ′ ×X → R|Z| is trained to extract the meaningful differences
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based on the information provided by ŷ(x), g(ŷ(x)) and x itself. The output of d(·) serves as anomaly
score for each z ∈ Z , that is,

sz(x) = dz ( ŷ(x), g(ŷ(x)), x ) , x ∈ X . (17)

Road inpainting. Another approach motivated by image resynthesis is road inpainting, which is
specifically designed for obstacle segmentation. This method inpaints patches on the road (that is
assumed to be known a-priori) in a sliding window manner and passes the resulting resynthesized
image g′(x) to the discrepancy network together with the original input image. Thus, the anomaly
score is

sz(x) = dz ( g′(x), x ) , x ∈ X . (18)

SynBoost. This approach follows a similar idea as image resynthesis but includes further inputs in
the discrepancy module. In particular, for all z ∈ Z the pixel-wise softmax entropy

Hz(x) = −
∑
c∈C

σ(f cz (x)) log (σ(f cz (x))) (19)

and the pixel-wise softmax distance

Dz(x) = 1−max
c∈C

σ(f cz (x)) + max
c′∈C\{argmaxc∈C}

σ(f c
′

z (x)) (20)

are included. The anomaly score for x ∈ X is then obtained via

sz(x) = dz ( ŷ(x), g(ŷ(x)), x,H(x), D(x) ) . (21)

Maximized entropy. Starting from a pretrained DNN, a second training objective is introduced to
maximize the softmax entropy on OoD pixels [11, 13, 37]. This yields the multi-criteria loss function

(1− λ)E(x,y)∼Din
[`in(σ(fz(x)), yz(x))] + λEx′∼Dout

[`out(σ(fz(x
′)))] , λ ∈ [0, 1] , (22)

where `in is the empirical cross entropy and `out the averaged negative log-likelihood over all classes
for the in-distribution data Din and the out-distribution data Dout, respectively. To approximate Dout,
a subset of the COCO dataset [4] is used whose images do not depict any object classes also available
in Din, which is the Cityscapes dataset [1]. The COCO subset together with the Cityscapes training
data are then included into a tender retraining of the pretrained Cityscapes model. The anomaly score
is then computed via the softmax entropy as

sz(x) = −
∑
c∈C

σ(f cz (x)) log (σ(f cz (x))) . (23)

D.3 Underlying Segmentation DNNs

Most of our evaluated methods build upon variants of DeepLab [50] network architectures for semantic
segmentation. In particular, for MC dropout, void classifier and learned embedding density we use a
DeepLabv3+ model with an Xception backbone [51], as presented first in [7]. For maximum softmax,
ODIN, Mahalanobis distance and maximized entropy, we employ a more modern DeepLabv3+ model
with a WideResNet38 backbone [52]. For image resynthesis we use the more lightweight PSPNet as
underlying model for semantic segmentation just like originally proposed by [14]. All these networks
are initialized with publicly available weights which are pretrained on the Cityscapes dataset. To show
the capacity of the network, we report the mean Intersection over Union (mIoU) on the Cityscapes
validation dataset in Table 5.

D.4 Inference Time Comparison

In practice, anomaly segmentation is desired to be obtained in real time. Therefore, we report
the run-time of the evaluated anomaly segmentation methods as further performance metric that
expresses a method’s suitability as online application. We measure the total inference time for
RoadAnomaly21, i.e. the time from feeding all images through a model to obtaining pixel-wise
anomaly scores. Afterwards we average the time per image and report them in table 5. All methods
are compared with the same hardware (NVIDIA Quadro P6000), however they might differ in the
underlying network architecture.
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Semantic segmentation mIoU ↑ on time in s ↓
Method Network architecture Cityscapes Val. per image

Maximum softmax DeepLabv3+ WideResNet38 backbone [52] 90.3% 1.17
ODIN DeepLabv3+ WideResNet38 backbone [52] 90.3% 16.74
Mahalanobis Distance DeepLabv3+ WideResNet38 backbone [52] 90.3% 63.60
MC dropout DeepLabv3+ Xcpection backbone [51] 80.3% 19.68
Void Classifier DeepLabv3+ Xcpection backbone [51] 80.3% 2.02
Embedding density DeepLabv3+ Xcpection backbone [51] 80.3% 10.66
Image resynthesis PSPNet [53] 79.9% 1.43
SynBoost DeepLabv3+ WideResNet38 backbone [52] 90.3% 2.09
Maximized entropy DeepLabv3+ WideResNet38 backbone [52] 89.3% 1.07

Table 5: Run time comparison on a NVIDIA Quadro P6000 for different anomaly segmentation
methods. The averaged inference time for one image of RoadAnomaly21 is reported in seconds.
Moreover, the mean Intersection over Union (mIoU) on the Cityscapes validation dataset is reported
to check whether anomaly segmentation decreases the original semantic segmentation performance.
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Figure 6: The averaged component-wise metric F1 as function of the pixel-wise anomaly / obstacle
threshold δ for RoadAnomaly21 and RoadObstacle21, respectively, c.f . table 2 and 3. The “star”
marker indicates a method’s F1-score at the chosen threshold δ∗ according to equation (4), which is
used in our default procedure for generating segmentation masks from pixel-wise anomaly / obstacle
scores. We observe that for most methods δ∗ yields near optimal component-wise F1-scores, however
not for every single tested method. Therefore, we encourage competitors to submit their own anomaly
segmentation masks based on more sophisticated methods.

E Parameter Study

In our evaluation, the component-wise F1 score (equation (3)) does not only depend on the parameter
τ but also δ. Recall that τ is the threshold for sIoU at which one component is considered to be false
negative and true positive, respectively, see also section 3.2. As we generate anomaly segmentation
masks from pixel-wise anomaly scores, we introduced another threshold δ at which a given pixel is
considered as anomaly. For generating segmentation masks with our default method, we chose that
threshold as δ∗ (equation (4)) which is the parameter for which a method achieves its best pixel-wise
F1 score, i.e. the optimal threshold according to the precision recall curve.
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Component-level metrics with filtering Component-level metrics without filtering

OoD k ∈ K k̂ ∈ K̂ τ = 0.50 k ∈ K k̂ ∈ K̂ τ = 0.50
Method data sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 15.5 15.3 233 714 5.8 5.9 15.4 15.7 232 713 6.0 5.8
ODIN [22] 7 19.6 17.9 226 985 5.6 6.0 19.7 17.5 227 983 5.5 6.0
Mahalanobis [21] 7 14.8 10.2 241 1478 2.4 2.9 14.8 10.5 241 1464 2.4 2.9
MC dropout [35] 7 20.5 17.3 225 1391 4.4 4.9 20.5 17.3 225 1391 4.4 4.9
Ensemble [32] 7 16.4 20.8 233 1511 3.2 3.4 19.8 12.6 225 1528861 0.0 0.0
Void classifier [7] 3 21.1 22.1 219 845 7.5 7.6 21.1 22.1 219 845 7.5 7.6
Embedding density [7] 7 33.8 20.5 176 1485 9.4 9.2 34.0 20.8 176 1491 9.4 9.2
Image resynthesis [14] 7 39.5 11.0 153 1225 13.7 12.9 39.6 11.1 152 1225 13.8 13.0
SynBoost [39] 3 35.0 18.3 178 1114 11.5 11.5 34.7 17.8 179 1129 11.3 11.2
Maximized entropy [11] 3 49.2 39.5 115 421 35.4 34.5 49.2 39.4 115 421 35.4 34.4

Table 6: Comparison of benchmark results for our RoadAnomaly21 dataset when not using the
filtering included in our default segmentation post-processing step. This dataset contains 262 ground-
truth components in total. The main performance metrics are highlighted with gray columns.

In this section, we perform a parameter study to show what impact the choice of δ has on the
component-wise performance. By considering F1 as component-wise performance metric we already
cover varying values for τ , since F1 is the average of component-wise F1-scores over different values
of τ . The dependence of F1 on the parameter δ is illustrated in figure 6 for RoadAnomaly21 and
RoadObstacle21, respectively. For the sake of clarity, we only include six methods in total in this
study, with at least one per type as discussed in section 2.2.

We observe that for most of the evaluated methods the choice of δ∗ leads to an F1-score close
its optimum, with some methods even reaching their optimal scores at δ∗, e.g. MC dropout on
RoadAnomaly21 and SynBoost as well as the void classifier on RoadObstacle21. For the other
methods the gap to the optimal F1-score reaches up to 2.8 percent points for maximized entropy on
RoadAnomaly21 and even 4.1 percent points for maximum softmax on RoadObstacle21. However,
except for the latter case where the distance between δ∗ and the actual optimal location for F1 is 0.30,
for all other methods the distance (in terms of F1) of δ∗ to the optimal δ is at most 0.05.

This parameter study shows that our default method for generating segmentation masks from pixel-
wise anomaly scores via the threshold δ∗ is a legitimate choice, reaching a near optimal component-
wise performance. Nonetheless, the parameter study also demonstrates that for some methods the
F1-score can still be improved. Consequently, we allow (and encourage) competitors in the benchmark
to submit their own anomaly segmentation masks with more sophisticated image operations and other
post-processing techniques.

Another parameter included in the computation of the evaluation metrics is the size of predicted
components in segmentation masks when generated from pixel-wise score maps. In our default
post-processing method, we remove all components smaller than 500 pixels and 50 pixels in the
anomaly and obstacle track, respectively, to reduce the amount of false positive components. To use
this kind of filtering is completely optional. However, as can be seen in Table 6, Table 7, Table 8 and
Table 9, we recommend using the post-processing option when competitors do not include a more
sophisticated method. This is also why, we make our post-processing step transparent in this work
since the size parameters are based on knowledge of ground truth components.

F Evaluated Datasets

Besides RoadAnomaly21 and RoadObstacle21 we also performed analogous benchmark evaluations
for three additional publicly available datasets: Fishyscapes LostAndFound [7], LostAndFound test
set [25], and the LiDAR guided Small obstacle Segmentation dataset [26]. For the sake of comparison,
we chose the Fishyscapes LostAndFound validation set for the anomaly track and the LostAndFound
test set as well as the Small Obstacle dataset for the obstacle track.

F.1 RoadAnomaly21 & RoadObstacle21 Validation Dataset

In order to ensure that methods run as intended with our benchmark code, we provide small validation
sets (including ground truth annotations) for the anomaly track, called RoadAnomaly21 validation,
and for the obstacle track, called RoadObstacle21 validation.
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Component-level metrics with filtering Component-level metrics without filtering

OoD k ∈ K k̂ ∈ K̂ τ = 0.50 k ∈ K k̂ ∈ K̂ τ = 0.50
Method data sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 19.7 15.9 326 1503 6.3 6.9 21.5 8.1 325 9624 1.3 1.4
ODIN [22] 7 20.7 18.5 312 1079 9.9 10.0 22.3 9.6 308 7260 2.1 2.1
Mahalanobis [21] 7 14.0 21.8 352 1104 4.7 5.5 17.0 7.5 348 13630 0.6 0.7
MC dropout [35] 7 6.3 5.8 375 2784 0.8 1.0 7.0 2.9 375 20727 0.1 0.1
Ensemble [32] 7 8.6 4.7 365 3768 1.1 1.3 11.0 1.8 364 369439 0.0 0.0
Void classifier [7] 3 6.3 20.3 365 350 6.0 5.9 2.8 42.8 384 123 1.6 2.6
Embedding density [7] 7 35.6 2.9 244 11037 2.5 2.4 36.1 1.6 246 33598 0.8 0.8
Image resynthesis [14] 7 16.6 20.5 334 773 8.9 9.5 17.4 15.8 332 7003 1.5 1.6
Road inpainting [42] 7 57.6 39.5 131 586 41.8 40.2 59.7 17.2 127 4789 9.6 9.3
SynBoost [39] 3 44.3 41.8 185 363 42.6 40.4 45.2 22.6 185 1432 20.1 19.2
Maximized entropy [11] 3 47.9 62.6 177 158 55.7 54.2 48.7 35.1 177 758 31.1 30.3

Table 7: Comparison of benchmark results for our RoadObstacle21 dataset when not using the filtering
included in our default segmentation post-processing step. This dataset contains 388 ground-truth
components in total. The main performance metrics are highlighted with gray columns.

Component-level metrics with filtering Component-level metrics without filtering

OoD k ∈ K k̂ ∈ K̂ τ = 0.50 k ∈ K k̂ ∈ K̂ τ = 0.50
Method data sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 3.5 9.5 164 199 0.5 1.8 11.7 3.1 159 23134 0.1 0.1
ODIN [22] 7 9.9 21.9 146 142 11.7 9.7 19.5 5.5 136 6113 0.9 0.9
Mahalanobis [21] 7 19.6 29.4 132 147 19.1 19.2 28.9 8.8 124 4009 1.9 2.1
MC dropout [35] 7 4.8 18.1 160 120 3.4 4.3 8.7 14.8 158 1835 0.7 0.9
Ensemble [32] 7 3.1 1.1 162 1643 0.3 0.4 6.6 0.5 156 226622 0.0 0.0
Void classifier [7] 3 9.2 39.1 149 38 14.6 14.9 9.6 16.6 149 304 6.6 6.6
Embedding density [7] 7 5.9 10.8 155 202 5.3 4.9 12.1 5.7 150 3990 0.7 0.7
Image resynthesis [14] 7 5.1 12.6 157 191 4.4 4.1 6.3 6.0 157 5875 0.3 0.3
SynBoost [39] 3 27.9 48.6 107 62 40.7 38.0 35.3 16.6 97 723 14.2 13.3
Maximized entropy [11] 3 21.1 48.6 121 56 33.2 30.0 27.1 12.1 113 1160 7.6 6.9

Table 8: Comparison of benchmark results for the Fishyscapes LostAndFound validation dataset
when not using the filtering included in our default segmentation post-processing step. This dataset
contains 165 ground-truth components in total. The main performance metrics are highlighted with
gray columns.

These datasets show similar scenes and objects as in RoadAnomaly21 test and RoadObstacle21 test,
respectively. The splits contain 10 images with 16 ground truth components and 30 images with 45
ground truth objects in total, respectively. Note that although both datasets share the same setup as
in the corresponding test splits, they are still not representative for the test data since they contains
only a very limited number of different road surfaces and diverse obstacle types. Therefore we do not
recommend to fine-tune methods on these two validation datasets.

Moreover, we applied our set of anomaly segmentation methods to RoadObstacle21 validation, see
table 11. Some of those methods are also made publicly available in our benchmark code to compare
to and reproduce the reported results.

F.2 Fishyscapes LostAndFound

The Fishyscapes LostAndFound validation dataset [7] consists of 100 images from the original
LostAndFound data [25] with refined labels. With this labeling, anomalous objects are not restricted
to only appear on the road but everywhere in the image, therefore Fishyscapes LostAndFound fits our
benchmark’s anomaly track.

Comparing the RoadAnomaly21 and Fishyscapes LostAndFound datasets in terms of anomaly class
frequency per pixel location, as observed in figure 10, one notices a clear difference in the variation
of object locations and sizes. While in Fishyscapes LostAndFound the objects appear mostly in the
center of the image and are also rather small, the objects in RoadAnomaly21 may appear everywhere
in the image and have sizes ranging from 122 up to 883,319 pixels (thus covering up to more than
one third of the image). The low variety in object sizes is also noticeable in the pixel-wise class
distribution, as in RoadAnomaly21 13.8% of the pixels belong to the anomaly class and 82.2% to
non-anomaly whereas in Fishyscapes LostAndFound only 0.23% belong to anomaly and 81.13% to
non-anomaly.
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Component-level metrics with filtering Component-level metrics without filtering

OoD k ∈ K k̂ ∈ K̂ τ = 0.50 k ∈ K k̂ ∈ K̂ τ = 0.50
Method data sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 14.2 62.2 1575 602 11.0 13.4 16.3 17.5 1572 31481 0.8 1.1
ODIN [22] 7 38.9 48.0 971 1303 39.4 38.1 40.2 29.9 967 5962 17.6 17.2
Mahalanobis [21] 7 33.8 31.7 1126 2314 25.3 24.6 34.7 22.8 1124 7677 11.7 11.6
MC dropout [35] 7 17.0 34.7 1453 1641 14.2 14.7 17.7 20.0 1451 9560 4.5 4.7
Ensemble [32] 7 6.7 7.6 1604 5649 2.8 2.7 7.5 3.8 1600 299431 0.1 0.1
Void classifier [7] 3 0.7 35.1 1698 108 1.2 1.1 0.7 25.1 1698 351 1.1 1.0
Embedding density [7] 7 37.8 35.2 963 1973 33.7 30.8 38.6 18.9 961 6862 16.1 14.8
Image resynthesis [14] 7 27.2 30.7 1232 2093 22.3 21.5 28.0 19.7 1228 15418 5.5 5.3
Road inpainting [42] 7 49.2 60.7 749 646 57.9 56.9 50.4 33.0 743 4852 25.7 25.2
SynBoost [39] 3 37.2 72.3 930 230 57.3 53.0 37.6 63.3 931 535 51.5 47.7
Maximized entropy [11] 3 45.9 63.1 781 598 57.4 55.0 46.7 35.8 778 2813 34.1 32.7

Table 9: Comparison of benchmark results for the LostAndFound test-NoKnown dataset when not
using the filtering included in our default segmentation post-processing step. This dataset contains
1709 ground-truth components in total. The main performance metrics are highlighted with gray
columns.

As already discussed in section 4, we observe a less pronounced gap between methods designed for
image classification and those specifically designed for anomaly segmentation. A detailed overview
of our benchmark results on Fishyscapes LostAndFound is given in table 12. In this evaluation, we
see that the number of false positive components (relative to the number of ground truth components)
over multiple thresholds τ is significantly less than on RoadAnomaly21, shown in Table 2. This holds
for all evaluated methods, resulting in relatively strong component-wise performance (compared to
SynBoost and maximized entropy). Even Mahalanobis and void classifier report strong results, which
is due to similarity of this dataet to Cityscapes as all LostAndFound images share the same setup
as in Cityscapes. These results further indicate the lack in diversity in Fishyscapes LostAndFound.
More specifically, the environments of the scenes shown in LostAndFound do not considerably differ
to those shown in Cityscapes whereas our RoadAnomaly21 dataset has a wide variety of scenes since
all images are gathered from the web, see figure 13.

F.3 LostAndFound test-NoKnown

The LostAndFound dataset [25] shares the same setup as Cityscapes but includes small obstacles
on the road. Therefore, this dataset fits our benchmark’s obstacle track. When a model is trained on
Cityscapes, the LostAndFound dataset then contains images with objects that have been previously
seen and therefore are not anomalies. As most of our methods are designed for anomaly detection,
we filtered out all scenes in the LostAndFound test split where the obstacles belong to known classes,
e.g. children or bicycles, and call this subset LostAndFound test-NoKnown. In this way, the results
obtained with our evaluated methods on LostAndFound test-NoKnown and on our RoadObstacle21
dataset are comparable.

Both datasets have obstacles in the same size range. Both RoadObstacle21 and LostAndFound
test-NoKnown have 0.12% of the pixels labeled as obstacles, while 39.08% and 15.31% of the pixels
belong to not obstacles, respectively. Regarding the object locations in images, the obstacles in
RoadObstacle21 are distributed wider over the image than in LostAndFound, as observed in figure 10.
This also implies that in RoadObstacle21 the obstacles appear at stronger varying distances. For an
illustration as well as of that variation, we refer to figures 15 and 16. Looking at the results in table 13,
we observe for LostAndFound test-NoKnown, just as in Fishyscapes LostAndFound (table 12), that
methods from image classification perform relatively well in comparison to methods designed for
anomaly segmentation. This is again due the limited variety of environments, i.e. the road surfaces in
this dataset. In our RoadObstacle21 dataset, we therefore provide scenes with obstacles on different
road surfaces, such as gravel or a road with cracks, see figure 16.

Regarding the dataset size, LostAndFound achieves their high number of images by densely sampling
from video sequences. Consequently, some images depict nearly identical scenes (same environment
and obstacle combination with the obstacle approximately at the same distance), see e.g. Figure 17.
In RoadObstacle21 the number of different environment and obstacle combinations is considerably
higher due to the wide variety of 31 object types in the dataset. If multiple images depict the same
scene, we made sure that the distance to the obstacle (and therefore the size of the obstacle in the
image) varies noticeably from image to image, c.f . Figure 18.
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F.4 LiDAR Guided Small Obstacle Dataset

The third publicly available dataset to which we applied our benchmark suite is the LiDAR guided
Small obstacle Segmentation dataset [26], which can be viewed as a reference dataset for our obstacle
track. The results corresponding to this dataset are given in table 14. In general, the given set of
methods exhibits poor performance on this dataset. More precisely, obstacles are mostly overlooked,
e.g. SynBoost as best-performing method still misses 1100 of 1203 components in total at the lowest
sIoU threshold τ = 0.25. As the LiDAR guided Small obstacle Segmentation dataset rather focuses
on the challenge of detecting obstacles via multiple sensors, including LiDAR, the camera images of
this dataset are purposely challenging, e.g. due to low illumination, blurry images and barely visible
obstacles. Figure 7 shows an example of this dataset, which highlights the difficulty of anomaly
detection. This dataset can easily be included into our benchmark and it also fits the obstacle track,
however, from our experiments we conclude that this dataset is less suitable to camera-only obstacle
segmentation as obstacles are not well captured via cameras.

(a) Input image (b) Ground truth (c) Maximized entropy

Figure 7: An example image (a) from the Small Obstacle dataset with the corresponding ground
truth annotation (b) and an obstacle score heatmap obtained with maximized entropy (c). Here, the
obstacles are barely visible in the input image due to their size and the scene’s illumination, that is
why camera-only based segmentation techniques tend to fail for this dataset.

F.5 CAOS BDD-Anomaly

The CAOS BDD-Anomaly dataset [8] consists of images sourced from BDD100k [2]. In order to
create an anomaly segmentation dataset, the authors split the BDD100k data such that images with
motorcycles, bicycles and trains are separated from the rest. These left out objects are then considered
as anomalies. We do not perform any experiments on CAOS BDD-Anomaly since the considered
anomalous objects are not strictly unknown. They also appear in Cityscapes [1] on which most
semantic segmentation models are trained. Moreover, we find several labeling mistakes that hinder
proper evaluation of anomaly segmentation performance, see figure 8.

(a) Vegetation as train (b) Cars as bicycle (c) Bus as bicycle

Figure 8: Some examples of labeling mistakes in the CAOS BDD-Anomaly dataset, where in-
distribution objects are incorrectly annotated as anomaly, i.e. train and bicycle.

G Evaluation per Environment Category

We already emphasized that in our RoadObstacle21 dataset a wide variety of road surfaces are
available, representing different scenes which might pose unique challenges. In this section, we
provide more insights by evaluating our set of methods on each of these surfaces. In total, we split
our datasets into 9 different scenes, shown in figure 9:
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1. cracked road, surrounded by snow (road cracked)
2. dark asphalt after rain, with leaves (asphalt dark)
3. gravel road, no snow (road gravel)
4. gray asphalt in village and forest (asphalt gray)
5. motorway with side railing (motorway)
6. sun reflection off wet road (sun reflection)
7. road made of bricks (road bricks)
8. night images (asphalt night)
9. and snowstorm images .

road cracked asphalt dark road gravel

asphalt gray motorway sun reflection

road bricks asphalt night snowstorm

Figure 9: The scenes of our RoadObstacle21 dataset feature a variety of road surfaces.

We evaluate each subset using our benchmark suite and report the results in table 16. This more
detailed evaluation shows that the reported set of methods perform differently across the data splits,
with no method having consistent performance on each of these subsets. Our dataset offers extra
difficulty caused by the diversity of road texture, surrounding environments, weather and lighting
variations. Cracks and leaves may trigger false positives, and a gravel or wet road surface may itself
be sufficiently different from training images to be mistaken for an anomaly.

H Evaluation for Different Component Sizes

In this section we provide further insights of the segmentation quality of ground truth components
in RoadAnomaly21 and RoadObstacle21. To this end, we conduct a more fine-grained analysis by
grouping ground truth components into size intervals and perform the evaluation for each size interval
separately. In total, RoadAnomaly21 contains 259 ground truth components, ranging in size from
122 to 883,319 pixels. RoadObstacle21 contains 388 obstacles ranging from 18 up to 77,435 pixels.
For each dataset we divide these components into eight size intervals such that each interval contains
same number of components.
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In figure 11, we report the averaged sIoU (equation (1)) w.r.t. the ground truth components within each
size interval. As illustrated in this figure, we observe a positive correlation of sIoU with the component
size. Especially in RoadObstacle21, methods designed for the task of anomaly segmentation like
maximized entropy or SynBoost perform significantly better than the other approaches.

In addition, we consider the amount of entirely neglected components, meaning the objects for
which not even one pixel is detected. To do so, we measure the relative ratio of FN to all ground
truth components within different object size intervals, see figure 12. As a threshold, therefore, for
discriminating between FN and TP, we choose τ = 0, i.e. a ground truth component is considered as
TP if at least one of its pixels is detected by the respective method. Indeed, we observe a negative
correlation of the number of FN with the component size, but even more conspicuous is the amount
of totally overlooked components of small size. This analysis shows the challengingness of anomaly
segmentation, particularly for small obstacles at component-level, and emphasizes the need for further
research in this direction.

I Evaluation per Object Category

As part of our benchmark, we also provide an evaluation with respect to different object categories.
An exemplary evaluation with the given set of methods is provided in table 15. In particular, the
methods specifically designed for anomaly segmentation perform worse on the vehicle category than
on the other ones. This general trends shows that our choice of vehicles, including classes such as
jet ski, rickshaw and carriage, is rather challenging. This additional dimension of granularity offers
further insight to users of our benchmark such that one can identify the drawbacks of an anomaly
segmentation method under inspection.
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Tables and Figures

Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ τ = 0.25 τ = 0.50 τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 40.4 60.2 42.6 34.2 18.6 7 37 29.0 10 39 19.7 15 44 3.3 16.7
ODIN [22] 7 46.3 61.5 49.2 37.1 24.5 6 37 31.7 10 38 20.0 16 47 0.0 16.4
Mahalanobis [21] 7 22.5 86.4 31.7 17.8 11.7 12 80 8.0 16 84 0.0 16 86 0.0 2.4
MC dropout [35] 7 29.2 77.9 35.3 26.6 16.7 9 82 13.3 12 84 7.7 16 88 0.0 5.7
Ensemble [32] 7 16.0 80.0 30.3 20.9 23.1 11 59 12.5 15 63 2.5 15 64 2.5 4.7
Void classifier [7] 3 39.3 66.1 42.7 25.2 27.4 9 33 25.0 13 34 11.3 16 38 0.0 11.7
Embedding density [7] 7 51.9 60.0 54.1 48.1 24.4 3 102 19.8 7 105 13.8 15 117 1.5 12.4
Image resynthesis [14] 7 76.4 20.5 72.0 46.8 25.3 2 66 29.2 9 68 15.4 15 81 2.0 15.0
SynBoost [39] 3 68.8 30.9 65.6 46.7 21.9 3 65 27.7 9 70 15.1 15 76 2.2 15.7
Maximized entropy [11] 3 80.7 17.4 74.3 63.6 45.0 1 24 54.5 3 25 48.1 11 29 20.0 41.6

Table 10: Benchmark results for the RoadAnomaly21 validation set. This dataset contains 16 ground
truth components.

Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ τ = 0.25 τ = 0.50 τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 43.4 3.8 53.7 40.6 20.9 20 113 27.3 22 113 25.4 32 117 14.9 22.5
ODIN [22] 7 46.6 4.0 48.4 38.7 28.4 23 84 29.1 23 84 29.1 33 88 16.6 26.2
Mahalanobis [21] 7 25.9 26.1 27.7 28.3 27.3 24 111 23.7 33 114 14.0 41 120 4.7 14.8
MC dropout [35] 7 7.9 43.8 13.4 8.9 8.7 39 245 4.1 42 246 2.0 45 246 0.0 2.0
Ensemble [32] 7 4.7 98.3 9.2 4.1 57.9 42 8 10.7 44 8 3.7 45 8 0.0 4.6
Void classifier [7] 3 9.8 43.6 15.6 11.2 24.2 39 35 14.0 39 35 14.0 42 36 7.1 11.9
Embedding density [7] 7 1.5 56.7 3.4 15.9 2.8 31 1261 2.1 39 1262 0.9 45 1269 0.0 1.0
Image resynthesis [14] 7 70.3 1.3 61.3 28.8 22.4 25 105 23.5 31 108 16.8 43 117 2.4 15.1
Road inpainting [42] 7 90.4 98.9 89.0 52.9 67.0 17 14 64.4 18 14 62.8 22 16 54.8 61.6
SynBoost [39] 3 81.4 2.8 73.2 37.0 43.6 18 25 55.7 28 30 37.0 39 37 13.6 38.4
Maximized entropy [11] 3 94.4 0.4 88.4 56.4 60.8 12 19 68.0 13 19 66.7 24 21 48.3 62.3

Table 11: Benchmark results for the RoadObstacle21 validation set. This dataset contains 45 ground
truth objects.

Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ τ = 0.25 τ = 0.50 τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 5.6 40.5 12.1 3.5 9.5 152 199 6.9 164 199 0.5 165 199 0.0 1.8
ODIN [22] 7 15.5 38.4 22.5 9.9 21.9 139 142 15.6 146 142 11.7 163 143 1.3 9.7
Mahalanobis [21] 7 32.9 8.7 37.3 19.6 29.4 111 145 29.7 132 147 19.1 155 157 6.0 19.2
MC dropout [35] 7 14.4 47.8 20.0 4.8 18.1 149 120 10.6 160 120 3.4 164 121 0.7 4.3
Ensemble [32] 7 0.3 90.4 0.7 3.1 1.1 159 1643 0.7 162 1643 0.3 163 1643 0.2 0.4
Void classifier [7] 3 11.7 15.3 21.9 9.2 39.1 143 38 19.6 149 38 14.6 158 38 6.7 14.9
Embedding density [7] 7 8.9 42.2 14.8 5.9 10.8 148 202 8.9 155 202 5.3 163 202 1.1 4.9
Image resynthesis [14] 7 5.1 29.8 11.1 5.1 12.6 150 190 8.1 157 191 4.4 164 191 0.6 4.1
SynBoost [39] 3 64.9 30.9 67.6 27.9 48.6 103 62 42.9 107 62 40.7 130 63 26.6 38.0
Maximized entropy [11] 3 44.3 37.7 50.9 21.1 48.6 117 56 35.7 121 56 33.2 146 57 15.8 30.0

Table 12: Benchmark results for the Fishyscapes LostAndFound validation set. This dataset contains
165 ground truth objects.
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Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ τ = 0.25 τ = 0.50 τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 30.1 33.2 32.5 14.2 62.2 1256 580 33.0 1575 602 11.0 1701 644 0.7 13.4
ODIN [22] 7 51.0 30.7 54.3 38.9 48.0 713 1271 50.1 971 1303 39.4 1349 1372 20.9 38.1
Mahalanobis [21] 7 55.0 12.9 54.8 33.8 31.7 777 2146 38.9 1126 2314 25.3 1527 2585 8.1 24.6
MC dropout [35] 7 36.2 36.0 42.2 17.0 34.7 1214 1626 25.8 1453 1641 14.2 1635 1674 4.3 14.7
Ensemble [32] 7 2.9 82.0 8.2 6.7 7.6 1523 5633 4.9 1604 5649 2.8 1695 5705 0.4 2.7
Void classifier [7] 3 4.4 47.0 13.7 0.7 35.1 1689 108 2.2 1698 108 1.2 1708 109 0.1 1.1
Embedding density [7] 7 61.7 10.4 61.7 37.8 35.2 646 1873 45.8 963 1973 33.7 1526 2299 8.7 30.8
Image resynthesis [14] 7 57.1 8.8 55.1 27.2 30.7 947 1990 34.2 1232 2093 22.3 1560 2304 7.2 21.5
Road inpainting [42] 7 83.0 35.7 79.1 49.2 60.7 631 635 63.0 749 646 57.9 958 727 47.1 56.9
SynBoost [39] 3 81.8 4.6 75.2 37.2 72.3 767 203 66.0 930 230 57.3 1378 436 26.7 53.0
Maximized entropy [11] 3 77.9 9.7 76.8 45.9 63.1 639 589 63.5 781 598 57.4 1113 681 39.9 55.0

Table 13: Benchmark results for the LostAndFound test-NoKnown dataset. This dataset contains
1709 ground truth objects.

Pixel-level Component-level

requires Anomaly scores k ∈ K k̂ ∈ K̂ τ = 0.25 τ = 0.50 τ = 0.75
Method OoD data AuPRC ↑ FPR95 ↓ F ∗1 ↑ sIoU ↑ PPV ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ FN ↓ FP ↓ F1 ↑ F1 ↑
Maximum softmax [23] 7 0.7 57.1 2.2 0.5 1.5 1196 1652 0.5 1202 1653 0.1 1203 1653 0.0 0.2
ODIN [22] 7 1.7 51.7 5.7 2.7 3.9 1151 1829 3.4 1176 1834 1.8 1197 1841 0.4 1.9
Mahalanobis [21] 7 1.4 45.5 2.4 7.1 4.0 1039 4863 5.3 1137 4882 2.1 1198 4907 0.2 2.4
MC dropout [35] 7 0.5 82.2 2.1 0.5 2.8 1191 1406 0.9 1200 1407 0.2 1203 1408 0.0 0.3
Void classifier [7] 3 0.8 59.6 2.1 1.5 4.9 1169 813 3.3 1193 816 1.0 1200 819 0.3 1.5
Embedding density [7] 7 0.5 66.0 1.1 9.8 1.8 1010 12421 2.8 1122 12502 1.2 1200 12587 0.0 1.3
SynBoost [39] 3 12.5 62.8 22.8 11.5 14.4 1009 1204 14.9 1040 1217 12.6 1116 1234 6.9 12.0
Maximized entropy [11] 3 4.9 63.1 11.6 2.0 9.7 1159 586 4.8 1184 586 2.1 1202 586 0.1 2.4

Table 14: Benchmark results for the LiDAR guided Small obstacle Segmentation dataset. This dataset
contains 1203 ground truth components in total.

all anomalies animals vehicles other anomalies

OoD N = 100 N = 59 N = 23 N = 11
Method data AuPRC ↑ FPR95 ↓ F1 ↑ AuPRC ↑ FPR95 ↓ F1 ↑ AuPRC ↑ FPR95 ↓ F1 ↑ AuPRC ↑ FPR95 ↓ F1 ↑
Maximum softmax [23] 7 28.0 72.0 5.4 25.2 75.6 4.9 30.2 71.9 5.0 26.1 57.7 9.3
ODIN [22] 7 31.1 71.7 5.2 32.1 72.9 4.9 30.6 74.0 4.9 35.5 61.7 9.7
Mahalanobis [21] 7 20.0 87.0 2.7 21.3 87.4 2.5 16.7 87.5 1.8 34.9 66.1 12.5
MC dropout [35] 7 28.9 69.5 4.3 24.8 74.0 3.2 35.2 72.2 4.5 20.1 62.3 15.2
Ensemble [32] 7 17.7 91.1 3.4 16.7 91.3 2.9 18.8 89.7 1.1 10.4 85.6 4.8
Void classifier [7] 3 36.6 63.5 6.5 32.2 66.9 4.0 42.3 39.2 8.5 23.1 70.3 21.7
Embedding density [7] 7 37.5 70.8 7.9 43.9 63.2 8.4 30.3 88.4 3.4 24.2 58.4 21.0
Image resynthesis [14] 7 52.3 25.9 12.5 51.4 26.5 16.4 57.8 25.6 6.1 40.4 55.1 12.9
SynBoost [39] 3 56.4 61.9 10.0 54.7 66.2 10.3 57.8 61.7 7.4 43.1 62.6 21.4
Maximized entropy [11] 3 85.5 15.0 28.7 92.2 7.2 41.9 79.0 17.8 16.2 51.6 18.3 25.4

Table 15: Effect of different anomalies in the RoadAnomaly21 dataset. In total, RoadAnomaly21
contains 59 images with only animals, 23 images with only vehicles and 11 with other anomalies (e.g.
cones, tents, . . . ). The number of images according to a subset is denoted with N in the table. Images
containing objects from both the animal and the vehicle category (7 images in total) are excluded in
this evaluation.
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road cracked asphalt dark road gravel asphalt gray motorway sun reflection road bricks

OoD N = 40 N = 47 N = 33 N = 66 N = 30 N = 72 N = 39
Method data AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1 AuPRC F1

Maximum softmax [23] 7 11.7 3.2 69.3 25.7 39.5 21.0 43.4 14.9 4.8 0.8 2.1 4.4 32.7 26.8
ODIN [22] 7 14.9 4.8 74.8 30.8 65.3 37.0 73.8 22.5 9.9 7.2 2.8 5.4 48.8 22.0
Mahalanobis [21] 7 25.9 1.6 46.7 18.3 65.8 21.9 84.7 53.8 61.2 35.6 13.9 0.5 83.6 41.0
MC dropout [35] 7 6.5 1.0 21.7 4.9 27.9 5.5 11.4 1.7 0.6 0.0 0.2 0.2 18.5 3.6
Ensemble [32] 7 34.3 0.0 5.6 0.8 33.4 0.0 17.3 12.3 1.2 4.3 0.2 0.0 17.6 0.6
Void classifier [7] 3 15.9 6.4 35.0 15.4 6.3 3.1 38.2 11.0 18.7 8.4 10.7 0.6 13.4 10.1
Embedding density [7] 7 2.5 0.8 3.3 0.8 2.7 2.2 1.8 2.4 1.1 3.0 0.1 1.1 18.3 2.7
Image resynthesis [14] 7 48.2 9.6 42.0 12.3 77.0 42.4 66.6 22.2 23.7 12.9 34.4 9.0 12.1 2.4
Road inpainting [42] 7 21.0 18.4 77.0 47.2 88.4 74.7 93.5 79.8 83.1 78.1 29.4 22.0 93.5 73.7
SynBoost [39] 3 46.1 14.7 89.3 66.5 84.7 54.5 81.2 54.0 53.8 48.8 43.1 25.4 89.8 70.3
Maximized entropy [11] 3 77.1 42.5 96.9 71.9 98.6 88.7 94.8 70.2 64.3 35.1 43.2 30.6 93.9 61.0

asphalt night snowstorm

OoD N = 30 N = 55
Method data AuPRC F1 AuPRC F1

Maximum softmax [23] 7 6.0 2.5 1.6 0.8
ODIN [22] 7 8.0 1.8 6.7 4.6
Mahalanobis [21] 7 14.2 5.5 21.2 13.2
MC dropout [35] 7 4.2 1.1 0.5 0.6
Ensemble [32] 7 11.5 16.9 0.6 0.0
Void classifier [7] 3 5.9 5.5 3.0 5.1
Embedding density [7] 7 16.7 3.6 0.9 2.6
Image resynthesis [14] 7 16.5 6.3 19.2 4.0
Road inpainting [42] 7 51.2 28.0 55.3 35.0
SynBoost [39] 3 14.5 10.2 46.4 20.7
Maximized entropy [11] 3 41.0 12.1 30.5 17.5

Table 16: Effect of different of scenes in the RoadObstacle21 dataset. Here, N denotes the number
of images in a subset. As main evaluation metrics we consider the pixel-wise AuPRC and the
component-wise F1.
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Figure 10: Comparison of the (spatial) pixel distributions between RoadAnomaly21 and Fishyscapes
LostAndFound (100 images each) as well as RoadObstacle21 and a subset of randomly sampled
images from the LostAndFound test dataset (327 images each). The color indicates the frequency of
observing an anomaly in each pixel location, averaged over the images in the dataset.
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Figure 11: Comparison of the averaged sIoU w.r.t. ground truth components within a certain range of
the components size, produced by the methods discussed in section 3.3 and appendix D.2.
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Figure 12: Comparison of the relative number of FN to TP at threshold τ = 0, i.e. the fraction of
overlooked components to the total number of ground truth components within a certain range of the
components size. The evaluated methods are discussed in section 3.3 and appendix D.2.

33



Image & annotation Maximum softmax ODIN Mahalanobis MC dropout

Void classifier Embedding density Image resynthesis SynBoost Maximized entropy

Figure 13: Qualitative comparison of the methods introduced in section 3.3 and appendix D.2 on
a sample from RoadAnomaly21. In this example, the anomalous objects have a large size and the
environment differs from scenes shown in Cityscapes. Green contours indicate the annotation of the
anomaly.
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Figure 14: Qualitative comparison of the methods introduced in section 3.3 and appendix D.2 on
a sample from RoadAnomaly21. The scene shows a tractor which does not appear in Cityscapes.
Green contours indicate the annotation of the anomaly.
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Figure 15: Qualitative comparison of the methods introduced in section 3.3 and appendix D.2 for an
example from RoadObstacle21, where the obstacle is small and far away. Green contours indicate the
annotation of the obstacle, red contours the road.
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Figure 16: Qualitative comparison of the methods introduced in section 3.3 and appendix D.2 for
an example from RoadObstacle21, showing a road surface with cracks. Green contours indicate the
annotation of the obstacle, red contours the road.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 17: Four example images of densely sampled frames from a video sequence (of 18 frames in
total) with ground truth annotation in the LostAndFound test set. Due to this sampling, LostAndFound
achieve their high number of images but, as shown in this figure, several images are nearly identical.

LostAndFound sequence frame 1 LostAndFound sequence frame 18

RoadObstacle21 sequence frame 1 RoadObstacle21 sequence frame 6

Figure 18: Comparison of one sequence from the LostAndFound test set (top row) and one sequence
from the RoadObstacle21 test set (bottom row). In this figure, the first and last frame of a video
sequence which are included in the respective test set, are shown. We observe that in this LostAnd-
Found example 18 images of one sequence are included in the test while in RoadObstacle21 at most
6 frames are included (which differ significantly in lighting in this example).
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