
Appendix:
B-Pref: Benchmarking Preference-Based Reinforcement

Learning

A Preliminaries: Reinforcement learning algorithms

Proximal policy optimization. Proximal policy optimization (PPO) [54] is a state-of-the-art on-
policy algorithm for learning a continuous or discrete control policy, ⇡�(a|s). PPO forms policy
gradients using action-advantages, At = A

⇡(at, st) = Q
✓(at, st) � V

⇡(st), and minimizes a
clipped-ratio loss over minibatches of recent experience (collected under ⇡

�̄
):

L
PPO

⇡
= �E⌧t⇠⇡ [min (⇢t(�)At, clip(⇢t(�), 1 � ✏, 1 + ✏)At)] , ⇢t(�) =

⇡�(at|st)

⇡�old(at|st)
, (4)

where �̄ are the delayed parameters and ✏ is a clip ratio. Our PPO agents learn a state-value estimator,
V✓(s), which is regressed against a target of discounted returns and used with Generalized Advantage
Estimation [53]:

L
PPO

V
(✓) = E⌧t⇠⇡

h
(V✓(st) � V

✓̄
(st))

2
i
. (5)

PPO is more robust to the non-stationarity in rewards caused by online learning.

Soft actor-critic. Soft actor-critic (SAC) [27] is an off-policy actor-critic method based on the
maximum entropy RL framework [77], which encourages exploration and greater robustness to noise
by maximizing a weighted objective of the reward and the policy entropy. To update the parameters,
SAC alternates between a soft policy evaluation and a soft policy improvement. At the soft policy
evaluation step, a soft Q-function, which is modeled as a neural network with parameters ✓, is updated
by minimizing the following soft Bellman residual:

L
SAC

Q
= E⌧t⇠B

h �
Q✓(st,at) � rt � �̄V̄ (st+1)

�2 i
, (6)

with V̄ (st) = Eat⇠⇡�

⇥
Q
✓̄
(st,at) � ↵ log ⇡�(at|st)

⇤
,

where ⌧t = (st,at, st+1, rt) is a transition, B is a replay buffer, ✓̄ are the delayed parameters, and
↵ is a temperature parameter. At the soft policy improvement step, the policy ⇡� is updated by
minimizing the following objective:

L
SAC

⇡
= Est⇠B,at⇠⇡�

h
↵ log ⇡�(at|st) �Q✓(st,at)

i
. (7)

SAC enjoys good sample-efficiency relative to its on-policy counterparts by reusing its past experi-
ences. However, for the same reason, SAC is not robust to a non-stationary reward function.

Algorithm 2 EXPLORE: Unsupervised exploration
1: Initialize parameters of ⇡� and a buffer B ;
2: for each iteration do
3: for each timestep t do
4: Collect st+1 by taking at ⇠ ⇡� (at|st)
5: Compute intrinsic reward rintt rint(st) as in (8)
6: Store transitions B B [{(st,at, st+1, r

int
t)}

7: end for
8: for each gradient step do
9: Sample minibatch {

�
sj ,aj , sj+1, r

int
j

�
}Bj=1 ⇠ B

10: Optimize RL objective function with respect to �
11: end for
12: end for
13: return B,⇡�

16

Algorithm 3 Preference-based RL with reward learning
Require: frequency of teacher feedback K
Require: number of queries Nquery per feedback session

1: Initialize parameters of ⇡�, br , a dataset of preferences D ;, and a buffer B ;
2: // EXPLORATION PHASE
3: B,⇡� EXPLORE() in Algorithm 2
4: for each iteration do
5: // REWARD LEARNING
6: if iteration % K == 0 then
7: for m in 1 . . . Nquery do
8: (�0,�1) ⇠ SAMPLE() (see Section C) and query SimTeacher in Algorithm 1 for y
9: Store preference D D [{(�0,�1, y)}

10: end for
11: for each gradient step do
12: Sample minibatch {(�0,�1, y)j}Dj=1 ⇠ D and optimize LReward in (3) with respect to
13: end for
14: end if
15: // POLICY LEARNING
16: for each timestep t do
17: Collect st+1 by taking at ⇠ ⇡(at|st) and store transitions B B [{(st,at, st+1, br (st))}
18: end for
19: for each gradient step do
20: Sample random minibatch {(⌧j)}Bj=1 ⇠ B and optimize RL objective function with respect to �
21: end for
22: Reset B ; if on-policy RL algorithm is used
23: end for

B Preference-based reinforcement learning

Algorithm 3 summarizes the full procedure of preference-based RL methods that we consider in this
paper. We also utilize unsupervised pre-training which encourages our agent to visit a wider range of
states by using the state entropy H(s) = �Es⇠p(s) [log p(s)] as an intrinsic reward [42, 29, 40, 56].
By following Lee et al. [39], we define the intrinsic reward of the current state st as follows:

r
int(st) = log(||st � sk

t
||), (8)

where sk
i

is the k-NN of si within a set {si}Ni=1. The full procedure of unsupervised pre-training is
summarized in Algorithm 2.

C Sampling schemes

We consider the following sampling schemes in this paper:

• Uniform sampling: We pick Nquery pairs of segments uniformly at random from the buffer B.
• Disagreement: We first generate the initial batch of Ninter pairs of segments Ginit uniformly

at random, measure the variance across ensemble of preference predictors {P i [�
1
� �

0]}Nen

i=1,
and then select the Nquery pairs of segments with high uncertainty.

• Entropy: We first generate the initial batch of Ninter pairs of segments Ginit uniformly at
random, measure the entropy of a single preference predictor H(P), and then select the Nquery

pairs of segments with high uncertainty.
• Coverage: From the initial batch Ginit, we choose center points, which increase the dissimilarity

between the selected queries. Specifically, we concatenate the states of segments, i.e., sconcat =
Concat(s0

k+1, · · · , s
0
k+H

, s1
k+1, · · · , s

1
k+H

)7 and measure the Euclidean distance. Then, we
choose Nquery center points such that the largest distance between a data point and its nearest
center is minimized using a greedy selection strategy.

7Concatenating states would not be an optimal choice because it is not permutation-invariant, which is also
not handled in the prior work [11]. However, we expect that an issue from permutation-variance is not significant
because a probability to sample two segments in a different order is very low. However, it is an interesting future
direction to explore to address this limitation.

17

• Disagreement + Coverage: We first select the Ninter pairs of segments Gun, using the disagree-
ment sampling, where Ninit > Ninter, and then choose Nquery center points from Gun.

• Entropy + Coverage: We first select the Ninter pairs of segments Gun, using the entropy
sampling, and then choose Nquery center points from Gun.

D Experimental Details

Training details. We use PEBBLE and PrefPPO8 with a full list of hyperparameters in Table 1 and
Table 2, respectively. We pre-train an agent for 10K timesteps and 32K timesteps for PEBBLE and
PrefPPO, respectively.

Hyperparameter Value Hyperparameter Value
Initial temperature 0.1 Hidden units per each layer 1024 (DMControl), 256 (Meta-world)
Segment of length 50 (DMControl), 25 (Meta-world) # of layers 2 (DMControl), 3 (Meta-world)
Learning rate 0.0003 (Meta-world) Batch Size 1024 (DMControl), 512 (Meta-world)

0.0001 (Quadruped), 0.0005 (Walker) Optimizer Adam [33]
Critic target update freq 2 Critic EMA ⌧ 0.005
(�1,�2) (.9, .999) Discount �̄ .99
Frequency of feedback 5000 (Meta-world), 20000 (Walker) Maximum budget / 2000/200, 1000/100, 500/50 (DMControl)

30000 (Quadruped) # of queries per session 20K/100, 10K/50 (Meta-world)

Table 1: Hyperparameters of the PEBBLE algorithm.

Hyperparameter Value Hyperparameter Value
GAE parameter � 0.9 (Quadruped), 0.92 (otherwise) Hidden units per each layer 256
Segment of length 50 (DMControl), 25 (Meta-world) # of layers 3
Learning rate 0.0003 (Meta-world) Batch Size 64 (Walker), 256 (Sweep Into)

5e�5 (DMControl) 128 (Quadruped, Button)
Discount �̄ .99 Frequency of feedback 32000 (DMControl)
of environments per worker 8 (Button), 16 (Quadruped), PPO clip range 0.4

32 (Walker, Sweep Into) Entropy bonus 0.0
of timesteprs per rollout 500 (DMControl) Maximum budget /

2000/200, 1000/100 (DMControl)
250 (Meta-world) # of queries per session

Table 2: Hyperparameters of the PrefPPO algorithm.

Reward model. For the reward model, we use a three-layer neural network with 256 hidden units
each, using leaky ReLUs. To improve the stability in reward learning, we use an ensemble of three
reward models, and bound the output using tanh function. Each model is trained by optimizing the
cross-entropy loss defined in (3) using ADAM learning rule [33] with the initial learning rate of
0.0003.

Simulated human teachers. For all experiments, To evaluate the robustness, we evaluate against
the following simulated human teachers with different hyperparameters:

• Oracle: SimTeacher
⇣
� ! 1 , � = 1, ✏ = 0, �skip = 0, �equal = 0

⌘

• Stoc: SimTeacher
⇣
� = 1 , � = 1, ✏ = 0, �skip = 0, �equal = 0

⌘

• Mistake: SimTeacher
⇣
� ! 1 , � = 1, ✏ = 0.1 , �skip = 0, �equal = 0

⌘

• Skip: SimTeacher
⇣
� ! 1 , � = 1, ✏ = 0, �skip = �adapt(✏adapt, t) , �equal = 0

⌘

• Equal: SimTeacher
⇣
� ! 1 , � = 1, ✏ = 0, �skip = 0, �adapt = �skip(✏adapt, t)

⌘

• Myopic: SimTeacher
⇣
� ! 1 , � = 0.9 , ✏ = 0, �skip = 0, �equal = 0

⌘

Because each environment has a different scale of ground truth rewards, it is hard to design stan-
dardized Skip and Equal teachers using hard threshold. To address this issue, we use an adaptive

8For Meta-world, the frequency is chosen from {8K, 16K, 32K, 64K} and # of queries per session is
chosen from {50, 100, 250, 500, 1000}.

18

threshold, which is defined as follows:

�adapt(✏adapt, t) =
H

T
Ravg(�t)✏adapt, (9)

where t is the current timestep, ✏adapt 2 [0, 1] is hyperparameters to control the threshold, T is
the episode length, H is a length of segment and Ravg(⇡t) is the average returns of current policy
with the parameters ⇡t. By adaptively rescaling the threshold based on the performance of agent, a
teacher skips queries or provides uniform labels (i.e., y = (0.5, 0.5). For all experiments, we choose
✏adapt = 0.1.

E Additional experimental results

Reward analysis. Figure 6 shows the learned reward function optimized by PEBBLE on the oracle
teacher in all tested environments. Because we bound the output using tanh function, the scale is
different with the ground truth reward but the learned reward function is reasonably well-aligned.

Regularization for handling corrupted labels. To improve the robustness to corrupted labels, we
apply the label smoothing [64]. By following Christiano et al. [19], Ibarz et al. [31], we use a soft
label by = 0.9 ⇤ y + 0.05 for the cross-entropy computation. As shown in Figure 7, we find that the
gains from label smoothing are marginal.

(a) Button Press (b) Sweep Into (c) Quadruped (d) Walker

Figure 6: Time series of learned reward function (green) and the ground truth reward (red) using
rollouts from a policy optimized by PEBBLE.

Figure 7: Learning curves of PEBBLE with 500 queries on Walker on the Mistake teacher. The solid
line and shaded regions represent the mean and standard deviation, respectively, across five runs.

19

F Learning curves

Figure 8: Learning curves of PEBBLE and PrefPPO on Walker-walk as measured on the ground truth
reward. The solid line and shaded regions represent the mean and standard deviation, respectively,
across ten runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the
corresponding color.

Figure 9: Learning curves of PEBBLE and PrefPPO on Quadruped-walk as measured on the ground
truth reward. The solid line and shaded regions represent the mean and standard deviation, respectively,
across ten runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the
corresponding color.

20

Figure 10: Learning curves of PEBBLE and PrefPPO on Sweep Into as measured on the success rate.
The solid line and shaded regions represent the mean and standard deviation, respectively, across ten
runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the corresponding
color.

Figure 11: Learning curves of PEBBLE and PrefPPO on Button Press as measured on the success rate.
The solid line and shaded regions represent the mean and standard deviation, respectively, across ten
runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the corresponding
color.

21

Figure 12: Learning curves of PEBBLE with 2000 queries on Quadruped-walk as measured on the
ground truth reward. The solid line and shaded regions represent the mean and standard deviation,
respectively, across ten runs.

Figure 13: Learning curves of PEBBLE with 1000 queries on Quadruped-walk as measured on the
ground truth reward. The solid line and shaded regions represent the mean and standard deviation,
respectively, across ten runs.

22

(a) Mean

(b) Median

(c) IQM

(d) Optimality Gap

Figure 14: Aggregate metrics on Walker with 95% confidence intervals (CIs) across ten runs. Higher
mean, median and IQM scores and lower optimality gap are better. The CIs are estimated using the
percentile bootstrap with stratified sampling.

(a) Mean

(b) Median

(c) IQM

(d) Optimality Gap

Figure 15: Aggregate metrics on Quadruped with 95% confidence intervals (CIs) across ten runs.
Higher mean, median and IQM scores and lower optimality gap are better. The CIs are estimated
using the percentile bootstrap with stratified sampling.

23

(a) Mean

(b) Median

(c) IQM

(d) Optimality Gap

Figure 16: Aggregate metrics on Button Press with 95% confidence intervals (CIs) across ten runs.
Higher mean, median and IQM scores and lower optimality gap are better. The CIs are estimated
using the percentile bootstrap with stratified sampling.

(a) Mean

(b) Median

(c) IQM

(d) Optimality Gap

Figure 17: Aggregate metrics on Sweep Into with 95% confidence intervals (CIs) across ten runs.
Higher mean, median and IQM scores and lower optimality gap are better. The CIs are estimated
using the percentile bootstrap with stratified sampling.

24

(a) Mean

(b) Median

(c) IQM

(d) Optimality Gap

Figure 18: Aggregate metrics of PEBBLE on Quadruped with 2000 queries across ten runs. Higher
mean, median and IQM scores and lower optimality gap are better. The CIs are estimated using the
percentile bootstrap with stratified sampling.

25

(a) Mean

(b) Median

(c) IQM

(d) Optimality Gap

Figure 19: Aggregate metrics of PEBBLE on Quadruped with 1000 queries across ten runs. Higher
mean, median and IQM scores and lower optimality gap are better. The CIs are estimated using the
percentile bootstrap with stratified sampling.

26

	Introduction
	Preliminaries
	B-Pref: Benchmarks environments for preference-based RL
	Design factors
	Simulated human teachers
	Evaluation metrics
	Tasks

	B-Pref: Algorithmic baselines for preference-based RL
	Deep reinforcement learning from human preferences
	PEBBLE

	Using B-Pref to analyze algorithmic design decisions
	Training details
	Benchmarking prior methods
	Impact of design decisions in reward learning

	Related work
	Conclusion
	Preliminaries: Reinforcement learning algorithms
	Preference-based reinforcement learning
	Sampling schemes
	Experimental Details
	Additional experimental results
	Learning curves

