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Abstract

This appendix provides supplementary material for our 2021 NeurIPS article [63].

A Related Work

A considerable amount of research [77, 76, 17, 29, 31, 25, 22, 18, 37] has been conducted to construct
datasets for hate speech. These approaches can be mainly categorized into three groups: i) keyword-
based search [77, 76, 17, 29, 31]; ii) random sampling [18, 37]; and iii) random sampling with the
keyword-based search [25, 22].

Keyword-based search. Because less than 3% of tweets are hateful [25], prior studies for con-
structing hate speech are largely based on the keyword-based search. In particular, a set of manually
curated “hate words” are defined and documents containing any of these keywords are selected for
annotation. While defining this list of keywords, prior work often considers hate words that are
typically used to spread hatred towards various targeted groups. For example, Waseem and Hovy [77]
identify 17 different keywords as hate words which covers hate under racism and sexism categories.
Waseem and Hovy find 130K tweets containing those hate words and annotate 16,914 of them as
racist, sexist, or neither.

Golbeck et al. [29] also define their own set of 10 hate words which are used to cover racism,
Islamophobia, homophobia, anti-semitism, and sexism related hate speech. Similarly, Warner and
Hirschberg [74] also construct a hate speech dataset containing 9,000 human-labeled documents from
Yahoo News! and American Jewish Congress where they consider hate words targeting Judaism
and Israel. Apart from using keywords targeted towards specific groups, prior work also utilizes
general hate words. For instance, Davidson et al. [17] utilize keywords from the HateBase [33], a
crowd-sourced list of hate words, whereas Founta et al. [25] use keywords from both the HateBase
and an offensive words dictionary [56].
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Prior work [42, 35] on hate speech dataset construction also focused on profiles of social media users
who are known to generate hateful content. For example, Kwok and Wang [42] search for keywords
from Twitter users who claim themselves as racist or are deemed racist based on the news sources
they follow.

Random Sampling. Kennedy et al. [37] argue that the datasets constructed by the keyword-based
search are biased towards those keywords and therefore are not representative of the real-world. Thus
the authors randomly sample 28,000 Gab (gab.com) posts for annotation. Similarly, de Gibert et al.
[18] collect documents for annotation from a White Supremacist forum (https://www.stormfro
nt.org) by selecting documents uniformly at random.

Random Sampling with Keyword Search. Prior work has also combined keyword-based search and
random sampling to select posts for annotation. For example, Founta et al. [25] develop a hate speech
dataset that contains 91,951 annotated tweets categorized into four categories: abusive, hateful, spam,
and normal. While many annotated tweets are randomly sampled from the Twitter API, they also
select some tweets for annotation based on the keyword-based search to increase prevalence.

Similarly, Wulczyn et al. [82] develop a dataset of personal attacks from Wikipedia comments that
contains 37,000 randomly sampled comments and 78,000 comments from users who are blocked.
The authors mention that since the prevalence of personal attacks on those 37,000 randomly sampled
comments is only 0.9%, they increase the prevalence of personal attacks comments by searching over
the blocked users’ comments.

We do not use the keyword-based search method in our work and do not apply only random sampling.
Instead, we adapt the well-known pooling method [67] for constructing IR test collections to select
documents to be annotated. To our knowledge, this is the first work using pooling method to construct
a hate-speech dataset.

B Hate Speech Challenges

There are various challenges associated with developing a dataset for hate speech, and in this
section, we will discuss those challenges. However, we should note that most of these challenges
are widely debated issues in machine learning research including dataset bias [72], annotator bias
[28], documenting datasets [27], task decomposition [36], selection of annotators [4] and others. If
adequate steps are not taken to mitigate various issues associated with the challenges, datasets will
reflect various forms of biases. Consequently, researchers and practitioners who deprioritize the
biases in the dataset would run the risk of inflicting greater harm to human society by deploying
automated systems trained on these biased datasets.

B.1 Definition of Hate Speech

Even experts disagree on what constitutes hate speech [25, 77, 17, 68]. It is a complex phenomenon
typically associated with relationships between groups and depends on the nuances of languages.
Since there is no legal definition of hate speech, various international organizations, social media
platforms, and research articles [17, 77] define hate speech differently. There are two notable
similarities between these definitions: 1) hate speech incites violence or is intended to be derogatory,
and 2) hate speech is directed towards certain targeted groups.

However, these definitions are not comprehensive enough to cover the real-world representation of
hate speech. For example, MacAvaney et al. [46] point out these definitions cover whether someone
is attacked or humiliated in hate speech. However, praising a particular group (e.g., KKK, Nazi) may
also be considered hate speech and this is not covered by the existing definitions.

B.2 Annotation Schema

Hate speech is a relatively complex phenomenon because the difference between other related
concepts (e.g., cyberbullying [14], abusive language [55], discrimination [71], etc.) and hate speech
is not obvious [24]. As a result, different hate speech datasets have different annotation schema for
hate speech and other related concepts [17, 25].

2

gab.com
https://www.stormfront.org
https://www.stormfront.org


The binary annotation schema is the basic schema that labels a post as either hate speech or normal
speech. However, prior studies mostly annotate hate speech using non-binary schema. Since offensive
language is prevalent in social media and does not necessarily always represent hate speech, Davidson
et al. [17] annotate their dataset using three categories: i) hate speech, ii) offensive language, and iii)
normal speech. Mathew et al. [48] also follow these three categories in annotation. Apart from hate
speech, offensive language, and normal speech categories, Founta et al. [25] annotate their dataset
into four (4) other categories, namely: i) abusive language, ii) aggressive behavior, iii) cyberbullying,
and iv) spam.

Non-binary schemes based on the intensity of hate speech are also utilized in prior studies. For
example, Del Vigna et al. [19] implement strong hate, weak hate, and no hate, Kumar et al. [39]
categorize posts into overtly aggressive, covertly aggressive, not aggressive categories. Poletto et al.
[61] compare binary annotation scheme against rating scale and best-worst ranking scale for hate
speech annotation and find that rating scale is comparatively better than the other two schemes.

B.3 Annotation Guidelines

Often, it is very challenging for the annotators to decide whether a particular post or document is
hateful or not [65, 68]. Thus a carefully designed annotation guideline is crucial to have a better
quality hate speech dataset. However, prior work also significantly differs from each other in terms
of designing annotation guidelines. Most of the time, researchers only specify the definition of
categories (e.g., hate or offensive) [17, 25] but do not provide any additional clarification about how
to interpret each of those categories.

Furthermore, since annotators are not provided with any contextual information regarding the social
media post, different authors provide different types of guidelines to their annotators to resolve
this absence of context. For example, Davidson et al. [17] instructed the annotators not only to
consider the presented tweets but also to think about the context in which tweets might appear before
making the judgment. However, such practices risk making the task of annotating hate speech more
subjective.

B.4 Selection of Annotators

Previous studies regarding hate speech also vary in terms of hiring annotators. Given the nuances
of language and the degree of difficulty of annotating hate speech, expert annotators can play an
important role in achieving a higher inter-annotator agreement [26]. Prior work hired experts from
different backgrounds including feminists and anti-racism activists [77], content moderators [57],
PhD students in Linguistics [40], experts in Natural Language Processing [49]. In addition, since
expert annotators typically have domain knowledge, it is expected that expert annotators tends
to agree more with other experts in annotating hate speech. For example, Waseem [75] find that
crowd-workers have a lower inter-annotator agreement score than experts.

However, hiring expert annotators is expensive, and there is also a scalability issue. Thus for a
large-scale annotation task, prior work typically employs crowd-workers [17, 25]. To make sure that
crowd-workers have the necessary expertise to perform the annotation task, prior work sometimes
restrict annotation tasks to workers meeting certain qualifications (e.g., Amazon Mechanical Turk).
However, crowd-workers lacking proper training are more prone to do the “keyword-spotting” while
labeling hate speech. As a result, crowd-workers may be more likely to label a post as hate speech
than experts [75].

B.5 Annotators’ Bias

Prior work also investigates how annotators’ demographics (e.g., gender, race, first language) affect
the perception of the annotators to hate speech. Gold and Zesch [30] find that female annotators
who are typically part of the targeted group in hate speech are more likely to annotate a possible
gender-related post as sexist than their male counterparts (i.e., gender bias). A similar type of
observation (i.e., racial bias) is also made by Kwok and Wang [42] while working on racist hate
speech. Additionally, Sap et al. [69] report that annotators who are unfamiliar with the African
American English (AAE) dialect are more likely to label documents containing AAE as racist,
although those same documents may be considered non-racist by native AAE speakers.
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The racial bias problem is even more severe when we consider the crowd-workers; for example, in
Amazon Mechanical Turk, non-AAE speakers are overrepresented [34]. Additionally, the annotators’
political ideology can also unintentionally manifest in yielding a politically biased dataset [79].
Furthermore, it has been found that both expert and crowd-workers are prone to similar types of bias
while annotating hate speech [16]. Given this counter-intuitive observation, prior work [16] argues to
develop a better training process for the annotators to mitigate the annotators’ bias.

B.6 Measurement of Annotator Agreement

Previous studies diverge significantly in reporting on the quality of the annotations, especially the
inter-annotator agreement score [24]. Typically, Cohen’s κ, Fleiss κ, Krippendorf’s α, or a plain
observed agreement percentage are reported in prior work. On the other hand, there are also many
studies in hate speech that do not report any inter-annotator agreement score [24].

Since many factors are involved in annotation (e.g., annotation scheme, annotation guidelines,
annotators’ background), the reported agreement scores among prior studies vary widely. For
example, Bohra et al. [11] report a Cohen κ score of 0.982, whereas Del Vigna et al. [19] report a
Fleiss κ score of 0.19. Furthermore, different studies argue for different thresholds for an acceptable
inter-annotator agreement score [5, 23]. Typically more complex annotation schemes [19, 68] produce
a lower inter-annotator agreement score than a simple, binary annotation scheme [11, 17].

We are not familiar with any prior work on hate speech annotation using self-consistency checks [84],
which we believe complements traditional use of annotator agreement measures. Conceptually, for
objective tasks with a single true answer, we expect reasonable annotator agreement, while on more
subjective tasks [53] (e.g., favorite ice cream flavor) we do not expect annotators to agree. While an
annotator can be expected to be self-consistent for either task type, self-consistency seems particularly
valuable for subjective tasks when annotators are expected to disagree with one another. Hate speech
annotation lies in the spectrum between objective vs. subjective tasks. Some objectivity is necessary
to yield consistent data for training detection models, but low annotator agreement remains common.
This is why we believe self-consistency measures can complement traditional practice.

B.7 Absence of a Benchmark Hate Speech Dataset

Although hate speech is a widely discussed topic and there are many publicly available hate speech
datasets, there is no commonly accepted benchmark dataset for hate speech detection [70, 60, 47].
This is largely due to the fact that in hate speech, data degradation is a known issue [78, 13].
This is because researchers primarily collect hate speech from social media and release only the
IDs of the social media posts in the hate speech domain. For example, Watanabe et al. [78] and
Chaudhry and Lease [13] report that a number of tweets released initially by [77] are not available
anymore. Furthermore, standard benchmark datasets (e.g., SQUAD [64], MSMARCO [54]) provide
a standard train-test-validation split, whereas most of the hate speech datasets lack in providing this
train-test-validation split [47].

B.8 Less Generalizability of Automated Hate Speech Detection Models

Although the generalization capability of a model can be largely attributed to the complexity of
the model itself, Gröndahl et al. [32] argue that for hate speech, the nature and composition of the
datasets are more important than the model itself. This is because researchers differ from each
other regarding various related issues of annotating hate speech, including definition, categories,
annotation guidelines, types of annotators, aggregation of annotations. Consequently, different hate
speech datasets have different natures and compositions. As a result, automated hate speech detection
systems trained on one hate speech dataset exhibit poor generalization performance on another hate
speech dataset. For example, Arango et al. [3] show that the state-of-the-art hate speech detection
models [8, 1] provide very poor cross-data generalization performance when trained on the dataset
created by Waseem and Hovy [77] but tested on the HateEval dataset [9].

B.9 Summary of Challenges

In conclusion, all these issues discussed in this section should provide the practitioners a general
overview about why they should be vigilant in performing their due diligence while deploying
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automated hate speech detection systems using any constructed hate speech dataset, including our
own. While solving all these issues is beyond the scope of this work, here, we particularly focus
on the data sampling process (i.e., which post to select for annotation) so that the final hate speech
dataset has a better coverage of hate speech from all categories (C1 and C2 of Figure 1) with a limited
budget for annotation. Prior work regarding the data sampling process of hate speech is discussed in
the next section.

C Tweet Corpus Collection

We construct a collection of documents (e.g., tweets) by collecting a random sample of tweets from
the Twitter Public API, which usually provides 1% random sample of the entire Twitter stream in a
given time range. In our case, we have collected tweets from May-2017 to Jun-2017.

Next, we apply regular expressions to get rid of tweets containing retweets, URLs, or short videos.
Tweets are also anonymized by removing the @username tag. However, we do not remove any
emojis from tweets as those might be useful for annotating hate speech. We filter out any tweets as
non-English unless two separate automated language detection tools, Python Langdetect1 and Python
Langid2, both classify the Tweet as English. Finally, after removing duplicate tweets, approximately
13.6 million English tweets remain as our tweet corpus collection.

D Document Annotation Process

D.1 Annotation Guidelines

Our designed annotation guidelines consist of a clear definition of what constitutes as hate speech
and examples covering various cases of hate speech. Following Davidson et al. [17], we also instruct
the annotators not to annotate any post as hateful if the derogatory language used in the post does not
have any target associated with a protected group. Furthermore, annotators are explicitly instructed
that they should not label any pornographic content as hateful.

D.2 Annotation Interface

Instructions ask annotators to follow these steps in order:

1. Highlight any words or phrases in the post INCITING VIOLENCE.

2. Highlight any DEROGATORY LANGUAGE in the post on the basis of group identity.

3. If the post IMPLICITLY incites violence or denigrates an individual or group on the
basis of group identity, select that option. [INCITING VIOLENCE / DEROGATORY
LANGUAGE]

4. If the target is EXPLICIT, highlight the INTENDED TARGET in the post. If the target is
implicit, name the target.

5. Identify the type of group targeted (explicit or implicit). [BODY / GENDER / IDEOLOGY
/ RACE / RELIGION / SEXUAL ORIENTATION / OTHER]

6. Based on your answers to the above steps, do you believe the post is hateful? [YES / NO]
7. We welcome any additional explanation of your labeling decisions you would like to provide.

[TEXTBOX INPUT]

This annotation scheme requests the annotators to identify both the violating content (Steps 1-2) and
the demographic group targeted (Steps 3-5). When the annotators reach Step 6, they have already
completed several sub-tasks. They then decide whether they believe the post is hateful or not.

Targeted group identification. Once annotators identify the target of hate (implicit or explicit),
they select the group identity of the target. There are seven (7) categories of targeted groups in our
interface, as listed in the interface (Step 5).

1https://pypi.org/project/langdetect/
2https://github.com/saffsd/langid.py
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Categorization of highlighted terms. While Mathew et al. [48] ask the annotators to only highlight
terms that are related to hate speech, in our interface, annotators have to do both highlighting and
categorization of terms that are related to the actions and the targets of hate speech. For example,
for this post “Good morning Kanye. Shut the fuck up", the annotators have to highlight “Kanye"
as the target and they also have to highlight terms “Shut” and “fuck” and categorize those terms
as derogatory terms. In addition to the potential downstream value of the collected rationales, it is
known from prior work [51, 41] that requiring annotator rationales improves label quality, even if the
rationales are ignored.

D.3 Collecting Annotations

We hire annotators from Amazon Mechanical Turk. To ensure label quality, only annotators with at
least 5,000 approved HITs and a 95% HIT approval rate are allowed. We pay $0.16 USD per tweet.
Since three annotators annotate each tweet, including the platform fees, we have paid $4,930.17 USD
in total to annotate 9,667 tweets. We apply majority voting to compute the final label.

Guidelines indicate that if a tweet is hateful, annotators must identify both the targets and the actions
related to hate speech; otherwise, their work will be rejected. Furthermore, typically only a few
words or phrases are related to targets and actions of hate speech; highlighting all words will yield
rejection. One might consider this rule as too prohibitive, because highlighting all words might be
necessary in some cases. However, in our pilot study we observed that annotations in which entire
text is highlighted corresponded to low quality work in almost all cases.

To facilitate quality checks, we collect the annotations in iterative small batches. The quality check
typically includes randomly sampling some annotated tweets and checking the annotations. Finally,
if we reject any HIT, we notify the worker why we have done so and re-assign the task to others.

E State-of-the-art Models

I. LSTM. The LSTM model implemented by Badjatiya et al. [8] achieves 93% F1 on the hate speech
dataset created by Waseem and Hovy [77] (though it is unclear whether they report macro or micro
F1). The deep learning architecture starts with an embedding layer with dimension size of 200. Then
it is followed by a Long Short-Term Memory (LSTM) network. Their final layer is a fully connected
layer with a soft-max activation function to produce probabilities across three classes, namely sexist,
racist, and non-hateful, at the output layer. To train the model, they use the categorical cross-entropy
as a loss function and the Adam optimizer. In our case, we modify the output layer with two nodes
and use Sigmoid as an activation function as we have a binary classification task. Finally, for the
loss function, we use the binary cross-entropy loss function. The model is trained for ten epochs
following Badjatiya et al. [8].

II. BiLSTM. Agrawal and Awekar [1] design a BiLSTM architecture that achieves ≈ 94% score in
terms of both micro and macro averaged F1 on the hate speech dataset constructed by Waseem and
Hovy [77]. Their architecture consists of the following layers sequentially: 1) Embedding layer, 2)
BiLSTM Layer, 3) Fully Connected layer, and 4) output layer with three nodes. They also use the
softmax activation function for the final layer and the categorical cross-entropy as loss function with
the Adam optimizer. For this BiLSTM model, we also perform the same modification as we do for
the LSTM model. In addition, we train the model for 30 epochs.

Note. For both LSTM and BiLSTM models, we use the corrected versions of these models reported
by Arango et al. [3].

III. BERT. We also utilize Bidirectional Encoder Representations from Transformers (BERT) [20]
which achieves 67.4% macro averaged F1 on the hate speech dataset created by Mathew et al. [48].
With pooling, we use the BERT-base-uncased model with 12 layers, 768 hidden dimensions, 12
attention heads, and 110M parameters. For fine-tuning BERT, we apply a fully connected layer with
the output corresponding to the CLS token. The BERT model is fine-tuned for five epochs.

Document Pre-processing. We pre-process tweets using tweet-preprocessor3. Then we tokenize,
and normalize those pre-processed tweets. For the TF-IDF representation, we further stem those
tweets using Porter Stemmer [81].

3https://pypi.org/project/tweet-preprocessor/
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Figure 1: Distribution of annotators’ agreement

Document Representation. For LSTM and BiLSTM models, documents are represented using
a word embedding where the embedding layer is initialized using the Twitter pre-trained GloVe
embedding [58] which is pre-trained on 2 billion tweets. For the Logistic Regression and Naive
Bayes models, we generate the TF-IDF representation [66] of documents using bigram, unigram, and
trigram features following the work of Davidson et al. [17].

F Additional Dataset Properties

Effect of the presence of hate words on annotation. We also analyze how the presence of hate
words affects the decision-making process of the annotators. To achieve that, we plot the frequency
distribution of the number of annotators who agree regarding the label of tweets in Figure 1. For
example, the 1H vs. 2NH entry on the x-axis of Figure 1 represents how many times one annotator
labels a tweet as hateful, but two annotators annotate that tweet as non-hateful. The frequency
distribution is divided into two sets where one set does not contain hate words, and another set
contains hate words. For example, 3.36% of the time, all three annotators label a tweet as hateful
when there are hate words in tweets. In contrast, only 0.19% of the time, three annotators label a
tweet as hateful when there is no hate word in that tweet (3H vs. 0NH). This observation is also true
for the other entries on the x-axis. Annotators agree more given known hate words in tweets.

Targeted group label. The targeted group label of a hateful tweet is computed using majority voting.
However, we find that there are 86 hateful tweets where all three annotators assign different targeted
groups. In those cases, the targeted group label is assigned to “UNDECIDED”. A closer inspection
on this “UNDECIDED” category reveals that for 83 tweets out of 86 UNDECIDED tweets, one
annotator out of three provides “NONE” as a targeted group, contrary to our guidelines. Furthermore,
for 35 tweets, one annotator selects “GENDER”, but another annotator mostly picks “IDEOLOGY” or
“RACE”. For example, one annotator selects “GENDER” but the other annotator picks “IDEOLOGY”

RELIGION

23.24%

IDEOLOGY

20.09%

RACE
19.94%

GENDER

13.34%

UNDECIDED

12.89%
OTHER

7.80%
BODY

1.35%
SEXUAL
ORIENTATION

1.35%

Figure 2: Hate speech distribution over targeted groups.
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for tweet “F**k off you old socialist millionaire Clinton b***h”. Here we find “UNDECIDED”
category because the tweets can be interpreted as hateful to two different target groups.

Figure 2 presents the percentage of hate speech under each targeted group. We see that the largest
three targeted groups are religion, ideology, and race, accounting for more than 62% of hate speech
in the dataset. Those top three groups have almost equal share (≈ 20%). To understand further
each of these targeted groups, we analyze the top 10 most frequent terms appearing under each of
these targeted groups and find that some of these targeted groups cover a broad range of hate speech
which is one of our goals. For example, the “Race” group consists of hate speech on the basis of
ethnicity, race, colour, or descent. Similarly, the “Religion” group covers hate towards Muslims and
Christians. Furthermore, under the “Ideology” group, targeted groups include individual or groups
having various ideologies such as liberals, republicans, and feminists. The same observation holds if
we consider the “sexual orientation” group. However, if we consider the “Gender” group, we find
that this group mainly covers hate towards only women. Finally, 66% and 20% of the hateful tweets
are explicit and implicit, respectively, whereas the remaining 14% falls under the “UNDECIDED”
category of annotator disagreement.

Inter-annotator agreement for rationales. Recall that our annotators were asked to distinguish
three cases of implicit vs. explicit labeling decisions: types of hate (derogatory language or inciting
violence) and demographic group targeted. In explicit cases (only), annotators provided a rationale by
highlighting a portion of the tweet supporting their labeling decision. This leads to three complications
in how to measure inter-annotator agreement for rationales. Firstly, there are three different categories
of rationales. For simplicity, we ignore this and simply report one statistic over all categories
combined. Secondly, since rationales are only provided in explicit cases, the number of rationales
per labeling decision depends on how many annotators identified explicit evidence for their labeling
decision. Since inter-annotator agreement measures typically assume the same number of annotations
per item, we make another simplifying assumption that all annotators provided rationales, but that for
implicit cases, no tokens were part of the rationale. Thirdly, our interface has annotators highlight
rationales at the character level, which we then map to binary token level labels as follows: 1 if all
characters in the token are highlighted, and 0 otherwise. After this, we can then calculate annotator
agreement as a binary labeling task over all tokens (over all tweets). This yields raw agreement of
95% (most tokens are not part of rationales), Fleiss κ = 0.07, and Gwet’s AC1 = 0.95.

G Wellness Risks for Hate Speech Annotators and Moderators

To the best of our knowledge, none of the previous work has analyzed the effect of frequent exposure
to hate speech on the well-being of human annotators. However, prior evidence suggests that exposure
to online abuse has serious consequences on the mental health of the workers [83]. The studies
conducted by Boeckmann and Liew [10] and Leets [43] to understand how people experience hate
speech have found that low self-esteem, symptoms of trauma exposure, etc., are associated with the
constant exposure to hate speech.

In addition, according to the premier diagnostic manual for psychological disorders, DSM-5 [6], a
person can suffer from post-traumatic stress disorder (PTSD) via “repeated exposure” to indirect
traumatic material, which in our case is online hate speech. Prior work [45, 50] regarding the
psychological effect of indirect trauma also recognizes PTSD as “secondary traumatic stress”,
“compassion fatigue”, and “vicarious traumatization”. Several studies have been conducted to
understand the consequences of constant exposure to trauma, e.g., Kleim and Westphal [38] perform
research on the first responders, Perez et al. [59] investigate the police officers, Wagaman et al. [73]
study the social workers, etc. Although there is no prior study regarding the consequences due to the
constant exposure to hate speech, recently, some employees have sued Microsoft. In their lawsuit,
they claimed that due to repeated exposure to traumatic contents (e.g., child pornography) as a part of
their work, they are being diagnosed with PTSD [44].

From the above discussion, it is evident that there are some serious consequences for the constant
exposure to indirect trauma, and the same is true for annotating hate speech. As a result, we can see
that there are some efforts from organizations to improve the work environment of employees. To be
more specific, more than 12 technology companies (e.g., Adobe, Apple, Dropbox, Facebook, Go-
Daddy, Google, Kik, Microsoft, Oath, PayPal, Snapchat, Twitter) have implemented some guidelines
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developed by The Technology Coalition [15] to “support of those employees who have exposure to
online child pornography in the course of their work”.

Some of the key mitigating steps proposed in the Employee Resilience Guidebook [15] are: i)
limiting the amount of time an employee can spend on moderating child pornography contents, and
ii) acquiring informed consent from employees so that they have a clear understanding of the role
as a moderator. The latter strategy has also been emphasized by the University Institutional Review
Boards (IRBs).

Owing to the fact that we work with crowd-workers via a crowd-platform where we do not have any
direct control over their work environment, directly implementing the above-mentioned strategies
is beyond our control. Consequently, to reduce the risks for the crowd-workers associated with
annotating hate speech, we have posted a disclaimer as shown below at the very beginning of the
annotation task.

Our research seeks to reduce the spread of hate speech on social media by training
computer programs to automatically detect hate speech. To accomplish this, we
ask human annotators to read tweets and label hate speech. We understand that
this labeling task requires content that can be disturbing to read. If you prefer
to return this task rather than work on it, we understand. In general, if you ever
experience mental or emotional distress, please know that help is available online.
Helplines include https://suicidepreventionlifeline.org in the USA
and http://suicide.org/international-suicide-hotlines.html
internationally. For additional reading on this subject, please consult our research
article, “The Psychological Well-Being of Content Moderators”( https://www.
ischool.utexas.edu/~ml/papers/steiger-chi21.pdf).

In the spirit of informed consent, this disclaimer helps the crowd-workers to make an informed
decision about whether or not to accept the task. It also suggests where to seek help regarding any
mental or emotional distress.

H Discussion and Limitations

The primary research goal of this work is to develop a hate speech dataset that covers a broader range
of hate speech while maintaining a comparable prevalence of hate. While developing this dataset,
we have made various operational decisions regarding various issues discussed in Section B. In this
section, we discuss the practical implication of those operational decisions in the constructed dataset.

I. While defining hate speech, we emphasize that the presence of both targets and actions is necessary
to consider a post as hate speech. This definition is consistent with the prior definition of hate speech
used in the datasets created by Davidson et al. [17], Founta et al. [25], de Gibert et al. [18] and
Nobata et al. [55]. We select this hate speech definition because it covers a wide range of hate with a
generalized set of targets. However, this also creates room for different interpretations among the
annotators, which is reflected in the inter-annotator agreement score of our dataset. On the other hand,
Waseem and Hovy [77] provide an eleven (11) steps approach, including the presence of specific
hashtags to consider a post as either sexist or racist. Note that, our annotation interface also has
multiple steps to determine whether a post is hateful or not. Another practical limitation of the
definition used in this dataset is that it does not cover those hate speech related to praising certain
groups (e.g., praising Nazi).

II. Our dataset has been annotated using a binary scheme considering only hate speech and normal
speech. However, non-binary schemes are very prevalent in the hate speech domain [17, 25] because
it helps us to understand hate and other related concepts (e.g., offensiveness, aggressiveness) using
the same annotation effort. One practical limitation of the binary scheme used in this work is
that annotators might label an offensive post as hate speech because they have no other categories
to specify. For example, pornographic-related posts are typically offensive, and there is a clear
instruction regarding this in our guidelines, and yet many annotators label these offensive posts as
hate speech in our annotated dataset.
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III. Unlike prior work [77, 17, 25, 18] where a simple annotation interface has been employed,
by adapting the suggestion of Sanguinetti et al. [68], we have designed a hierarchical, structured
annotation interface to annotate hate speech. The rationale behind this hierarchical interface is to
perform the task decomposition, which can help the annotators navigate their decision-making to label
a post as hate or normal speech. However, following prior work of Sanguinetti et al. [68], we have
also noticed that the use of this structured interface does not necessarily improve the inter-annotator
agreement score. Further investigation regarding the annotation interface is needed to understand
how different annotation interfaces affect the quality of the annotated data.

IV. Following prior work [25, 17, 48], we have used crowd-workers to annotate hate speech. As
mentioned earlier, since training the crowd-workers is practically challenging, we select crowd-
workers with specific qualifications (e.g., a minimum HIT approval rate). However, since the
crowd-workers are more prone to annotate a post as hate speech based on the keyword-spotting [75],
the quality of the annotated data might be affected. To compensate for this issue, we have designed a
thorough annotation guideline with various examples considering different boundary cases of hate
speech. Furthermore, by noticing the fact that many previous studies do not disclose their guidelines
[24], we have made our annotation guidelines publicly available with our dataset.

V. We have assumed that annotators can complete the annotation task effectively without any con-
textual information irrespective of their demographics, expertise, ideologies, etc. Note that this
assumption holds for both pooling and active learning methods. However, prior work by Al Kuwatly
et al. [2] has shown that if the demographic factors (e.g., first language, gender, etc.,) are not properly
handled, potential annotation bias might arise in the dataset. For example, it has been found that
native English speakers are better at detecting toxic comments [2] than non-native English speakers
when the annotation task is in English.

VI. Our Twitter-specific dataset is not necessarily representative of how hate is expressed on other
social media platforms and forums. For example, tweets have a fixed maximum length (i.e., 280
characters), so our dataset does not cover any hateful expressions longer than this limit.

Other related biases that we should be concerned about regarding the dataset constructed in this work
are: i) temporal bias [52], ii) user bias [3] and iii) pooling bias [12]. Although we have collected
tweets from May-2017 to Jun-2017 using a uniform random sample, familiar topics discussed during
that time frame would be over-represented in the constructed corpus and thus introduce the temporal
bias in the dataset. Furthermore, Arango et al. [3] mention that 65% of hate speech annotated in the
dataset created by Waseem and Hovy [77] are generated by only two (2) Twitter users. Since we have
taken a random sample of tweets from the Twitter API and another random sample from the pooled
tweets, user bias should be less prevalent in the constructed hate speech dataset.

VII. The pooling process introduces two additional biases : i) pool depth bias and ii) system bias and
here, we discuss those biases in the context of hate speech. When the pool depth is very shallow,
many posts remain unjudged. If several of those unjudged documents are hate speech, that introduces
a pool depth bias. Typically, employing a wide pool depth helps reducing this bias. On the other
hand, system bias is introduced when the number of machine learning models in pooling is very few
and those models are not diverse. This phenomenon reduces the prevalence of hate in the annotated
dataset drastically. Generally, system bias can be addressed by increasing the number and diversity of
machine learning models [12].

Although handling annotation-related biases (Section B) and other biases discussed above is not the
key contribution of this work, readers should be aware of those biases (e.g., racial bias, political bias,
gender bias, etc.) while designing an automated hate speech detection system using our hate speech
dataset. Specifically, the presence of these biases might adversely impact the quality of the constructed
hate speech dataset. Moreover, when machine learning models are trained on biased datasets, those
models typically learn and exasperate those biases. For example, these biased automated hate speech
detection systems might flag posts written using American English dialect (AAE) as hate speech or
impair political debates on social media platforms because the systems are politically biased.

Apart from the above-discussed issues of the constructed hate speech dataset, we have made some key
assumptions related to pooling and active learning methods that are crucial to achieving our research
goal. Here, we discuss those assumptions and their corresponding limitations.

Assumption I. Recall that hate speech is relatively rare in social media (only 3% of social media
posts are hateful [24]), and annotating everything is not feasible. Thus to maximize the prevalence of
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hate speech for a given budget, during the pooling, documents (e.g., tweets) that exceed a certain
threshold in terms of their likely hatefulness are only considered in the pooled document set. Note
that due to this assumption, the process for constructing the pooled document set is a non-random
sampling process, which is prone to sampling bias because of its nature. In other words, documents
having a likely hatefulness score less than the provided threshold are not present in the final dataset,
and some of those discarded documents might be hateful. Note that sampling bias is also an issue for
active learning [62]. In addition, since machine learning models are employed in both pooling and
active learning, the selection of posts for annotation is also affected by model bias [52]. This could
be most pronounced with our active learning approch because only a single model is used to select
tweets, which may reduce the diversity in selection vs. the pooling approach across models.

Typically prior work on constructing hate speech datasets is mostly based on searching hate words
[77, 9, 25] and/or finding potential hateful social media users [17]. Because of their nature, they are
also heavily criticized for having a strong sampling bias. For example, only two users are responsible
for generating 70% of sexist tweets, and only one user generates 99% of racist tweets [80] in the
dataset constructed by Waseem and Hovy [77]. Unlike prior work, we do not rely on keyword-based
searches or finding hateful users. In addition to that, to mitigate the sampling bias, we have two
random sampling steps at two different stages of the pipeline: 1) corpus construction phase and 2)
final sampling of documents for annotation. However, potential users of the dataset constructed in this
work should be aware of this potential selection bias. They might adopt some de-biasing strategies
discussed in prior work [21, 7] while designing their automated hate speech detection systems trained
on our hate speech dataset.

Assumption II. Another key assumption made in the pooling-based approach is that there exist prior
hate speech datasets on which prediction models can be trained to kickstart the pooling technique.
However, this assumption does not always hold, especially for the less-studied languages (e.g.,
Amharic, Armenian, etc.). Additionally, since the pooling technique relies on prior hate speech
datasets, any known limitations of those datasets will influence the document selection process of
the pooling technique. For example, the dataset constructed by Waseem and Hovy [77] covers sexist
posts from the sports domain, and the dataset by Grimminger and Klinger [31] covers political hate
speech covering the 2020 US Election topic. This type of topical bias for the sake of identifying hate
speech in the existing hate speech datasets can also be propagated through the pooling technique, and
the constructed hate speech dataset can have the same type of topical bias.
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