Part of Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021) round2
Bernd Bischl, Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang, Rafael Gomes Mantovani, Jan van Rijn, Joaquin Vanschoren
Machine learning research depends on objectively interpretable, comparable, and reproducible algorithm benchmarks. We advocate the use of curated, comprehensive suites of machine learning tasks to standardize the setup, execution, and reporting of benchmarks. We enable this through software tools that help to create and leverage these benchmarking suites. These are seamlessly integrated into the OpenML platform, and accessible through interfaces in Python, Java, and R. OpenML benchmarking suites (a) are easy to use through standardized data formats, APIs, and client libraries; (b) come with extensive meta-information on the included datasets; and (c) allow benchmarks to be shared and reused in future studies. We then present a first, carefully curated and practical benchmarking suite for classification: the OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18). Finally, we discuss use cases and applications which demonstrate the usefulness of OpenML benchmarking suites and the OpenML-CC18 in particular.